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Motivation

� Clusters are built from multicore chips
� 4 cores/node on BG/P
� 8 cores/node on Abe (2 Intel quad-core chips)
� 16 cores/node on Ranger (4 AMD quad-core chips)
� …

� Charm has a building version for SMP node for many years
� Not tuned

� So, what are the issues for getting high performance?
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Start with a kNeighbor benchmark

� A synthetic kNeighbor benchmark
� Each element communicates with its neighbors in K-stride (wrap-

around), and then neighbors send back an acknowledge.
� An iteration: all elements finish the above communication

� Environment
� A smp node with 2 Xeon quadcores, only use 7 cores
� Ubuntu 7.04; gcc 4.2
� Charm: net-linux-amd64-smp vs. net-linux-amd64
� 1 element/core, K=3
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Performance at first glance
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Outline

� Examine the communication model in Charm++ between the 
Non-SMP and SMP layers

� Describe current optimizations for SMP step by step

� Talk about a different approach to utilize multicore

� Conclude with the future work
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Communication model for the multicore
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Possible overheads in SMP version

� Locks
� Overusing locks to ensure correctness
� Locks in message queues
� …

� False sharing
� Some per thread data structures are allocated together in an 

array form: e.g. each element in “CmiState state[numThds]”
belongs to a thread
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Reducing the usage of locks

� By examining the source codes, finding overuse of locks
� Narrower sections enclosed by locks
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Overhead in message queues

� A micro-benchmark 
to show the 
overhead in message 
queues
� N producers, 1 

consumer
� lock vs. memory 

fence + atomic 
operation (fetch-
and-increment)

� 1 queue vs. N 
queues 0
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Applying multi Q + Fence

� Less than 2% 
improvement
� Much less contention 

compared with the 
micro-benchmark
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Big overhead in msg allocation

� We noticed that:

� We used our own default memory module
� Every memory allocation is protected by a lock
� Provide some useful functionalities in Charm++ system (a historic 

reason not using other memory modules)
� memory footprint information, memory debugger
� Isomalloc
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Switching to OS memory module

We don’t lose the aforementioned functionalities by recent updates ☺
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Identifying false sharing overhead

� Another micro-benchmark
� Each element repeatedly sends itself a message, but each time 

the message is reused (i.e., not allocating a new message)
� Benchmark timing of 1000 iterations

� Use Intel VTune performance analysis tool
� Focusing on the cache misses caused by “Invalidate” in the 

MESI coherence protocol

� Declaring variables with “__thread” specifier will make them 
thread private
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Performance for the micro-benchmark

� Parameters: 1 element/core, 7 cores

� Before: 1.236 us per iteration

� After: 0.913 us per iteration
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Adding the gains from removing false sharing

� Around 1% improvement
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Rethinking communication model

� Posix-shared memory layer

� No threads, every core still runs a process

� Inter-core message passing doesn’t go through NIC, but 
through memory copy (inter-process communication)
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Performance comparison
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Future work

� Other platform
� BG/P

� Optimize the posix shared memory version

� Effects on real applications
� For NAMD, initial result shows that SMP helps up to 24 nodes 

on Abe

� Any other communication models
� Adaptive one?


