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What is CkDirect?

= One-sided communication

= One-way (put only, so far)

= Memory to memory interface
= Uses RDMA for zero copy

= No protocol synchronization

= User notification via callback
= Pair-wise persistent channels
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Motivating Example
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Messaging Approach
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CkDirect Approach
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RDMA Challenges

= Remote Direct Memory Access
= Minimal overhead => fast
= Put is more intuitive for message driven model

= Get: know remote location and remote data is ready
= Put: know remote location

= Interfaces for RDMA vary by interconnect
= Put completion notification is lacking

= either there is no notification
= or the put performance is hardly better than two-sided
= through trickery, we can do better than that.
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Where is it useful?

= \WWhen the same size data is transferred

between the same partners each iteration to
buffers which are reused

= When the application already enforces iteration
boundaries

= Especially when you need to aggregate data
from disparate sources into a contiguous buffer
before processing
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How does i1t work?

= User callback triggered on put completion

= Application must:

= register send and receive processor and memory
pairs in a handle

= register put completion callback for handle

= register out of band pattern for handle

= call ready when done using the received put data

= only 1 transaction per handle at a time

= trigger message from callback for real computation
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Ping Pong Results
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Ping Pong, CkDirect relative improvement, by message size in 1000s of bytes

Charm Workshop 2008 10



Matrix Multiply Results
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Jacobi 3D Results
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Jacobi 3D 1024*1024*512, iteration time improvement from CkDirect
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OpenAtom Results
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Reducing Polling Overhead

= Polling overhead is proportional to the number
of ready handles.

= To minimize the number of ready handles we
have a split scheme.

= CkDirect_readyMark
= Done with data, but don't start polling yet

= CkDirect_readyPoll
= Data was already marked, start checking

= Can detect puts completed since readyMark
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The CkDirect API

I Receiver side create handle */
struct infiDirectUserHandle CkDirect_createHandle(int senderNode,void *recvBuf, int
recvBufSize, void (*callbackFnPtr)(void *), void *callbackData,double initialValue);

[* Sender side register memory to handle */
void CkDirect_assoclLocalBuffer(struct infiDirectUserHandle *userHandle,void *sendBuf,int
sendBufSize);

[* Sender side actual data transfer */
void CkDirect_put(struct infiDirectUserHandle *userHandle);

/* Receiver side done with buffer */
void CkDirect_readyMark(struct infiDirectUserHandle *userHandle);

/* Receiver side start checking for put */
void CkDirect_readyPollQ(struct infiDirectUserHandle *userHandle);

/* Receiver side done with buffer start checking for put */
void CkDirect_ready(struct infiDirectUserHandle *userHandle);
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Conclusions

= Availability: cvs version of charm

= net-linux-amdo64-ibverbs
= bluegenep

= Future Work

= CkDirect multicasts
= Ports to other architectures

= Questions?
= Feedback?
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