A Preliminary Investigation on
Optimizing Charm++ for

Homogeneous Multi-core
Machines

Chao Mei
05/02/2008

The 6™ Charm++ Workshop

" JJ
Motivation
m Clusters are built from multicore chips
4 cores/node on BG/P

8 cores/node on Abe (2 Intel quad-core chips)
16 cores/node on Ranger (4 AMD quad-core chips)

m Charm has a building version for SMP node for many years
Not tuned

m So, what are the issues for getting high performance?

@%ﬁu@g@ﬂ Chao Mei (chaomei2@uiuc.edu)
N Parallel Programming Lab, UIUC

" A
Start with a kNeighbor benchmark

m A synthetic kNeighbor benchmark

Each element communicates with its neighbors in K-stride (wrap-
around), and then neighbors send back an acknowledge.

An iteration: all elements finish the above communication

m Environment
A smp node with 2 Xeon quadcores, only use 7 cores
Ubuntu 7.04; gcc 4.2
Charm: net-linux-amd6é4-smp vs. net-linux-amd64
1 element/core, K=3

Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

S

Performance at first glance

iteration time (ms)

0 2000 4000 6000 8000 10000 12000 14000 16000
msg size (byte)

o Non-SMP = SMP |

@mgw-wg»-;m, Chao Mei (chaomei2@uiuc.edu)
@ s Parallel Programming Lab, UIUC

" JE
Outline

m Examine the communication model in Charm++ between the
Non-SMP and SMP layers

m Describe current optimizations for SMP step by step
m Talk about a different approach to utilize multicore

m Conclude with the future work

Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

"

Communication model for the multicore

A SMP Node with N cores Non-SMP
.................. : Viodel _.
self msg Q : self msg Q) st self msg @ . self msg
Non-self msg Q Non-seltf msg Q Non-self msg QQ | | Non-self msg Q
A SMP Node with N cores SMP
1|m||_| ..
self msg Q selfmsgQ | -~ 777777 self msg Q self msg ()
Non-self msg Q Non-self msg Q Non-self msg Q Non-self msg Q

For inter-core communication inside a node:
1. SMP: message 1s passed via memory pointer
2. Non-SMP: message is passed through NIC

§Bcﬂrggg§;p Chao Mei (chaomei2@uiuc.edu)
@ — Parallel Programming Lab, UIUC

"
Possible overheads in SMP version

m Locks
Overusing locks to ensure correctness
Locks in message queues

m False sharing

Some per thread data structures are allocated together in an
array form: e.g. each element in "CmiState state[numThds]”
belongs to a thread

Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

0
Reducing the usage of locks

m By examining the source codes, finding overuse of locks
Narrower sections enclosed by locks

msg size (byte)

Non—SMP ® SMP ~ SMP-Relaxed lock |

1.6
1.4 WP
TR
1o So———————
_E, M
GE) 1 APV
- 0.8 At — =5 —
. miy
§> ‘J-f-m‘m—-_w”p.ur”ﬂn\-;-ﬁ W ARE T V' ral ael T n
+ AMAM . VYV VIWYVNE VY g a0 pAnsa0 A a0 a0y 4 A »
£ 0.6 Tf s
e PO 4
0.4 D d
L o
0.2
0
0 2000 4000 6000 8000 10000 12000 14000 16000

Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

"
Overhead In message queues

m A micro-benchmark
20000
to show the 1. Each producer
overhead in message 18000 produces 10K items per
16000 | iteration
queues 14000 2. One iteration:
N pr'oducer's, 1 2 consumer cosumes all
consumer g 12000 —items
= 10000
lock vs. memory =
fence + atomic T 8000
operation (fetch- 6000
and-incr'emen'l') 4000
1 queue vs. N 2000 F——
queues 0
1 2 3 4 5 6 7 8
number of producers
—— multiQ-fence —=— singleQ-fence+atomic op singleQ-lock

Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

S

Applying multi Q + Fence

m Less than 2%
improvement

1 Much less contention 0.75
compared with the
micro-benchmark

0.8

o
EN|

0.65 Y S

- Y A Ak . B
H:lfs%?‘ﬁ\“%,[:A‘“Aw MA‘MA “‘A A‘AA WO A

=
[@p)

0.55

iteration time (ms)

=
(g]

0.45

0.4
0 2000 4000 6000 8000 10000 12000 14000 16000

msg size (byte)

¢ Non-SMP = SMP-Relaxed lock x SMP-Relaxed lock-multiQ-Fence

N\

Computer Chao Mei (chaomei2@uiuc.edu)
@ s Parallel Programming Lab, UIUC

"
Big overhead in msg allocation

m We noticed that:

msz creatlion time
lk—bwte msg 10k—bwvte mszs
iter SI NOSInE: SI Nonsme
1 5] 2 g 1
2 o 1 o 1
= o 1 4 1
4 > 1 > s
5 d 1 o 1
G T 1 5 5

m We used our own default memory module
Every memory allocation is protected by a lock

Provide some useful functionalities in Charm++ system (a historic
reason not using other memory modules)

= memory footprint information, memory debugger
= Isomalloc

Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

"
Switching to OS memory module

1.6
1.4 g
*
- L2 F o e
E PO 3
3 T o
£ 0.6 | oo
3 nnwnns
T 0.4] D ettt
E -
0.2
0
0 2000 4000 6000 8000 10000 12000 14000 16000
msg size (byte)
‘ & Non—SMP » SMP-Relaxed lock—-SingleQ-Fence = SMP—Reduced lock overhead‘

We don't lose the aforementioned functionalities by recent updates ©

Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

"
ldentifying false sharing overhead

m Another micro-benchmark

Each element repeatedly sends itself a message, but each time
the message is reused (i.e., not allocating a new message)

Benchmark timing of 1000 iterations

m Use Intel VTune performance analysis tool

Focusing on the cache misses caused by “Invalidate” in the
MESTI coherence protocol

m Declaring variables with “__thread” specifier will make them
thread private

&u@eﬂt&il Chao Mei (chaomei2@uiuc.edu)
) T Parallel Programming Lab, UIUC

" JEE
Performance for the micro-benchmark

m Parameters: 1 element/core, 7 cores
m Before: 1.236 us per iteration

m After: 0.913 us per iteration

Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

"

Adding the gains from removing false sharing

m Around 1% improvement

iteration time (ms)

.2

0

0

2000

4000

6000 8000 10000 12000
msg size (byte)

¢ Non-SMP = SMP ~ SMP-Optimized |

14000

16000

pesanmnl of .
@ EEfEI"ICE

Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

"
Rethinking communication model

m Posix-shared memory layer
m No threads, every core still runs a process

m Inter-core message passing doesn't go through NIC, but
through memory copy (inter-process communication)

Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

" SEE——

Performance comparison

iteration time (ms)

L.

6

0

2000

4000 6000 8000 10000 12000
msg size (byte)
¢ Non—-SMP ~ SMP-Optimized % Posix Shared Memory

14000

16000

§§§ﬁ§§$%e

Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

" JEE
Future work

m Other platform
BG/P

m Optimize the posix shared memory version

m Effects on real applications

For NAMD, initial result shows that SMP helps up to 24 nodes
on Abe

m Any other communication models
Adaptive one?

Q%ta@p_urﬂ Chao Mei (chaomei2@uiuc.edu)
N Parallel Programming Lab, UIUC

