Charm++ Tutorial

Presented by:
Laxmikant V. Kale
Kumaresh Pattabiraman
Chee Wai Lee

PARALLCL PROGRARAING LABORATORY

Overview

Introduction

— Developing parallel applications

— Virtualization

— Message Driven Execution
Charm++ Features

— Chares and Chare Arrays

— Parameter Marshalling

— Examples
Tools

— LiveViz

— Parallel Debugger

— Projections
More Charm++ features

— Structured Dagger Construct

— Adaptive MPI

— Load Balancing
Conclusion

Outline

® Introduction
n

Developing a Parallel Application

Seek optimal division of labor between “system” and programmer

Decomposition done by programmer, everything else automated

Decomposition

Mapping Charm-++

Automation

Scheduling I

Specialization

Virtualization:
Object-based Decomposition

m Divide the computation into a large
number of pieces

— Independent of number of processors
— Typically larger than number of processors

m Let the system map objects to processors

Object-based Parallelization

User is only concerned with interaction between objects

I

User View

System implementation

Message-Driven Execution

m Objects communicate asynchronously
through remote method invocation

m Encourages non-deterministic execution
m Benefits:

— Communication latency tolerance
— Logical structure for scheduling

Message-Driven Execution in
Charm++
CKEXxit()

X . y
Objects
]

y->f() 2?2

Other Charm++ Characteristics

® Methods execute one at a time
m No need for locks

m Expressing flow of control may be
difficult

Outline

Charm++ features
— Chares and Chare Arrays

Parameter Marshalling
Examples

10

Chares — Concurrent Objects

m Can be dynamically created on any available
processor

m Can be accessed from remote processors
m Send messages to each other asynchronously
m Contain “entry methods”

11

"Hello World”

// hello.c1

mainmodule hellyg
mainchare mym;
entry mymail

// hello.C file

#include “hello.decl.h”
class mymain : public Chare {
public:

mymain(CkArgMsg *m)

}; {
}: ckout <<“Hello World”<<endl;
CkExit(Q);
}
Generates:
hello.decl.h nclude “hello.def.h”

hello.def.h

12

Compile and run the program

Compiling
« charmc <options> <source file>
* -0, -0, -language, -module, -tracemode

pgm: pgm.ci pgm.h pgm.C

Example Nodelist File:

group main ++shell ssh
host Host1

host Host2 .
Torun a CH bgm"' on

four processors, type:
charmrun pgm +p4 <params>

rm-++

Nodelist file (for network architecture)
* list of machines to run the program
* host <hosthame> <qualifiers>

Charm++ solution: Proxy classes

m Proxy class generated for each chare class

— Forinstance, CProxy Y is the proxy class
generated for chare class Y.

— Proxy objects know where the real object is

— Methods invoked on this object simply put the
data in an “envelope” and send it out to the

destination

m Given a proxy p, you can invoke methods
— p.method(msg);

14

Chare Arrays

* Array of Objects of the same kind

« Each one communicates with the next one

* Individual chares — cumbersome and not practical

Chare Array:

— with a single global name for the collection
— each member addressed by an index

— mapping of element objects to processors handled by the system .

Chare Arrays

User’s view

System
. l view

=5 n

Array Hello

+;
};

mainmodule m {

readonly CProxy_mymain
mainProxy;
readonly int nElements; public:
mainchare mymain { ... }
array [1D] Hello {

class Hello : public CBase_Hello

{

Hello(ckMigrateMessage *m){}

entry Hello(void); HelloQ;

ent

{

Class mymain : public Chare

mymain() {

nElements=4;
mainProxy = thisProxy;
CProxy_Hello p =
CProxy_Hello: :ckNew(nElements);
//Have element 0 say “hi”
p[0].sayHi(12345); In mymain:: mymain()

17

Array
Proxy

Array Hello

Element index

void Hello::sayHi(int hiNo)

{
ckout << hiNo <<"from element" << thisIndex
<< endl;
if (thisIndex < nElements-1)
//Pass the hello on:
™~ thisProxy[thisIndex+1].sayHi(hiNo+1);

else
//We've been around once-- we're done.
mainProxy.done();

CkEx1t();

/// void mymain::done(void){

7/ }
Read-only

18

Sorting numbers

m Sort nintegers in increasing order.
m Create n chares, each keeping one number.

m In every odd iteration chares numbered 2i swaps with chare 2i+1 if
required.

m In every even iteration chares 2i swaps with chare 2i-1 if required.

m After each iteration all chares report to the mainchare. After everybody
reports mainchares signals next iteration. Sorting completes in n iterations.

s ([l H)(l H)(@)@ 0
oaarome: [(| IX JIEGHD)

19

Array Sort

in

entry mymain(Ck|
entry void swap
¥
array [1D] sort{
entry sort(void);

mainmodule sort{ sort.ci
readonly CProxy_myM class sort : public CBase_sort{ sort.h
readonly int nEleme private:
int myvalue;
mainchare myMain { DU i

sort() ;
sort(CkMigrateMessage *m);
void setvalue(int number);

void swap(int round_no);

swapcount=0;
roundsDone=0;
mainProxy = thishandle;
CProxy_sort arr =
CProxy_sort: :ckNew(nElements) ;

for(int i=0;i<nElements;i++)

arr[i].setvalue(rand(Q));

arr.swap(0);

(int from_index,
t value);

myMain::myMain()

20

Array Sort (continued ...)

void sort::swap(int roundno)

{

bool sendright=false;
if (roundno%2==0 && thisIndex%2==0|| roundno%2==1 && thisIndex%2==1)
sendright=true; //sendright is true if I have to send to right

if((sendright && t

. void sort::swapReceive(int from_index, int value)
mainProxy.swapd

elsef { .) .
i £ (send et 1if(from index==thisTndex-1 && val ue>myVa'I ue)
N - void myMain: :swapdone(void) {
else if (++swapcount==nElements) { | & value<myvalue)
thisPro
} swapcount=0;
} roundsDone++;

if (roundsDone==nElements)

CkExit(Q);

else

arr.swap(roundsbDone) ;

Remember :

‘/Message passing is asynchronous.
Messages can be delivered out of order.

l swapReceive %
: /)\T i 3

swap

swapRecelve

Array Sort (correct)

{

void sort:

:swap(int roundno)

bool sendright=false;
-i-F (rounan%Z::O && th-iSIndeX%2==0||

roundno%2==1 && thisIndex%2==1)

ifl void myMain::swapdone(void) {

if (++swapcount==nElements) {
swapcount=0;
roundsDone++;
if (roundsbDone==nElements)
CkExitQ;
else

arr.swap(roundsbDone) ;

Sen rioh+—_+riia- /[/candriaoht+ 1c +riao 3f T bhaviao ¥+ caoand +o riah+
void sort::swapReceive(int from_index, int value) {
if (Cs |
mai if (from_index==thisIndex-1) {
} els- 1f Cvaliiesmviv/aTliie) £

ve(thisIndex, myvalue);

ve(thisIndex, value);

23

Example: 5-Point 2-D Stencill

Hot temperature on
— two sides will slowly
spread across the
entire grid.

24

Example: 5-Point 2-D Stencill

m Input: 2D array of values with boundary
condition

m In each iteration, each array element is
computed as the average of itself and
its neighbors (5 points)

m lterations are repeated till some
threshold difference value is reached

25

Parallel Solution!

26

Parallel Solution!

m Slice up the 2D array into sets of columns
m Chare = computations in one set

m At the end of each iteration
— Chares exchange boundaries
— Determine maximum change in computation

m Output result at each step or when threshold
IS reached

27

Arrays as Parameters

m Array cannot be passed as pointer

m Specify the length of the array in the
interface file
— entry void bar(int n,double arr[n])
— nis size of arr{]

28

Stencil Code

void Arl::dowork(int sendersID, int n, double arr[])
{

maxChange = 0.0;

if (sendersID == thisIndex-1)

{ Tleftmsg = 1; }

else if (sendersID == thisIndex+1)

{ rightmsg = 1; }

P9

Reduction

m Apply a single operation (add, max, min, ...) to data
items scattered across many processors

m Collect the result in one place

® Reduce x across all elements
— contribute(sizeof(x), &x, CkReduction::sum_int);

m Must create and register a callback function that will
receive the final value, in main chare

30

Types of Reductions

m Predefined Reductions — A number of
reductions are predefined, including ones that
— Sum values or arrays
— Calculate the product of values or arrays
— Calculate the maximum contributed value
— Calculate the minimum contributed value
— Calculate the logical and of integer values

— Calculate the logical or of contributed integer
values

— Form a set of all contributed values
— Concatenate bytes of all contributed values

m Plus, you can create your own

31

Code (continued ...)

void Arl::dowork(int sendersID, int n, double arr[n])

{

//Code on previous slide
ig (((rightmsg == 1) && (leftmsg == 1)) || ((thisIndex == 0)
(rightmsg == 1)) || ((thisIndex ==K-1) && (leftmsg == 1)))

// Both messages have been received and we can now
compute the new values of the matrix

// Use a reduction to find determine if all of the maximum
errors on each processor had a maximum change that
1s below our threshold value.

contribute(sizeof(double), &maxChange,
. Ckreduction: :max_double);

32

Callbacks

m A generic way to transfer control to a chare after
a library(such as reduction) has finished.

m After finishing a reduction, the results have to
be passed to some chare's entry method.

m To do this, create an object of type CkCallback
with chare's ID & entry method index

m Different types of callbacks
m One commonly used type:

CkCallback cb(<chare’s entry method>,<chare’s proxy>);

33

A Molecular Dynamics Example

m 2D Simulation space
— Broken into a 2DArray of

chares
m Called Patches (or) Cells . . .
— Contains particles - o
= Computes (or) Interactions <> <> <

— Interactions between

particles in adjacent cells o~ . <<>>.
{" h

34

One time step of computation

m Cells ===n--- Vector<Particles> -==--- > Interaction

Interaction ------- Resulting Forces ------ > Cells

Cells ------ Vector<Migrating Particles> ----- > Cells

35

Now, some code..

module cell {

array [2D] Cell {
entry Cell();
entry void start(); _ _
entry void updateForces(CkvVec<Particle>_ particles);
entry void updateParticles(Ckvec<Particle> updates);
entry void requestNextFrame(livevizRequestMsg *m);

array [4D] Interaction {
entry Interaction(); _ . o .
entry void interact(Ckvec<Particle>, int i, int j);

Spare Array - Insertion
For each pair of adjacent cells (x1,yl) and (x2,y2)
interactionArray(x1, yl, x2, y2).insert(

50

Tools

— LiveViz

— Parallel Debugger
— Projections

Outline

37

[LiveViz — What 1s 1t?

® Charm++ library
® Visualization tool

® Inspect your
program’s current
state

m Java client runs on
any machine

® You code the image
generation

®m 2D and 3D modes

Sending request [vimage

~ Parallel Data VYisualization

HRH

38

LiveViz — Monitoring Your Application

Sending request [vimage

m LiveViz allows you to
watch your application’s
progress

m Doesn’t slow down
computation when there
IS no client

39

LiveViz Setup

#include “liveViz.h”

Main::Main(. . .) {

/* Do misc initilization stuff */

CkCallback c(CkIndex Cell::requestNextFrame (0) ,cellArray);

liveVizConfig cfg(liveVizConfig: :pix color,

/* animate image */ true);

liveVizInit (cfg,cellArray,c); // Initialize the library

40

Adding LiveViz to Your Code

void Cell: :requestNextFrame (liveVizPollRequestMsg *m) {
// Compute the dimensions of the image piece we’ll send

i.e myWidthPx and myHeightPx.

// Color pixels of particles and draw doundaries of cell

// For greyscale it’s 1 byte, for color it’s 3

// Finally, return the image data to the library

liveVizPollDeposit (m, sx, sy, myWidthPx, myHeightPx,
intensity,this, imageBits),

}

41

Link With The LiveViz Library

OPTS=-g
CHARMC=charmc $ (OPTS)

all: molecular

molecular: main.o cell.o
$ (CHARMC) -language charm++ \
-0 molecular main.o cell.o \

-module liveViz

LiveViz Summary

m Easy to use visualization library

m Simple code handles any number of
clients

m Doesn’t slow computation when there
are no clients connected

m Works in parallel, with load balancing,
etc.

43

Parallel debugging support

m Parallel debugger (charmdebug)
m Allows programmer to view the changing

¥ Charm Parallel Debugger

state of the parallel program

File: fhome/net/jyothifcpd/2D/pam number of pes: 1

m Java GUI client

OK || canceL |

44

Debugger features

m Provides a means to easily access and view
the major programmer visible entities,
Including objects and messages in queues,
during program execution

m Provides an interface to set and remove
breakpoints on remote entry points, which
capture the major programmer-visible control
flows

45

Debugger features (contd.)

m Provides the ability to freeze and unfreeze the
execution of selected processors of the
parallel program, which allows a consistent
snapshot

m Provides a way to attach a sequential
debugger (like GDB) to a specific subset of
processes of the parallel program during
execution, which keeps a manageable
number of sequential debugger windows
open

46

Alternative debugging support

m Uses gdb for debugging

* Runs each node under gdb in an xterm
window, prompting the user to begin
execution

m Charm program has to be compiled using *-g’
and run with ‘++debug’ as a command-line
option.

47

Projections: Quick Introduction

m Projections is a tool used to analyze the
performance of your application

m The tracemode option is used when you build
your application to enable tracing

m You get one log file per processor, plus a
separate file with global information

m These files are read by Projections so you

can use the Projections views to analyze
performance

48

Screen shots — LLoad imbalance

Rl i g L s e 0 %0

File Tools Help ‘

LEGEND

Intervals 0-4850

Processor Usage(®)

2
Processor

. Jacobi 2048 X 2048

~~Line Graph “Bar Graph << | X—AXi

ay ltems
Threshold 0.1 :
X—axXIS Y—aXIS ITEI 1—4850)
| Chares 32
v Interval <> Msgs -5
<> Processor ~ Time << Processors 4 R apply

Timelines — load imbalance

K —F

, ; (=lOl (x|
File Tools Help

2,500,000 3,500,000 4,000,000 4,500,000 5,000,000

2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000

_IDisplay Pack Times " Display Message Sends _IDisplay Idle Time _IView User Events (O)
Select Ranges ‘ Change Colors << SCALE: 16 >> Reset
Highlight Time Selection Begin Time Selection End Time Selection Length

Zoom Selected ‘ Load Selected

Outline

More Charm++ Features

— Structured Dagger Construct
— Adaptive MPI
— Load Balancing

51

Structured Dagger

= Motivation:

— Keeping flags & buffering manually can
complicate code in charm++ model.

— Considerable overhead in the form of
thread creation and synchronization

52

Advantages

m Reduce the complexity of program
development

— Facilitate a clear expression of flow of
control

m Take advantage of adaptive message-
driven execution

— Without adding significant overhead

53

What 1s 1t?

m A coordination language built on top of Charm
++

— Structured notation for specifying intra-process
control dependences in message-driven programs

m Allows easy expression of dependences
among messages, computations and also
among computations within the same object
using various structured constructs

54

Structured Dagger Constructs

To Be Covered in Advanced Charm++ Session

m atomic {code}

m overlap {code}

m when <entrylist> {code}
m if/else/for/while

m foreach

55

Stencil Example Using Structured Dagger

stencil.ci
array[1D] Arl {

entry void GetMessages () {
when rightmsgEntry(), leftmsgEntry() {
atomic { CkPrintf(“Got both left and right messages \n™);
doWork(right, left); }
)

55

entry void rightmsgEntry();
entry void leftmsgEntry();

}

56

AMPI = Adaptive MPI

= Motivation:

— Typical MPI implementations are not

suitable for the new generation parallel
applications

* Dynamically varying: load shifting, adaptive
refinement

— Some legacy codes in MPI can be easily
ported and run fast in current new
machines

— Facilitate those who are familiar with MPI

57

What 1s 1t?

m An MPI implementation built on Charm+
+ (MPI with virtualization)

m To provide benefits of Charm++
Runtime System to standard MPI
programs

— Load Balancing, Checkpointing,
Adaptability to dynamic number of physical
pProcessors

58

Sample AMPI Program
Also a valid MPI Program

#include <stdio.h>
#include "mpi.h"

int main(int argc, char** argv){
int 1err, rank, np, myval=0;
MPI Status status;

MPI_Init(&argc, &argv);
ierr = MPI Comm_rank(MPI COMM_ WORLD, &rank);
ierr = MPI_Comm_size(MPI_COMM_WORLD, &np);

if(rank <np-1) MPI Send(&myval, 1, MPI INT, rank+1,1, MPI COMM _ WORLD);
if(rank > 0) MPI_Recv(&myval,1, MPI _INT, rank-1,1, MPI COMM_ WORLD, &status);

printf("rank %d completed\n", rank);
ierr = MPI_Finalize();

59

AMPI Compilation

Compile:
charmc sample.c -language ampi1 -o sample

Run:
charmrun ./sample +p16 +vp 128 [args]

Instead of Traditional MPI equivalent:
mpirun ./sample -np 128 [args]

60

Comparison to Native MPI

 AMPI Performance
— Similar to Native MPI
— Not utilizing any other features of AMPI(load balancing, etc.)

« AMPI Flexibility

— AMPI runs on any # of Physical Processors (eg 19, 33, 105). Native MPI
needs cube #.

61

Current AMPI Capabilities

m Automatic checkpoint/restart mechanism

— Robust implementation available

Load Balancing and “process™ Migration

MPI 1.1 compliant, Most of MPI 2 implemented
Interoperability

— With Frameworks

— With Charm++

Performance visualization

62

Load Balancing

m Goal: higher processor utilization

m Object migration allows us to move the
work load among processors easily

m Measurement-based Load Balancing

m Two approaches to distributing work:
» Centralized
 Distributed

m Principle of Persistence

63

Migration

m Array objects can migrate from one
processor to another

m Migration creates a new object on the
destination processor while destroying
the original

m Need a way of packing an object into a
message, then unpacking it on the
receiving processor

64

PUP

m PUP is a framework for packing and
unpacking migratable objects into messages

m To migrate, must implement pack/unpack or
pup method
m Pup method combines 3 functions

— Data structure traversal : compute
message size, in bytes

— Pack : write object into message
— Unpack : read object out of message

65

Writing a PUP Method

Class ShowPup {

double a; int x;

char y; unsigned long z;

float gq[3]; int *r; // heap allocated memory
public:

void pup (PUP: :er &p) {
if (p.isUnpacking()) T
r = new int[ARRAY SIZE];
pl| a; p |Ix; ply // you can use | operator
p(z); p(q, 3) // oxr ()]
p (r,ARRAY SIZE) ;

}

66

The Principle of Persistence

m Big Idea: the past predicts the future

m Patterns of communication and
computation remain nearly constant

m By measuring these patterns we can
improve our load balancing techniques

67

Centralized Load Balancing

m Uses information about activity on all
processors to make load balancing decisions

m Advantage: Global information gives higher
quality balancing

m Disadvantage: Higher communication costs
and latency

m Algorithms: Greedy, Refine, Recursive
Bisection, Metis

68

Neighborhood Load Balancing

m Load balances among a small set of
processors (the neighborhood)

m Advantage: Lower communication costs

m Disadvantage: Could leave a system
which is poorly balanced globally

m Algorithms: NeighborLB, WorkstationLB

69

When to Re-balance Load?

Default: Load balancer will migrate when needed

m Programmer Control: AtSync load balancing

AtSync method: enable load balancing at specific point
— Object ready to migrate
— Re-balance if needed
— AtSync() called when your chare is ready to be load balanced
* load balancing may not start right away

— ResumeFromSync() called when load balancing for this chare
has finished

70

Using a Load Balancer

® link a LB module

— -module <strategy>
— RefinelLB, NeighborLB, GreedyCommLB, others...
— EveryLB will include all load balancing strategies

m compile time option (specify default balancer)

— =balancer RefinelLLB

m runtime option

— +balancer RefinelLB

71

Load Balancing in Jacobi2D

Main:
Setup worker array, pass data to them

Workers:
Start looping

Send messages to all neighbors with ghost rows

Wait for all neighbors to send ghost rows to me

Once they arrive, do the regular Jacobi relaxation

Calculate maximum error, do a reduction to compute
global maximum error

If timestep is a multiple of 64, load balance the
computation. Then restart the loop.

72

Load Balancing in Jacobi12D
(cont.)

Processor Utilization: After LLoad Balance

Intervals O—-485 0

1 2
Processor

Intervals O-4160

1 =2
Processor

Timelines: Before and After Load Balancing

4,000,000 4,500,000 5,000,000

2,500,000 3,000,000 3,500,000 4,000,000 4,500,000 5,000,000

20,000,000 20,500,000 21,000,000 21,500,000
e

L

21,000,000 21,500,000

Advanced Features

m Groups

= Node Groups

m Priorities

m Entry Method Attributes

m Communications Optimization
m Checkpoint/Restart

76

Conclusions

m Better Software Engineering

— Logical Units decoupled from number of
Processors

— Adaptive overlap between computation and
communication

— Automatic load balancing and profiling
m Powerful Parallel Tools

— Projections

— Parallel Debugger

— LiveViz

77

More Information

m http://charm.cs.uiuc.edu
— Manuals
— Papers
— Download files
— FAQs

m ppl@cs.uiuc.edu

78

