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Application: 3D finite elements for 
non-homogeneous materials.
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NVIDIA Tesla S1070



NVIDIA Tesla S1070 Specifications:

• 960 Cores (240 per processor)

• 4.14 TFlops Single Precision

• 345 GFlops Double Precision

• 16GB RAM
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192  NCSA Lincoln Cluster Nodes:

• Two Intel Harpertown quad 
core E5410 CPUs 

• Half of a Tesla Unit (2 GPUs)

• InfiniBand interconnect fabric
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Application: 3D finite elements for 
non-homogeneous materials.

Update nodal displacements

Copy force data from GPU

Sum forces on shared nodes

Copy force data to GPU

Compute nodal forces from displacements 
using the stiffness matrix

Update velocity & acceleration

Impose boundary conditions
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Routines that can run on either CPU or GPU

GPU specific routines

CPU specific routines

If target time not reached
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Application: Implementation

nodeIterator itr; 
for(nodeItr_Begin(itr);  nodeItr_IsValid(itr); nodeItr_Next(itr)){ 
    n_data=node_GetData(itr); 
    for(inti=0;i<dof;++i){ 
        constFP_TYPE a_old=n_data->a[i]; 
        n_data->a[i] = -n_data->F[i]/n_data->mass; 
        n_data->v[i] += 0.5*dt*(n_data->a[i]+a_old); 
    } 
} 

n_data=node_GPU_GetData(my_node); 
for(inti=0;i<dof;++i){ 
    constFP_TYPE a_old = n_data->a[i]; 
    n_data->a[i] = -n_data->F[i]/n_data->mass; 
    n_data->v[i] += 0.5*dt*(n_data->a[i]+a_old); 
} 

CPU Version GPU CUDA Version

Uses an Iterator Interface on ParFUM
Kernel code

7



Mesh over-decomposed into many pieces.

Pieces can execute either on CPU or GPU. 

Balance number of pieces between CPU and GPU 
Manager processors.

Domain specific framework: ParFUM + Iterator Interface

Iterator Interface was customized for CPU & CUDA.
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Application: Implementation



Application Specific Characteristic

Bytes
Element 1184
Node 912

Single PrecisionDouble Precision

Bytes
Element 592
Node 460

Larger than usual data per element/node
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Goals / Unknowns

Can this program use the GPUs well?
Most similar published work achieves speedup of 7 on 1 GPU.

What changes will have to be made to adapt it to CUDA?

Can our existing methodology apply to heterogeneous 
clusters?

How well will this program scale? 
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Early Performance Problem with CPU Version

Execution time per simulation step
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Timeline view:
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Early Performance Problem with CPU Version

Execution time per simulation step



Early Performance Problem with CPU Version

Execution time per simulation step:
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Denorms are present
Denorms are eliminated with DAZ mode
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Application: Main GPU Optimizations

• Minimized data copied 
to/from main memory

• Asynchronously 
executed kernels, 
memory transfers

• Overlapping CPU work 
with Asynchronous GPU 
kernels
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Normalized Performance
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Application: Load Balancing CPU/GPU

• Current approach: manually tune number of 
mesh pieces on each GPU/CPU

• Future approach: Develop a heterogeneous 
load balancer that can automatically map 
mesh pieces to CPU/GPUs ! How?

• Future approach: Use control point 
framework to autotune the ratio.

15



Approach to Understanding Performance

Examine timeline visualizations
Measure time/step
Measure memory overhead
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Strong scaling (Same mesh size): 
1 core to 1 node

Weak scaling (Scale up mesh sizes):
1 node to 128 nodes

Scaling

235K tetrahedra

30M tetrahedra
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Resulting Application Performance
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Application Performance

12%

24%

39%

24%

Read Data
Compute Forces
Writing Data
Other

CPU

54%

9%

37%

GPU

Measured by eliminating portions of code & timing
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• Memory accesses take majority of time on 
GPU.  Potential future improvements?

• Manual load balancing works, but we would 
like runtime support for instrumented 
heterogeneous load balancing.

• Finite element simulations with large amount 
of data per element achieve modest 
speedups on GPU.

Application: Lessons Learned
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The End

Questions?

Suggestions?

Isaac Dooley 
idooley2@uiuc.edu
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