
Implementing Dense LU 
Factorizations in Parallel

Isaac Dooley

8th Annual Workshop on Charm++ and its Applications
Friday April 30th 2010

1



Overview

• Introduction to LU Matrix Factorization

• How LU is done in parallel

• Important issues

• Description of a new Charm++ LU 
implementation

2



Why LU?

• Useful in some Science Applications

• Well known benchmark for evaluating 
parallel systems (Linpack Benchmark)

• http://www.top500.org

3



What is LU?

• LU Factorization

• Take a matrix M and convert it into two 
matrices L and U such that M = LU

• L is lower triangular

• M is upper triangular

• LU is one way to solve system of linear equations

4



What is LU?

• Remember Gaussian Elimination?

• Row operations to create zeros below 
diagonal

2 2

5

5

3

05

1

325

6

10 4 19

5



What is LU?

• Remember Gaussian Elimination?

• Row operations to create zeros below 
diagonal

2 2

5

5

3

05

1

325

6

10 4 19

Zero These Entries

Subtract 3*row

6



What is LU?

• Remember Gaussian Elimination?

• Row operations to create zeros below 
diagonal

2 2

-1

5

3

-3-4

1

325

0

10 4 19

Zero These Entries

Subtract 3*row

7



What is LU?

• Remember Gaussian Elimination?

• Row operations to create zeros below 
diagonal

2 2

-1

-9.5

3

-3-4

1

0.5-30

0

10 4 19

Zero These Entries

Subtract 2.5*row

8



What is LU?

• Remember Gaussian Elimination?

• Row operations to create zeros below 
diagonal

2 2

-1

-9.5

3

-3-4

1

0.5-30

0

0 -6 -4-6

Zero These Entries

Subtract 5*row

9



What is LU?

• Remember Gaussian Elimination?

• Row operations to create zeros below 
diagonal

2 2

-1

-9.5

3

-3-4

1

0.5-30

0

0 -6 -4-6

Zero These Entries
10



What is LU?

• Gaussian elimination produces an upper 
triangular matrix U. 

• If we were to keep track of the multipliers for 
each row operation, we would have the lower 
triangular matrix L.

• 2/3(n3) floating point operations for nxn matrix

11



Blocked LU Example

• If we subdivide the matrix into square 
blocks, gaussian elimination can be 
expressed in four operations:

Operation BLAS Routine
Block LU dgetrf

U update dtrsm

L update dtrsm

Trailing update dgemm

12



Blocked LU Example
• Partition into 4 blocks

Step 1 Step 2

Block 

LU

5

3

05

1

325

10 4 19

Step 3

Done

5

3

05

1

325

10 4 19

Row 

Update

Column 
Update

Done

5

3

05

1

325

10 4 19

Done

Done
Trailing

Update

1
LU

13



Blocked LU

• Now have multicasts 
along part of each row 
and column

• Why Blocks?

• Serial BLAS 3 routines 
are fast

LU
3

05

1

25

10 4

Row 

Update

Column 
Update

Trailing

Update

Row 

Update

Trailing

Update

Trailing

Update

Trailing

Update

Column 
Update

LU
Row 

Update

Trailing

Update

Column 
Update

LU

14



Blocked LU

• Block i,j performs:

• One LU or U or L 
update

• min(i,j) trailing updates

LU
3

05

1

25

10 4

Row 

Update

Column 
Update

Trailing

Update

Row 

Update

Trailing

Update

Trailing

Update

Trailing

Update

Column 
Update

LU
Row 

Update

Trailing

Update

Column 
Update

LU

LU
3

05

1

25

10 4

Row 

Update

Column 
Update

Trailing

Update

Row 

Update

Trailing

Update

Trailing

Update

Trailing

Update

Column 
Update

LU
Row 

Update

Trailing

Update

Column 
Update

LU

15



Blocked LU

• For large problem sizes 
most block operations are 
trailing updates, which are 
matrix-matrix-multiplies

• LU performance will be 
constrained by 
performance of dgemm

LU
3

05

1

25

10 4

Row 

Update

Column 
Update

Trailing

Update

Row 

Update

Trailing

Update

Trailing

Update

Trailing

Update

Column 
Update

LU
Row 

Update

Trailing

Update

Column 
Update

LU

LU
3

05

1

25

10 4

Row 

Update

Column 
Update

Trailing

Update

Row 

Update

Trailing

Update

Trailing

Update

Trailing

Update

Column 
Update

LU
Row 

Update

Trailing

Update

Column 
Update

LU

16



Blocked LU

• Parallel implementations 
will need to execute the 
tasks in the DAG

LU

Row 

Update

Column 
Update

Trailing

Update

Row 

Update

Trailing

Update
Trailing

Update

Trailing

Update

Column 
Update

LU

Row 

Update

Trailing

Update

Column 
Update

LU

17



• Necessary Parallel Operations:

• Schedule block operations respecting 
dependencies

• Multicast results across portions of a row or 
column. (Each multicast has unique set of 
destination blocks)

Parallel Implementations

18



Parallel Implementations

• Scheduling Options

• Synchronously execute one or 
more phases

• Statically decompose whole 
DAG

• Dynamically schedule blocks as 
dependencies happen to be 
satisfied (with / without 
priorities)

LU
3

05

1

25

10 4

Row 

Update

Column 
Update

Trailing

Update

Row 

Update

Trailing

Update

Trailing

Update

Trailing

Update

Column 
Update

LU
Row 

Update

Trailing

Update

Column 
Update

LU

Phase 1

Ph
as

e 
2

Phase 3
19



Parallel Implementations

Scheduling 
Method Good Bad

Synchronously execute 
phases

Simple Limited Parallelism

Static whole DAG 
Decomposition

Optimal choices can be 
made?

Need to analyze the large 
graph

Dynamically schedule 
blocks as dependencies are 

satisfied
Fully Exploits parallelism

Memory usage is not 
necessarily bound

Complex Code?

20



• Scalability

• As problem size increases:

• communication / computation decreases

• Better load balance can be achieved

• Program takes longer to run 
(bad for exascale)

Parallel Implementations

21



• Each block is in a 2-D chare array element

• Prioritized messages: Prioritize work for upper left 
blocks higher than bottom right blocks

• Simple naive code

• No pivoting

• Custom mapping scheme

• Uses new optional Charm++ scheduler to reduce 
memory consumption

Our Charm++ Implementation

22



• Everyone else today 
uses block-cyclic 
mapping 

• Custom mapping 
scheme is based on 
fact that more work 
is performed for 
bottom rightmost 
blocks.

Our Charm++ Implementation

Mapping starts here

...

N

N-1

N-2

...

3

2

1

23



• Uses new optional Charm++ scheduler to reduce memory 
consumption

• Annotate trailing updates because they reduce memory 
consumption by “consuming” two incoming messages and 
producing none.

Our Charm++ Implementation

1800 20 40 60 80 100 120 140 160

2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

Ra
ng

e 
of

 m
em

or
y u

sa
ge

 (G
B)

Memory Usage with 
No Threshold

1800 20 40 60 80 100 120 140 160

2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time (s)

Ra
ng

e 
of

 m
em

or
y u

sa
ge

 (G
B)

Maximum memory usage 
over threshold: 122MB

Memory Usage with 
600MB Threshold

24



• Performance exceeds that of HPL (although we skip the 
pivoting)

• Code is very simple:

• No need for code that restricts progress 

• No application specific multicast code

• Simple prioritization scheme

• No application specific scheduler (as is done in UPC)

• Easy to experiment with novel block to processor 
mappings

Our Charm++ Implementation

25



• Add pivoting to our implementation

• Examine more mapping schemes

• Fix known performance issues (it currently sends larger 
messages than required).

• New types of automatic tuning

• If anyone is interested in joining this project, email me!

Future Work

26



• Matrix Computations. Gene Golub and 
Charles Van Loan

• Multi-threading and one-sided communication 
in parallel LU factorization. Parry Husbands 
and Katherine Yelick. 2007 ACM/IEEE 
conference on Supercomputing

• A Study of Memory-Aware Scheduling in 
Message Driven Parallel Programs. Isaac 
Dooley, Chao Mei, Jonathan Lifflander, and 
Laxmikant V. Kale. PPL Technical Report 
2010

References

27



Questions

Implementing Dense LU Factorizations in Parallel

Isaac Dooley

8th Annual Workshop on Charm++ and its Applications
Friday April 30th 2010

28


