
Debugging Large Scale
Parallel Applications

Filippo Gioachin

Parallel Programming Laboratory
Departement of Computer Science

University of Illinois at Urbana-Champaign

29 April 2010 Filippo Gioachin - UIUC 2

Outline

●Introduction
– Motivations

●Debugging on Large Machines
– Scalability

●Using Fewer Resources
– Virtualized Debugging

– Processor Extraction

●Summary

29 April 2010 Filippo Gioachin - UIUC 3

Motivations

●Debugging is a fundamental part of software
development

●Parallel programs have all the sequential bugs:
– Memory corruption

– Incorrect results

–

29 April 2010 Filippo Gioachin - UIUC 4

Motivations (2)

●Parallel programs have other bugs:
– Data races / multicore (heavily studied in literature)

– Communication mistakes

– Synchronization mistakes / Message races

●To complicate things more:
– Non-determinism

– Problems may show up only at large scale

29 April 2010 Filippo Gioachin - UIUC 5

Problems at Large Scale

●Problems may not appear at small scale
– Races between messages

● Latencies in the underlying hardware

– Incorrect messaging

– Data decomposition

29 April 2010 Filippo Gioachin - UIUC 6

Problems at Large Scale (2)

●Infeasible
– Debugger needs to handle many processors

– Human can be overwhelmed by information

– Long waiting time in queue

– Machine not available

●Expensive
– Large machine allocation consume a lot of

computational resources

29 April 2010 Filippo Gioachin - UIUC 7

CharmDebug Overview

CharmDebug

Login
Node

Launch

Single CCS connection
 SSH

 tunnel

S
S

H

Parallel Machine

GDB

29 April 2010 Filippo Gioachin - UIUC 8

Converse Client-Server
Scalability

●CCS connects to the application as a whole
– Forward requests for single processors

– Gather information from
the whole application
● Uses the same communication

infrastucture as the applicaiton

29 April 2010 Filippo Gioachin - UIUC 9

Debugging on Large Systems

●Attaching to running application
– 48 processors cluster

● 28 ms with 48 point-to-point queries
● 2 ms with a single global query

●Example: Memory statistics collection
– 12 to 20 ms up to 4k processors

– Counted on the client debugger
* F. Gioachin, C.W. Lee, L.V. Kalé:

"Scalable Interaction with Scalable Interaction with
Parallel ApplicationsParallel Applications", In
Proceedings of TeraGrid'09

29 April 2010 Filippo Gioachin - UIUC 10

Autoinspection

●The programmer should not manually handle all
the processors
– Unsupervised execution

– Notification to the user from interesting processors
● Breakpoints
● Abort / signals
● Memory corruption
● Assertion failure

29 April 2010 Filippo Gioachin - UIUC 11

Python Scripting

 length = charm.getValue(self, MyArray, len)
 arr = charm.getValue(self, MyArray, data)
 for i in range(0, length):
 value = charm.getArray(arr, double, i)
 if (value > 10 or value < -10):
 print "Error: value ", i, " = ", value
 return i

Select on
which entry
points the
script
should run

Suspend execution
if a value is returned

Access program's
data (circumvent
lack of reflection)

●Upload a script to perform checking on the
correctness of data structures when needed

* F. Gioachin,
L.V. Kalé:
"Dynamic High-Dynamic High-
Level Scripting Level Scripting
in Parallel in Parallel
ApplicationsApplications". In
Proceedings of
the 23rd IEEE
International
Parallel and
Distributed
Processing
Symposium
(IPDPS 2009)

29 April 2010 Filippo Gioachin - UIUC 12

Can you debug
on a big machine?

●Feasibility
– How long do you have to wait before your job starts?

● Are you available when you job starts?

– Is the machine even available?

●Cost
– How many allocation units are you using to do your

debugging?

29 April 2010 Filippo Gioachin - UIUC 13

Virtualized Emulation

●Use emulation techniques to provide virtual
processors to display to the user
– Different scenario from performance analysis

● Cannot assume correctness of program

– Debugger needs to communicate with application

– Single address space

* F. Gioachin, G. Zheng, L.V. Kalé: "Debugging Large Scale Applications in a Virtualized Debugging Large Scale Applications in a Virtualized
EnvironmentEnvironment". PPL Technical Report, April 2010

29 April 2010 Filippo Gioachin - UIUC 14

Virtualized Charm++

●Converse on top of BigSim
– Processors become

virtual processors

– Two Converse layers
● Virtualized
● Original

AMPI

Charm++

Converse

MPI, Infiniband, Myrinet, UDP/TCP, LAPI, etc ...

BigSim
Emulator

BigSim
Converse

29 April 2010 Filippo Gioachin - UIUC 15

Virtual ProcessorVirtual Processor

BigSim Emulator

Message Queue Converse Main Thread

Worker ThreadWorker Thread

Communication
Thread

Communication
Thread

29 April 2010 Filippo Gioachin - UIUC 16

Converse Client-Server
under Emulated Environment

Virtual Processor

Worker Thread

Communication
Thread

Message Queue Converse Main Thread

Virtual Processor

Worker Thread

Communication
Thread

CCS
Host

Real PE 12

VP 513VP 87

29 April 2010 Filippo Gioachin - UIUC 17

Usage: Starting

29 April 2010 Filippo Gioachin - UIUC 18

Usage: Debugging

29 April 2010 Filippo Gioachin - UIUC 19

Performance: Jacobi
(on NCSA's BluePrint)

●User thinks for one minute about what to do:
– 8 processors

● 86 sec.
● ~0.2 SU

– 1024 procs
● 60.5 sec.
● ~17 SU

29 April 2010 Filippo Gioachin - UIUC 20

Restrictions

●Small memory footprint
– Many processors needs to fit into a single physical

processor

●Session should be constraint by human speed
– Allocation idle most of the time waiting for user input

– Bad for computation intensive applications

29 April 2010 Filippo Gioachin - UIUC 21

Separation of Virtual Entities

●Single address space shared by different entities
– One entity can write in memory of another entity

● Protect memory such that spurious writes can be detected
● Exploit the scheduler in message driven systems

Has
corruption
occured?

Reset memory
protection

Check memory
corruption

No

Yes

Pick message
User code:

process
message

* F. Gioachin, L.V.
Kalé: "Memory Memory
Tagging in Charm++Tagging in Charm++"
in Proceedings of the
6th Workshop on
Parallel and
Distributed Systems:
Testing, Analysis,
and Debugging
(PADTAD '08)

29 April 2010 Filippo Gioachin - UIUC 22

Do we need all the processors?

●The problem manifests itself on a
single processor
– If more than one, they are equivalent

●The cause can span multiple
processors (causally related)
– The subset is generally much smaller

than the whole system

●Select the interesting processors
and ignore the others

29 April 2010 Filippo Gioachin - UIUC 23

Fighting non-determinism

●Record all data processed by each processor
– Huge volume of data stored

– High interference with application
● Likely the bug will not appear...

– Need to run a non-optimized code

●Record only message ordering
– Based on piecewise deterministic assumption

– Must re-execute using the same machine

29 April 2010 Filippo Gioachin - UIUC 24

Three-step Procedure
for Processor Extraction

Execute program
recording message

ordering

Replay application
with detailed

recording enabled

Replay selected
processors as
stand-alone

Is problem
solved?

Done

Select
processors
to record

YesNo

S
tep 1

S
tep 2

S
tep 3

Has bug
appeared?

 Yes

No

Minimize perturbation (few
bytes per message)

● Iterate for
incremental
extraction

● Use message ordering to
guarantee determinism

● Can execute in the
virtualized environment

* F. Gioachin, G. Zheng,
L.V. Kalé: "Robust Record-Robust Record-
Replay with Processor Replay with Processor
ExtractionExtraction" in Proceedings of
the Workshop on Parallel and
Distributed Systems: Testing,
Analysis, and Debugging
(PADTAD – VIII), 2010

U
se

r

29 April 2010 Filippo Gioachin - UIUC 25

What if the piecewise deterministic
assumption is not met?

●Make sure to detect it, and notify the user

If all messages are identical,If all messages are identical,
then we can assume the non-then we can assume the non-
determinism was captureddeterminism was captured

●Methods to detect failure:
– Message size and destination

– Checksum of the whole message (XOR, CRC32)

29 April 2010 Filippo Gioachin - UIUC 26

Computing Checksums

●Checksum considers memory as raw data,
ignores what it contains
– Pointers

– Garbage
● Uninitialized fields
● Compiler padding

●Use Charm++ memory allocator
– Intercept calls to malloc and pre-fill memory

double

int short

double

int

double

double

29 April 2010 Filippo Gioachin - UIUC 27

Message Order Recording
Performance (on NCSA's Abe)

29 April 2010 Filippo Gioachin - UIUC 28

kNeighbor

29 April 2010 Filippo Gioachin - UIUC 29

ChaNGa
(dwf1.2048 on NCSA's BluePrint)

29 April 2010 Filippo Gioachin - UIUC 30

Replaying the Application

29 April 2010 Filippo Gioachin - UIUC 31

Replaying under
BigSim Emulation: NAMD

29 April 2010 Filippo Gioachin - UIUC 32

Amount of Data Saved

Number of Processors 128 256 512 1024

Record

Per-processor 0.87 0.67 0.54 0.44

Total 112 173 279 453

Record+checksum
Per-processor 1.49 1.14 0.92 0.75

Total 190 292 473 765

Detailed record Per-processor 111 79 59 47

ChaNGa dwf1.2048, numbers in MB

29 April 2010 Filippo Gioachin - UIUC 33

Debugging Case Study

●Message race during particle exchange
– Fixed with tedious print statements (while trying to

avoid hiding the bug...)

../charmdebug +p16 ../ChaNGa cube300.param +record
+recplay-crc

../charmdebug +p16 ../ChaNGa cube300.param +replay
+recplay-crc +record-detail 7

gdb ../ChaNGa
>> run cube300.param +replay-detail 7/16

29 April 2010 Filippo Gioachin - UIUC 34

Summary

●Important for the debugging system to scale to
large configurations

●Resources are expensive and should not be
wasted
– Virtualized Debugging to debug large scale

applications on small clusters

– Processor Extraction to capture non-determinism of
parallel application
● Must not interfere too much with the application timing

29 April 2010 Filippo Gioachin - UIUC 35

Future Extensions

●Shared memory compliance

●Race detector
– Automated testing of message delivery to discover

message races

●Replay in isolation of single virtual entities
– Conditions of validity

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

