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Motivations

●Debugging is a fundamental part of software 
development

●Parallel programs have all the sequential bugs:
– Memory corruption

– Incorrect results

– ....
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Motivations (2)

●Parallel programs have other bugs:
– Data races / multicore (heavily studied in literature)

– Communication mistakes

– Synchronization mistakes / Message races

●To complicate things more:
– Non-determinism

– Problems may show up only at large scale
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Problems at Large Scale

●Problems may not appear at small scale
– Races between messages

● Latencies in the underlying hardware

– Incorrect messaging

– Data decomposition
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Problems at Large Scale (2)

●Infeasible
– Debugger needs to handle many processors

– Human can be overwhelmed by information

– Long waiting time in queue

– Machine not available

●Expensive
– Large machine allocation consume a lot of 

computational resources
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CharmDebug Overview
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Converse Client-Server 
Scalability

●CCS connects to the application as a whole
– Forward requests for single processors

– Gather information from
the whole application
● Uses the same communication

infrastucture as the applicaiton
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Debugging on Large Systems

●Attaching to running application
– 48 processors cluster

● 28 ms with 48 point-to-point queries
●   2 ms with a single global query

●Example: Memory statistics collection
– 12 to 20 ms up to 4k processors

– Counted on the client debugger
* F. Gioachin, C.W. Lee, L.V. Kalé: 

"Scalable Interaction with Scalable Interaction with 
Parallel ApplicationsParallel Applications", In 
Proceedings of TeraGrid'09
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Autoinspection

●The programmer should not manually handle all 
the processors
– Unsupervised execution

– Notification to the user from interesting processors
● Breakpoints
● Abort / signals
● Memory corruption
● Assertion failure
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Python Scripting

    length = charm.getValue(self, MyArray, len)
    arr = charm.getValue(self, MyArray, data)
    for i in range(0, length):
        value = charm.getArray(arr, double, i)
        if (value > 10 or value < -10):
            print "Error: value ", i, " = ", value
            return i

Select on 
which entry 
points the 
script 
should run

Suspend execution 
if a value is returned

Access program's 
data (circumvent 
lack of reflection)

●Upload a script to perform checking on the 
correctness of data structures when needed

* F. Gioachin, 
L.V. Kalé: 
"Dynamic High-Dynamic High-
Level Scripting Level Scripting 
in Parallel in Parallel 
ApplicationsApplications". In 
Proceedings of 
the 23rd IEEE 
International 
Parallel and 
Distributed 
Processing 
Symposium 
(IPDPS 2009)
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Can you debug
on a big machine?

●Feasibility
– How long do you have to wait before your job starts?

● Are you available when you job starts?

– Is the machine even available?

●Cost
– How many allocation units are you using to do your 

debugging?
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Virtualized Emulation

●Use emulation techniques to provide virtual 
processors to display to the user
– Different scenario from performance analysis

● Cannot assume correctness of program

– Debugger needs to communicate with application

– Single address space

* F. Gioachin, G. Zheng, L.V. Kalé: "Debugging Large Scale Applications in a Virtualized Debugging Large Scale Applications in a Virtualized 
EnvironmentEnvironment". PPL Technical Report, April 2010
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Virtualized Charm++

●Converse on top of BigSim
– Processors become

virtual processors

– Two Converse layers
● Virtualized
● Original

AMPI

Charm++

Converse

MPI, Infiniband, Myrinet, UDP/TCP, LAPI, etc ...

BigSim
Emulator

BigSim
Converse
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Virtual ProcessorVirtual Processor

BigSim Emulator

Message Queue Converse Main Thread

Worker ThreadWorker Thread

Communication
Thread

Communication
Thread
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Converse Client-Server
under Emulated Environment

Virtual Processor

Worker Thread

Communication
Thread

Message Queue Converse Main Thread

Virtual Processor

Worker Thread
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Real PE 12

VP 513VP 87



29 April 2010 Filippo Gioachin - UIUC 17

Usage: Starting
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Usage: Debugging
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Performance: Jacobi
(on NCSA's BluePrint)

●User thinks for one minute about what to do:
– 8 processors

● 86 sec.
● ~0.2 SU

– 1024 procs
● 60.5 sec.
● ~17 SU
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Restrictions

●Small memory footprint
– Many processors needs to fit into a single physical 

processor

●Session should be constraint by human speed
– Allocation idle most of the time waiting for user input

– Bad for computation intensive applications
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Separation of Virtual Entities

●Single address space shared by different entities
– One entity can write in memory of another entity

● Protect memory such that spurious writes can be detected
● Exploit the scheduler in message driven systems

Has
corruption
occured?

Reset memory
protection

Check memory
corruption

No

Yes

Pick message
User code:

process
message

* F. Gioachin, L.V. 
Kalé: "Memory Memory 
Tagging in Charm++Tagging in Charm++" 
in Proceedings of the 
6th Workshop on 
Parallel and 
Distributed Systems: 
Testing, Analysis, 
and Debugging 
(PADTAD '08)
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Do we need all the processors?

●The problem manifests itself on a 
single processor
– If more than one, they are equivalent

●The cause can span multiple 
processors (causally related)
– The subset is generally much smaller 

than the whole system

●Select the interesting processors 
and ignore the others
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Fighting non-determinism

●Record all data processed by each processor
– Huge volume of data stored

– High interference with application
● Likely the bug will not appear...

– Need to run a non-optimized code

●Record only message ordering
– Based on piecewise deterministic assumption

– Must re-execute using the same machine
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Three-step Procedure
for Processor Extraction

Execute program
recording message

ordering

Replay application
with detailed

recording enabled

Replay selected
processors as
stand-alone

Is problem
solved?

Done

Select
processors
to record

YesNo

S
tep 1

S
tep 2

S
tep 3

Has bug
appeared?

       Yes

No

Minimize perturbation (few
bytes per message)

● Iterate for
incremental
extraction

● Use message ordering to 
guarantee determinism

● Can execute in the 
virtualized environment

* F. Gioachin, G. Zheng,
L.V. Kalé: "Robust Record-Robust Record-
Replay with Processor Replay with Processor 
ExtractionExtraction" in Proceedings of 
the Workshop on Parallel and 
Distributed Systems: Testing, 
Analysis, and Debugging 
(PADTAD – VIII), 2010

U
se

r
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What if the piecewise deterministic 
assumption is not met?

●Make sure to detect it, and notify the user

If all messages are identical,If all messages are identical,
then we can assume the non-then we can assume the non-
determinism was captureddeterminism was captured

●Methods to detect failure:
– Message size and destination

– Checksum of the whole message (XOR, CRC32)
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Computing Checksums

●Checksum considers memory as raw data, 
ignores what it contains
– Pointers

– Garbage
● Uninitialized fields
● Compiler padding

●Use Charm++ memory allocator
– Intercept calls to malloc and pre-fill memory

double

int short

double

int

double

double
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Message Order Recording 
Performance (on NCSA's Abe)
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kNeighbor
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ChaNGa
(dwf1.2048 on NCSA's BluePrint)
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Replaying the Application
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Replaying under
BigSim Emulation: NAMD
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Amount of Data Saved

Number of Processors 128 256 512 1024

Record

Per-processor 0.87 0.67 0.54 0.44

Total 112 173 279 453

Record+checksum
Per-processor 1.49 1.14 0.92 0.75

Total 190 292 473 765

Detailed record Per-processor 111 79 59 47

ChaNGa dwf1.2048, numbers in MB
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Debugging Case Study

●Message race during particle exchange
– Fixed with tedious print statements (while trying to 

avoid hiding the bug...)

../charmdebug +p16 ../ChaNGa cube300.param +record
+recplay-crc

../charmdebug +p16 ../ChaNGa cube300.param +replay
+recplay-crc +record-detail 7

gdb ../ChaNGa
>> run cube300.param +replay-detail 7/16
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Summary

●Important for the debugging system to scale to 
large configurations

●Resources are expensive and should not be 
wasted
– Virtualized Debugging to debug large scale 

applications on small clusters

– Processor Extraction to capture non-determinism of 
parallel application
● Must not interfere too much with the application timing
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Future Extensions

●Shared memory compliance

●Race detector
– Automated testing of message delivery to discover 

message races

●Replay in isolation of single virtual entities
– Conditions of validity
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