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A Glance at History

1987: Chare Kernel arose from parallel Prolog work
— Dynamic load balancing for state-space searcho@ra

1992: Charm++

1994: Position Paper:

— Application Oriented yet CS Centered Research
— NAMD : 1994, 1996

Charm++ In almost current form: 1996-1998

— Chare arrays,
— Measurement Based Dynamic Load balancing

1997 : Rocket Center: a trigger for AMPI
2001: Era of ITRs:

— Quantum Chemistry collaboration
— Computational Astronomy collaboration: ChaNGa



Outline

What is Charm++ — Scalable Performance tools
— and why is it good — Scalable Load Balancers

i ~ Fault tol
Overview of recent results ault tolerance

] - raising the level of — Cell, GPGPUs, ..
— Language work: raising the level o — Upcoming Challenges and

%bstra.c tlgn fic E « opportunities:
— Domain Specific Frameworks: . .
ParFUM Multicore

« Guebelle: crack propoagation » Funding

» Haber: spae-time meshing
— Applications

 NAMD (picked by NSF, new
scaling results to 32k procs.)

 ChaNGa: released, gravity
performance

e LeanCP:
— Use at National centers
— BigSim



PPL Mission and Approach

 To enhancé&erformance and Productivity in

programming complex parallel applications
— Performancescalable to thousands of processors

— Productivity:of human programmers

— Complex: irregular structure, dynamic variations

o Approach:Application Oriented yet CS centered research

— Develop enabling technology, for a wide collectudrapps.
— Develop, use and test it in the context of realiagtions

e How?
— Develop novel Parallel programming techniques
— Embody them into easy to use abstractions

— S0, application scientist can use advanced teabrigith ease
— Enabling technology: reused across many apps




Migratable Objectg$aka Processor Virtualization)

Programmer : [Over] decomposition Benefits

into virtual processors e Software engineering

Runtime: AssignsVPsto processors — Number of virtual processors can be
independently controlled

Enables adaptive runtime strategies — Separate VPs for different modules

 Message driven execution
— Adaptive overlap of communication
— Predictability :
e Automatic out-of-core

| mplementations. Charm++, AMPI

System implementation — Asynchronous reductions
ﬂ . Dynamlc mapping
— Heterogeneous clusters
| + Vacate, adjust to speed, share
. ! ' — Automatic checkpointing
ﬁ e. T u — Change set of processors used
--------------------- r. — Automatic dynamic load balancing

User View — Communication optimization



Adaptive overlap and modules

SPMD and Message-Driven Modules
(From A. GursoySmplified expression of message-driven programs and
guantification of their impact on performance, Ph.D Thesis, Apr 1994.)

Modularity, Reuse, and Efficiency with Message-Driven LilmstirProc. of the Seventh
SIAM Conference on Parallel Processing for Scientific Compu8ag, Fransisco, 1995



Realization: Charm++’s Object Arrays

* A collection of data-driven objects
— With a single global name for the collection
— Each member addressed by an index
 [sparse] 1D, 2D, 3D, tree, string, ...
— Mapping of element objects to procS handled by the system

User’s view
TITTI |
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AMPI: Adaptive MPI




AMPI: Adaptive MPI

Implemented
as virtual
processors
(user-level
migratable
threads)

Real Processors
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Processor Utilization against Time on 128 and lj@@¢essors
On 128 processor, a single load balancing stejceaffbut

On 1024 processors, we need a “refinement” step.




Shrink/Expand

Problem: Availability of computing platform may change
Fitting applications on the platform by object migration
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So, Whats new?



New Higher Level Abstractions

e Previously: Multiphase Shared Arrays
— Provides a disciplined use of global address space
— Each array can be accessed only in one of the following modes:
 ReadOnly, Write-by-One-Thread, Accumulate-only
— Access mode can change from phase to phase
— Phases delineated by per-array “sync”

e Charisma++: Global view of control
— Allows expressing global control flow in a charm program
— Separate expression of parallel and sequential

— Functional Implementation (Chao Huang PhD thesis)
— LCR’04, HPDC’07



Multiparadigm Interoperability

Charm++ supports concurrent composition

Allows multiple module written in multiple
paradigms to cooperate in a single application

Some recent paradigms implemented:
— ARMCI (for Global Arrays)

Use of Multiparadigm programming

— You heard yesterday how ParFUM made use of multiple
paradigms effetively



Blue Gene Provided a Showcase.

o Co-operation with Blue Gene team
— Sameer Kumar joins BlueGene team

« BGW days competetion

— 2006: Computer Science day
— 2007: Computational cosmology: ChaNGa

e | eanCP collaboration
— with Glenn Martyna, IBM

o4




Cray and PSC Warms up

e 4000 fast processors at P¢
e 12,500 processors at ORN @
* Cray support via a gift grar

e \ ;




IBM Power/7 Team
e Collaborations begun with NSF Track 1 proposal

gensored
NDA




Our Applications
Achieved Unprecedented
Speedups



Applications and Charm++
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Charm++ and Applications

Synergy between Computer Science Research and
Biophysics has been beneficial to both

Space-time
meshing

Issues

>

Charm++

Technigues T

& libraries

suonedlddy Jaylo

Rocket Simulatiot




Develop abstractions in context of full-scale apgtions
Protein Folding

Quantum Chemistry NAMD: Molecular Dynamics

=

native state

I

urifolded state

I

ﬁa te

A-Vvirus ssmulation

sics Group

4 ~° Beckman Instit
7 University of Illinois a ign

Parallel Objects,

Adaptive Runtime Systemn

Libraries and Tools

Crack Propagation

Rocket Simulation Dendritic Growth Space-time meshes

The enabling CS technology of parallel objects and intelligent
Runtime systems has led to several collaborative applicahdDSE




Molecular Dynamics in NAMD

* Collection of [charged] atoms, with bonds

— Newtonian mechanics
— Thousands of atoms (10,000 - 5000,000
— 1 femtosecond time-step, millions needes:

e At each time-step
— Calculate forces on each atom
e Bonds:

 Non-bonded: electrostatic and van der Waal's
— Short-distance: every timestep
— Long-distance: every 4 timesteps using PME (3D FFT)
— Multiple Time Stepping

— Calculate velocities and advance positions

Collaboration with K. Schulten, R. Skeel, and coworkers




NAMD: A Production MD program

NAMD

o Fully featured program
 NIH-funded development

« Distributed free of charge
(~20,000 registered users)

e Binaries and source code

» Installed at NSF centers

o User training and support

e Large published simulations
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NAMD Design

* Designed from the beginning as a parallel program

e Uses the Charm++ idea:

— Decompose the computation into a large number of objects

— Have an Intelligent Run-time system (of Charm++) assigrctsbie
processors for dynamic load balancing

Hybrid of spatial and force decomposition:

«Spatial decomposition of atoms into CUbES”'.\
L

]
+

(called patches)
*For every pair of interacting patches, create o&
object for calculating electrostatic interactions i‘k‘

*Recent: Blue Matter, Desmond, etc. use 10

]
o~

J

this idea in some form .




NAMD Parallelization using Charm++

Patches : Integration

Multicast
/ \ 100,000 VPs

Pairwise
Cornpute Objects

Example
Configuration
847 VPs
Angle
Compute Objects
Asynchronous

Reductions

Point to Point

108 VPs

g\
LT

Transposes

S

l Point to Point

Patches : Integration

These 100,000 Objects (virtual processors, or MRspassigned to real
processors by the Charm++ runtime system



Simulation Rate in Nanoseconds Per Day

Performance on BlueGene/L
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IAPP simulation
(Rivera, Straub, BU)
at 20 ns per day

on 256 processors
1 usin 50 days

STMV simulation
at 6.65 ns per day
on 20,000 processors



Comparison with Blue Matter
ApoLipoprotein-Al (92K atoms)

Nodes 512 1024 2048 4096|8192 |16384

Blue Matter | 38.42|18.95/9.97 |5.39 [3.14 [2.09 |ms/step
(SC’06)

NAMD 18.6 |{10.5 [6.85 |4.67 |3.2 |2.33 |ms/step

NAMD 11.3 |76 (51 |3.7 |3.0 ms/step
(Virtual Node)

NAMD is about 1.8 times faster than Blue Matter on

1024 nodes(and 2.4 times faster with VN mode, where
NAMD can use both processors on a node effectively).

However: Note that NAMD does PME every 4 steps.




Simulation Rate in Nanoseconds Per Day
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Computational Cosmology

N body Simulation (NSF)

— N particles (1 million to 1 billion), in a periadbox

— Move under gravitation

— Organized in a tree (oct, binary (k-d), ..)

Output data Analysis: in parallel (NASA)

— Particles are read in parallel
— Interactive Analysis

Issues:

— Load balancing, fine-grained communication, tdlagapcommunication
latencies.

— Multiple-time stepping
New Code Released: ChaNGa

Collaboration with T. Quinn (Univ. of Washington)
Uofl Team: Filippo Giaochin, Pritish Jetley, Celso Mesd
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Number of Processors x Execution Time

Recent Sucesses in Scaling ChaNGa

Execution Time Scaling
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Quantum Chemistry: LeanCP

e Car-Parinello MD

o lllustrates utility of separating decompositiordan
mapping
* Very complex set of objects and interactions

* Excellent scaling achieved

Collaboration with Glenn Martyna (IBM), Mark Tuckerman (NYU)

Uofl team: Eric Bohm, Abhinav Bhatele



LeanCP Decomposition
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Frocessors = Time per step (secondsa

LeanCP Scaling
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Space-time meshing

e Discontinuous Galerkin method
e Tent-pitcher algorithm

3
W
N

Collaboration with Bob Haber, Jeff Ericsson, Michael Garland

PPL team: Aaron Baker, Sayantan Chakravorty, Terry Wilmarth
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Rocket Simulation

Dynamic, coupled physics
simulation in 3D

Finite-element solids on
unstructured tet mesh

Finite-volume fluids on
structured hex mesh
Coupling every timestep vi
a least-squares data transf

Challenges:

— Multiple modules

— Dynamic behavior: burning
surface, mesh adaptation Collaboration with M. Heath,

P. Geubelle, others

Robert Fielder, Center for Simulation of Advanced Rockets



Dynamic load balancing in Crack Propagation




Colony: FAST-OS Project

DOE funded collaboration
erry Jones: LLNL

Jose Moreira, et al IBM é
At lllinois: supports

— Scalable Dynamic Load Balancing
— Fault tolerance |




Collaborators Title

Y0 ™ Lawrence Livermore Services and Interfaces to Support Systems

National Laboratory
Terry Jones

with Very Large Numbers of Processors

Topics

University of lllinois at
Urbana-Champaign

Laxmikant Kale
Celso Mendes
Sayantan Chakravort

ternational Business
achines

Jose Moreira
Andrew Tauferner
Todd Inglett




« EXisting load balancing strategies don’t scale on extremely large

Load Balancing on Very Large Machines

machines
— Consider an application with 1M objects on 64K processors

e Centralized

Object load data are sent to
processor O

Integrate to a complete object
graph

Migration decision is broadcast
from processor 0

Global barrier

e Distributed

Load balancing among
neighboring processors

Build partial object graph
Migration decision is sent to its
neighbors

No global barrier




A Hybrid Load Balancing Strategy

* Dividing processors into independent sets of gspapnd
groups are organized in hierarchies (decentralized)

e Each group has a leader (the central node) which
performs centralized load balancing

o A particular hybrid strategy that works well

Gengbin Zheng, PhD Thesis, 2005



Fault Tolerance

o Automatic Checkpointing ¢ Scalable fault tolerance

— Migrate objects to disk — When a processor out of 100,000

— |n_memory Checkpointing as an fa”S, all 99,999 shouldn’t have to
option run back to their checkpoints!

— Automatic fault detection and — Sender-side message logging
restart — Latency tolerance helps mitigate

. t
« Proactive Fault Tolerance COSTS
— Restart can be speeded up by

— “Impending Fault” Response spreading out objects from failed
— Migrate objects to other processors  processor

— Adjust processor-level parallel data
structures



BigSim
o Simulating very large parallel machines
— Using smaller parallel machines

e Reasons

— Predict performance on future machines
— Predict performance obstacles for future machines

— Do performance tuning on existing machines that are difficult to
get allocations on

e |dea:
— Emulation run using virtual processor processors (AMPI)
e Get traces
— Detailed machine simulation using traces



Objectives and Simualtion Model

e Objectives:

— Develop techniques to facilitate the development of
efficient peta-scale applications

— Based on performance prediction of applications on
large simulated parallel machines

 Simulation-based Performance Prediction:

— Focus on Charm++ and AMPI programming models
Performance prediction based on PDES

— Supports varying levels of fidelity

e processor prediction, network prediction.
— Modes of execution :

 online and post-mortem mode



Big Network Simulation

« Simulate network behavior: packetization, routing,
contention, etc.

* |Incorporate with post-mortem simulation
e Switches are connected In torus network

& ﬁiﬂﬁ“

BG Log Files
(tasks & dependencies)

Timestamp-corrected
Tasks




Projections: Performance visualization
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Architecture of BigNetSim

Performance visualization (Projections)

Offline PDES Network Simulator
BigNetSim (POSE)

Simulation output trace logs

Charm++ Runtim Online PDES engine

i
E——
——)

Performance Instruction Sim Simple Network
counters (RSim, IBM., ..) Model

BigSin Emulator

Charm++ and MPI applications



Performance Prediction (contd.)

* Predicting time of sequential code:

— User supplied time for every code block

— Wall-clock measurements on simulating machinebsansed via a
suitable multiplier

— Hardware performance counters to count floatingtpoteger, branch
Instructions, etc

» Cache performance and memory footprint are appratad by
percentage of memory accesses and cache hit/riss ra

— Instruction level simulation (not implemented)

* Predicting Network performance:
— No contention, time based on topology & other meknparameters
— Back-patching, modifies comm time using amountarhm activity
— Network-simulation, modelling the netowrk entirely



Multi-Cluster Co-Scheduling
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Cluster A

— Intra-cluster
latency
(microseconds)

-

/

| nter-cluster
latency
(milliseconds)

Job co-scheduled to run
across two clusters to
provide access to large
numbers of processors

But cross cluster
latencies are large!

Virtualization within
Charm++ masks high
Inter-cluster latency by
allowing overlap of
communication with
computation



Execution Time (secondssstep?

Multi-Cluster Co-Scheduling

LeanMD running Hydrophokic Cluster Analysis with 28,652 atoms
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Faucets: Optimizing Utilization Within/across Cleist

Cluster



Other Ongoing Projects

Parallel Debugger
Automatic out-of-core execution

Parallel algorithms
— Current: Prim’s spanning tree algorithm, sorting, ..

New collaborations being explored
— Prof. Paulino, Prof. Pantano, ..



Domain Specific Frameworks

Motivation Frameworks
. e Unstructured Meshes:ParFUM
Reduce tedium of parallel

_ — Generalized ghost regions
programming for commonly — Used inRocfrac, Rocflu at rocket

used paradigms and parallel BEIIES, B8 OLISILE CosR

— Fast collision detection
data structures Multiblock framework

Encapsulate parallel data — Structured Meshes

structures and algorithms N MAI;tomateS communication
([

Erowde easy to use — Common for both above

Interface e Particles

Used to build concurrenltly — Multiphase flows

: — MD, tree codes
composible parallel

modules



Summary and Messages

 We at PPL have advanced migratable objects

technology

— We are committed to supporting applications

— We grow our base of reusable techniques via such
collaborations

e Try using our technology:
— AMPI, Charm++, Faucets, ParFUM, ..
— Avallable via the web http:// charm.cs.uiuc.edu



Sr.STAFF

GRANTS

ENABLING

IBM
PERCS
High
Productivity
NSF: ITR NCSA NSF: ITR, DOE NIH DOE NSF: ITR NSF
Chemistry || Faculty NASA HPC-Colony| | Biophysics CSAR CPSD Next
Car- Fellows | Computational| Services and| NAMD Rocket Space/ || Generation
Parinello || Program| Cosmology Interfaces Simulation Time Software
MD, and for Large Meshing BlueGene
QM/MM Visualization || Computers
Faucetg. L oad-Balance: Fault-Tolerance: Par FUM: BigSim:
N LEie Centralized, Checkpointing, Supporting Simulating Big
— FEslEE Distributed, Fault-Recovery, Unstructured Meshesg Machines and
ﬁj M]%r;agrei:g;ent Hybrid Proc.Evacuation (Comp.Geometry) Networks
—
O
nd Charm++ Projections: Orchestration
AR and AMPI Performance and Parallel
Adaptive MPI :
Converse Analysis Languages




Over the next two days

Keynote Kathy Yelick

Applications

PGAS Languages and Beyond
e Molecular Dynamics

System progress talks
«Adaptive MPI

eQuantum ChemistryLéanCh

Computational Cosmology
*BigSim: Performance predictic

n

Rocket Simulation

«Scalable Performance Analysis
Fault Tolerance

*Cell Processor _
Tutorials

Charm++ e<Projections

«Grid Multi-cluster applications

AMPI *BigSim



