
Incomplete Models for
Parallel Programming

Aaron Becker, Pritish Jetley, Phil Miller
7th Charm Workshop, 2009

Thursday, April 16, 2009

One Model to Rule
Them All?

• multicore

• cluster

• GPU

• Cell

• many core

• irregular communication

• deadlock and race
condition avoidance

• memory consistency

• transparent performance
model

• critical path detection

• simple semantics

Thursday, April 16, 2009

Incomplete Models

• Sometimes you don’t need full generality

• Complete freedom implies the freedom to
create all possible incorrect programs

Thursday, April 16, 2009

Incomplete Models

Downside

some things will not be expressible

Thursday, April 16, 2009

Incomplete Models

Upside

some things will not be expressible

Thursday, April 16, 2009

Incomplete Models

Upside

better safety guarantees

easier to get high performance

possibility for greater expressiveness

Thursday, April 16, 2009

Common Infrastructure

Converse Messaging Interface

Ethernet Infiniband Blue Gene etc.

Charm++

MSAAMPI{Models

{Substrate

Charisma Charj

Libraries & Applications

Thursday, April 16, 2009

Composition

M

AMPI

VP
MSA

Element
Charm++

Chare

Message
Queue

Scheduler

Charisma

Object

Thursday, April 16, 2009

• Glue language for incomplete models

• Has model knowledge which C++ compiler
lacks

• Facilitates clean interaction between
different models

Charj

Thursday, April 16, 2009

Multiphase Shared
Arrays

Thursday, April 16, 2009

Discipline

 Phase defines allowed access
 Had phase before X10 existed
 Access modes for consistency seen in early

Charm, Munin DSM

Thursday, April 16, 2009

Modes

 Read-only: duh
 Write-once: each element may be written by

one object/thread
 Accumulate: apply an associative, commutative

operation (element-wise reduction)
 Owner-computes: some routine on local data

Thursday, April 16, 2009

Benefit

 Adaptive fetching and caching
 No race conditions

Thursday, April 16, 2009

Usage Flow

 Create
 Dimension
 Type
 Shape
 (Data Distribution)

Thursday, April 16, 2009

Usage Flow

 Create
 Distribute

 Send handle to all interested objects
 Sync to initialization mode

 Parallel I/O with coordinates: Write-once
 Generated based on coordinates: Owner-computes
 Summed from other data: Accumulate

 Initialize

Thursday, April 16, 2009

Usage Flow

 Create
 Distribute
 Sync to initialization mode
 Initialize
 Sync; Use; Sync; Use

Thursday, April 16, 2009

Open questions

 How much can the compiler enforce?
 How to match distribution to application?
 What other modes make sense?

Thursday, April 16, 2009

Charisma

Thursday, April 16, 2009

Static Dataflow

 Objects communicate with fixed sets of neighbors
 Produce and consume parameters
 Defines a powerful paradigm on which several

classes of applications can be based
− Structured meshes
− Unstructured meshes
− Molecular dynamics

Thursday, April 16, 2009

Stencil computation

Thursday, April 16, 2009

Produce own boundaries

Thursday, April 16, 2009

Produce own boundaries

foreach x,y in workers

 (LB[x,y],RB[x,y],

 TB[x,y],BB[x,y])

<- workers[x,y].prod()‏

end-foreach

Thursday, April 16, 2009

Consume neighbors' boundaries

Thursday, April 16, 2009

Consume neighbors' boundaries

foreach x,y in workers

 (+err)

<- workers[x,y].cons(

LB[x+1,y],
RB[x-1,y],
TB[x,y-1],
BB[x,y+1])‏

end-foreach

Thursday, April 16, 2009

Communication patterns

 Point-to-point

(param[i]) ← obj[i].prod()‏
...
obj[i].cons(param[i-1])‏

Thursday, April 16, 2009

Communication patterns

 Reduction

foreach x,y in cells
 (+err) ← cells[x,y].compute();
end-foreach
...
main.reportError(err);

Thursday, April 16, 2009

Communication patterns

 Multicast

foreach x in A
 (points[x]) ← A[x].prod();
end-foreach
foreach x,y in B
 B[x,y].cons(points[x]);
end-foreach

Thursday, April 16, 2009

Communication patterns

 Scatter

foreach x in A
 (points[x,*]) ← A[x].prod();
end-foreach
foreach x,y in B
 B[x,y].cons(points[x,y]);
end-foreach

Thursday, April 16, 2009

Communication patterns

 Gather

foreach x,y in A
 (points[x,y]) ← A[x,y].prod();
end-foreach
foreach x in B
 B[x].cons(points[x,*]);
end-foreach

Thursday, April 16, 2009

Future directions

 Bags of neighbors
− Affine expressions can do only so much
− e.g. unstructured meshes

 Topology mapping
− Place communicating objects together

 Streaming extensions

Thursday, April 16, 2009

Future directions

 Incremental gather
− The Agarwal et al. algorithm for matrix multiplication:

foreach x,y,z in w

 (A[x,y,z]) <- workers[x,y,z].produceA();

 (B[x,y,z]) <- workers[x,y,z].produceB();

 (+C[x,z]) <- workers[x,y,z].mult(A[x,y,*],

 B[*,y,z]);
end-foreach

− mult can be performed in a piecemeal
fashion; more overlap of comp/comm.

Thursday, April 16, 2009

