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Motivation
m Clusters are built from multicore chips
4 cores/node on BG/P

8 cores/node on Abe (2 Intel quad-core chips)
16 cores/node on Ranger (4 AMD quad-core chips)

m Charm has a building version for SMP node for many years
Not tuned

m So, what are the issues for getting high performance?
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Start with a kNeighbor benchmark

m A synthetic kNeighbor benchmark

Each element communicates with its neighbors in K-stride (wrap-
around), and then neighbors send back an acknowledge.

An iteration: all elements finish the above communication

m Environment
A smp node with 2 Xeon quadcores, only use 7 cores
Ubuntu 7.04; gcc 4.2
Charm: net-linux-amd6é4-smp vs. net-linux-amd64
1 element/core, K=3

Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC




S

Performance at first glance
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Outline

m Examine the communication model in Charm++ between the
Non-SMP and SMP layers

m Describe current optimizations for SMP step by step
m Talk about a different approach to utilize multicore

m Conclude with the future work
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Communication model for the multicore

A SMP Node with N cores Non-SMP
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For inter-core communication inside a node:
1. SMP: message 1s passed via memory pointer
2. Non-SMP: message is passed through NIC
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Possible overheads in SMP version

m Locks
Overusing locks to ensure correctness
Locks in message queues

m False sharing

Some per thread data structures are allocated together in an
array form: e.g. each element in "CmiState state[numThds]”
belongs to a thread
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Reducing the usage of locks

m By examining the source codes, finding overuse of locks
Narrower sections enclosed by locks
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Overhead In message queues

m A micro-benchmark
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to show the 1. Each producer
overhead in message 18000 produces 10K items per
16000 | iteration
queues 14000 2. One iteration:
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Applying multi Q + Fence

m Less than 2%
improvement

1 Much less contention 0.75
compared with the
micro-benchmark
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Big overhead in msg allocation

m We noticed that:
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m We used our own default memory module
Every memory allocation is protected by a lock

Provide some useful functionalities in Charm++ system (a historic
reason not using other memory modules)

= memory footprint information, memory debugger
= Isomalloc
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Switching to OS memory module
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We don't lose the aforementioned functionalities by recent updates ©
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ldentifying false sharing overhead

m Another micro-benchmark

Each element repeatedly sends itself a message, but each time
the message is reused (i.e., not allocating a new message)

Benchmark timing of 1000 iterations

m Use Intel VTune performance analysis tool

Focusing on the cache misses caused by “Invalidate” in the
MESTI coherence protocol

m Declaring variables with “__thread” specifier will make them
thread private
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Performance for the micro-benchmark

m Parameters: 1 element/core, 7 cores
m Before: 1.236 us per iteration

m After: 0.913 us per iteration
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Adding the gains from removing false sharing

m Around 1% improvement
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Rethinking communication model

m Posix-shared memory layer
m No threads, every core still runs a process

m Inter-core message passing doesn't go through NIC, but
through memory copy (inter-process communication)
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Performance comparison

iteration time (ms)

L.

6

0

2000

4000 6000 8000 10000 12000
msg size (byte)
¢ Non—-SMP ~ SMP-Optimized % Posix Shared Memory

14000

16000

§§§ﬁ§§$%e

Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC




" JEE
Future work

m Other platform
BG/P

m Optimize the posix shared memory version

m Effects on real applications

For NAMD, initial result shows that SMP helps up to 24 nodes
on Abe

m Any other communication models
Adaptive one?
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