
A Generic Adaptive Runtime
Autotuning Framework

Isaac Dooley

7th Annual Workshop on Charm++ and its Applications

Thursday, April 16th, 2009

1

Existing Parallel Programming Models
P

a
ra

ll
e

l
R

u
n

ti
m

e
 S

y
s

te
m

A
p

p
li

c
a

ti
o

n

MPI Model

One Thread Per Processor

P
a

ra
ll

e
l

R
u

n
ti

m
e

 S
y

s
te

m
A

p
p

li
c

a
ti

o
n

Charm++ Model

Overdecomposition

Dynamic Load Balancing
of Chare Objects to Processors

2

Runtime System Controls the Application

P
a

ra
ll

e
l

R
u

n
ti

m
e

 S
y

s
te

m

Application

Instrumented

Performance

Adaptive

Control

System Experiment

History

Knowledge of

Control Points

Instrumented

Performance

Characteristics

A
p

p
li

c
a

ti
o

n

Control Points

Control Points

3

Intelligent Tuning
Measured Performance Metrics

(Input to Controller)

Processor Utilization

Processor Overhead

Memory Utilization

Cache Performance

Application Decomposition Granularity

Communication Volume

Critical Path Profiling

Descriptive Categorizations

for Application Behavior

as Control Point Values are Increased

 Task Decomposition Granularity

Task Scheduling Priorities

Degree of Pipeline Streaming

Memory Usage

Prefetch / Lookahead Distance

4

Control Point API
Application Exposes Control Point Values:

int controlPointValue = controlPoint("Control Point Name", 1, 50);

Application Specified Performance:

registerControlPointTiming(time);

Control Point Framework Instructs Application to adapt:

CkCallback myCallback (CkIndex_Main::controlPointChange(NULL),proxy);
registerControlPointChangeCallback(myCallback);

Describe Knowledge:

controlPointPriorityArray("Control Point Name", ArrayProxy);

controlPointPriorityEntry("Control Point Name", EntryMethod);

5

Use Cases

Adjust task/data granularity

Adjust scheduling priorities

Adjust load balancing parameters

Choose algorithmic alternatives

Apply various communication optimizations

6

Tuning Critical Path Priorities

7

Control Point Configuration Space
Pipelined Filtering

Performance within 2.0% of best

Performance within 1.0% of best

Performance less than 98.0% of best

Legend:

Smaller Squares Represent Lower Performance

Number of Worker Chares (Pipeline Stages)1 64

In
p

u
t

S
lic

e
 S

iz
e

1

1024

2
4

512

8

Number of Worker Chares (partitions) in X Dimension1 50

N
u

m
b

e
r

o
f

W
o

rk
e

r
C

h
a

re
s
 (

p
a

rt
it
io

n
s
)

in
 Y

 D
im

e
n

s
io

n

1

50

Performance within 2.0% of best

Performance within 1.0% of best

Performance less than 98.0% of best

Legend:

Smaller Squares Represent Lower Performance

Control Point Configuration Space
2D Jacobi

Future Work

Improve critical path profiles.

Detect & fix more patterns of known performance problems.

Use with complicated applications & algorithms such as MD and LU.

Find appropriate ways to expose application knowledge.

Build an expert system combining all the patterns we discover.

10

The End

Questions?

Suggestions?

Isaac Dooley
idooley2@uiuc.edu

11

