CkDirect: Charm++ RDMA Put

Presented by Eric Bohm
CkDirect Team: Eric Bohm, Sayantan
Chakravorty, Pritish Jetley, Abhinav Bhatele
ppl@cs.uiuc.edu
5/4/2008

Charm Workshop 2008 1

mailto:ppl@cs.uiuc.edu

What is CkDirect?

= One-sided communication

= One-way (put only, so far)

= Memory to memory interface
= Uses RDMA for zero copy

= No protocol synchronization

= User notification via callback
= Pair-wise persistent channels

Charm Workshop 2008

Motivating Example

Matrix A Matrix B

Proch Proc6 Proc7 Proc8
Charm Workshop 2008 3

Messaging Approach

hﬁ/' . B
Proc2 Send
Message

Dest Proc

Charm Workshop 2008 4

CkDirect Approach

“ B

Proc2 Dest Proc

Charm Workshop 2008 5

RDMA Challenges

= Remote Direct Memory Access
= Minimal overhead => fast
= Put is more intuitive for message driven model

= Get: know remote location and remote data is ready
= Put: know remote location

= Interfaces for RDMA vary by interconnect
= Put completion notification is lacking

= either there is no notification
= or the put performance is hardly better than two-sided
= through trickery, we can do better than that.

Charm Workshop 2008 6

Where is it useful?

= \WWhen the same size data is transferred

between the same partners each iteration to
buffers which are reused

= When the application already enforces iteration
boundaries

= Especially when you need to aggregate data
from disparate sources into a contiguous buffer
before processing

Charm Workshop 2008 7

How does i1t work?

= User callback triggered on put completion

= Application must:

= register send and receive processor and memory
pairs in a handle

= register put completion callback for handle

= register out of band pattern for handle

= call ready when done using the received put data

= only 1 transaction per handle at a time

= trigger message from callback for real computation

Charm Workshop 2008 8

Sender Receiver

ﬁeCIUest
~
andle CkDirect
ckDirect _createHandle
CkDirect <4 5ndle
_assoclLocal
CkDirect _put User
Datg —|Invoke callback
function
CkDirect_ready
_ _ _ _ 41 _ Mteraton_ | _ _ T _
‘Boundary
_CkDirect _put User
Datg —|Invoke callback
function
CkDirect_ready

y y

Charm Workshop 2008

Ping Pong Results

Percent Improvement BG/P (Surveyor) Percent Improvement Infiniband (Abe)

Charm Msg
Charm Msg B0 lO0.1

M 1

o 1

5 5

B 10 MPICH-VMI % B 10
20 B 20

MPI

= 30 30
M 40 MVAPICH 40
m 70 70
H 100 W 100
MPI-Put =500 500
MVAPICH-Put
0 10 20 30 40 50 60 70 10 0 10 20 30 40 50

Ping Pong, CkDirect relative improvement, by message size in 1000s of bytes

Charm Workshop 2008 10

Matrix Multiply Results

Blue Gene/P (Surveyor)

160
140
120
100

80

Time

60
40
20

0
64 128 256 512 1024 2048 4096

Cores

Time

800
700
600
500

300
200
100

Infiniband (Abe)

— Msg
— CkD

~-

64 128 256 512
Cores

Matrix Multiply 2048*2048 average time in milliseconds

Charm Workshop 2008

11

Jacobi 3D Results

Blue Gene/P (Surveyor) Infiniband (Abe)

o
o
—
I

12
o 4.0
D)
% 3.5 g 10
(0]
§ 3.0 g 8
qC_) 25 o
£ 20 5 6
g = =
€ 15 X 4
E 40
2 2
l I m
512 1024 2048 4096 2 4 128 256
Num. processors Num. processors

Jacobi 3D 1024*1024*512, iteration time improvement from CkDirect

Charm Workshop 2008 12

OpenAtom Results

Blue Gene/P (Surveyor) W256 Blue Gene/P (Surveyor) W256

— Msg
— CkD

— Msg
— CkD

Time (seconds)

1024 2048 4096 1024 2048 4096
Cores Cores

OpenAtom Water256M Benchmark, minimization, time per step in seconds

Charm Workshop 2008

13

Reducing Polling Overhead

= Polling overhead is proportional to the number
of ready handles.

= To minimize the number of ready handles we
have a split scheme.

= CkDirect_readyMark
= Done with data, but don't start polling yet

= CkDirect_readyPoll
= Data was already marked, start checking

= Can detect puts completed since readyMark

Charm Workshop 2008

14

lteration

Boundary
CkDirect _put User

Phase

Boundary

message sends User

— — -

Not Polling This Hhndle!

CkDirect_readyPoll

Invoke callback
function

CkDirect_readyMark

. Datg—Pentry methods

CkDirect_readyPoll

- Phase
< L|}30u ndary
_CkDirect _put Ser
— Data CkDirect_readyMark -
_ _ _ _ |'_ teration | CkDirect readyPoll
Boundary
\ \

Charm Workshop 2008

~_

N
S

15

The CkDirect API

I Receiver side create handle */
struct infiDirectUserHandle CkDirect_createHandle(int senderNode,void *recvBuf, int
recvBufSize, void (*callbackFnPtr)(void *), void *callbackData,double initialValue);

[* Sender side register memory to handle */
void CkDirect_assoclLocalBuffer(struct infiDirectUserHandle *userHandle,void *sendBuf,int
sendBufSize);

[* Sender side actual data transfer */
void CkDirect_put(struct infiDirectUserHandle *userHandle);

/* Receiver side done with buffer */
void CkDirect_readyMark(struct infiDirectUserHandle *userHandle);

/* Receiver side start checking for put */
void CkDirect_readyPollQ(struct infiDirectUserHandle *userHandle);

/* Receiver side done with buffer start checking for put */
void CkDirect_ready(struct infiDirectUserHandle *userHandle);

Charm Workshop 2008 16

Conclusions

= Availability: cvs version of charm

= net-linux-amdo64-ibverbs
= bluegenep

= Future Work

= CkDirect multicasts
= Ports to other architectures

= Questions?
= Feedback?

Charm Workshop 2008 17

