
A Preliminary Investigation on 
Optimizing Charm++ for 
Homogeneous Multi-core 
Machines
Chao Mei
05/02/2008

The 6th Charm++ Workshop



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Motivation

� Clusters are built from multicore chips
� 4 cores/node on BG/P
� 8 cores/node on Abe (2 Intel quad-core chips)
� 16 cores/node on Ranger (4 AMD quad-core chips)
� …

� Charm has a building version for SMP node for many years
� Not tuned

� So, what are the issues for getting high performance?



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Start with a kNeighbor benchmark

� A synthetic kNeighbor benchmark
� Each element communicates with its neighbors in K-stride (wrap-

around), and then neighbors send back an acknowledge.
� An iteration: all elements finish the above communication

� Environment
� A smp node with 2 Xeon quadcores, only use 7 cores
� Ubuntu 7.04; gcc 4.2
� Charm: net-linux-amd64-smp vs. net-linux-amd64
� 1 element/core, K=3



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Performance at first glance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2000 4000 6000 8000 10000 12000 14000 16000

msg size (byte)

i
t
e
r
a
t
i
o
n
 
t
i
m
e
 
(
m
s
)

Non-SMP SMP



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Outline

� Examine the communication model in Charm++ between the 
Non-SMP and SMP layers

� Describe current optimizations for SMP step by step

� Talk about a different approach to utilize multicore

� Conclude with the future work



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Communication model for the multicore



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Possible overheads in SMP version

� Locks
� Overusing locks to ensure correctness
� Locks in message queues
� …

� False sharing
� Some per thread data structures are allocated together in an 

array form: e.g. each element in “CmiState state[numThds]”
belongs to a thread



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Reducing the usage of locks

� By examining the source codes, finding overuse of locks
� Narrower sections enclosed by locks

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2000 4000 6000 8000 10000 12000 14000 16000

msg size (byte)

i
t
e
r
a
t
i
o
n
 
t
i
m
e
 
(
m
s
)

Non-SMP SMP SMP-Relaxed lock



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Overhead in message queues

� A micro-benchmark 
to show the 
overhead in message 
queues
� N producers, 1 

consumer
� lock vs. memory 

fence + atomic 
operation (fetch-
and-increment)

� 1 queue vs. N 
queues 0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1 2 3 4 5 6 7 8

number of producers

av
g 

ite
r t

im
e 

(u
s)

multiQ-fence singleQ-fence+atomic op singleQ-lock

1. Each producer 
produces 10K items per 
iteration

2. One iteration: 
consumer cosumes all 
items



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Applying multi Q + Fence

� Less than 2% 
improvement
� Much less contention 

compared with the 
micro-benchmark

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 2000 4000 6000 8000 10000 12000 14000 16000

msg size (byte)

i
t
e
r
a
t
i
o
n
 
t
i
m
e
 
(
m
s
)

Non-SMP SMP-Relaxed lock SMP-Relaxed lock-multiQ-Fence



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Big overhead in msg allocation

� We noticed that:

� We used our own default memory module
� Every memory allocation is protected by a lock
� Provide some useful functionalities in Charm++ system (a historic 

reason not using other memory modules)
� memory footprint information, memory debugger
� Isomalloc



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Switching to OS memory module

We don’t lose the aforementioned functionalities by recent updates ☺

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2000 4000 6000 8000 10000 12000 14000 16000

msg size (byte)

i
t
e
r
a
t
i
o
n
 
t
i
m
e
 
(
m
s
)

Non-SMP SMP-Relaxed lock-SingleQ-Fence SMP-Reduced lock overhead



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Identifying false sharing overhead

� Another micro-benchmark
� Each element repeatedly sends itself a message, but each time 

the message is reused (i.e., not allocating a new message)
� Benchmark timing of 1000 iterations

� Use Intel VTune performance analysis tool
� Focusing on the cache misses caused by “Invalidate” in the 

MESI coherence protocol

� Declaring variables with “__thread” specifier will make them 
thread private



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Performance for the micro-benchmark

� Parameters: 1 element/core, 7 cores

� Before: 1.236 us per iteration

� After: 0.913 us per iteration



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Adding the gains from removing false sharing

� Around 1% improvement

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2000 4000 6000 8000 10000 12000 14000 16000

msg size (byte)

i
t
e
r
a
t
i
o
n
 
t
i
m
e
 
(
m
s
)

Non-SMP SMP SMP-Optimized



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Rethinking communication model

� Posix-shared memory layer

� No threads, every core still runs a process

� Inter-core message passing doesn’t go through NIC, but 
through memory copy (inter-process communication)



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Performance comparison

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2000 4000 6000 8000 10000 12000 14000 16000

msg size (byte)

i
t
e
r
a
t
i
o
n
 
t
i
m
e
 
(
m
s
)

Non-SMP SMP-Optimized Posix Shared Memory



Chao Mei (chaomei2@uiuc.edu)
Parallel Programming Lab, UIUC

Future work

� Other platform
� BG/P

� Optimize the posix shared memory version

� Effects on real applications
� For NAMD, initial result shows that SMP helps up to 24 nodes 

on Abe

� Any other communication models
� Adaptive one?


