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One Model to Rule 
Them All?

• multicore

• cluster

• GPU

• Cell

• many core

• irregular communication

• deadlock and race 
condition avoidance

• memory consistency

• transparent performance 
model

• critical path detection

• simple semantics
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Incomplete Models

• Sometimes you don’t need full generality

• Complete freedom implies the freedom to 
create all possible incorrect programs
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Incomplete Models

Downside

some things will not be expressible
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Incomplete Models

Upside

some things will not be expressible
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Incomplete Models

Upside

better safety guarantees

easier to get high performance

possibility for greater expressiveness
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Common Infrastructure

Converse Messaging Interface

Ethernet Infiniband Blue Gene etc.

Charm++

MSAAMPI{Models

{Substrate

Charisma Charj

Libraries & Applications
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• Glue language for incomplete models

• Has model knowledge which C++ compiler 
lacks

• Facilitates clean interaction between 
different models

Charj

Thursday, April 16, 2009



Multiphase Shared 
Arrays
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Discipline

 Phase defines allowed access
 Had phase before X10 existed
 Access modes for consistency seen in early 

Charm, Munin DSM
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Modes

 Read-only: duh
 Write-once: each element may be written by 

one object/thread
 Accumulate: apply an associative, commutative 

operation (element-wise reduction)
 Owner-computes: some routine on local data
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Benefit

 Adaptive fetching and caching
 No race conditions

Thursday, April 16, 2009



Usage Flow

 Create
 Dimension
 Type
 Shape
 (Data Distribution)
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Usage Flow

 Create
 Distribute

 Send handle to all interested objects
 Sync to initialization mode

 Parallel I/O with coordinates: Write-once
 Generated based on coordinates: Owner-computes
 Summed from other data: Accumulate

 Initialize
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Usage Flow

 Create
 Distribute
 Sync to initialization mode
 Initialize
 Sync; Use; Sync; Use
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Open questions

 How much can the compiler enforce?
 How to match distribution to application?
 What other modes make sense?
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Charisma
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Static Dataflow

 Objects communicate with fixed sets of neighbors
 Produce and consume parameters
 Defines a powerful paradigm on which several 

classes of applications can be based
− Structured meshes
− Unstructured meshes
− Molecular dynamics
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Stencil computation
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Produce own boundaries
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Produce own boundaries

foreach x,y in workers

  (LB[x,y],RB[x,y],

   TB[x,y],BB[x,y]) 

<- workers[x,y].prod()‏

end-foreach
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Consume neighbors' boundaries
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Consume neighbors' boundaries

foreach x,y in workers

  (+err) 

<- workers[x,y].cons(

LB[x+1,y],
RB[x-1,y],
TB[x,y-1],
BB[x,y+1])‏

end-foreach
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Communication patterns

 Point-to-point

(param[i]) ← obj[i].prod()‏
...
obj[i].cons(param[i-1])‏
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Communication patterns

 Reduction

foreach x,y in cells
  (+err) ← cells[x,y].compute();
end-foreach
...
main.reportError(err);
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Communication patterns

 Multicast

foreach x in A
  (points[x]) ← A[x].prod();
end-foreach
foreach x,y in B
  B[x,y].cons(points[x]);
end-foreach
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Communication patterns

 Scatter

foreach x in A
  (points[x,*]) ← A[x].prod();
end-foreach
foreach x,y in B
  B[x,y].cons(points[x,y]);
end-foreach
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Communication patterns

 Gather

foreach x,y in A
  (points[x,y]) ← A[x,y].prod();
end-foreach
foreach x in B
  B[x].cons(points[x,*]);
end-foreach
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Future directions

 Bags of neighbors
− Affine expressions can do only so much
− e.g. unstructured meshes

 Topology mapping
− Place communicating objects together

 Streaming extensions
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Future directions

 Incremental gather
− The Agarwal et al. algorithm for matrix multiplication:

foreach x,y,z in w

  (A[x,y,z]) <- workers[x,y,z].produceA();

  (B[x,y,z]) <- workers[x,y,z].produceB();

  (+C[x,z]) <- workers[x,y,z].mult(A[x,y,*],

                B[*,y,z]);
end-foreach

− mult can be performed in a piecemeal 
fashion; more overlap of comp/comm.
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