Charm++ Workshop 2010

Processor Virtualization in Weather Models

Eduardo R. Rodrigues

Institute of Informatics
Federal University of Rio Grande do Sul - Brazil
(visiting scholar at CS-UIUC)
errodrigues@inf.ufrgs.br

ST

Supported by Brazilian Ministry of Education - Capes, grant 1080-09-1

33

Introduction Brams Porting MPI to AMPI Load Balancing Conclusions

© Introduction

© Brams

© Porting MPI to AMPI
@ Load Balancing

© Conclusions

2/33

Outline Brams Porting MPI to AMPI Load Balancing Conclusions

Limit of computing resources affecting
Weather Model execution

Resolution

James L. Kinter Il and Michael Wehner,
Computing Issues for WCRP Weather and Climate Modeling, 2005.

Load imbalance

"Because atmospheric processes occur nonuniformly within the
computational domain, e.g., active thunderstorms may occur
within only a few sub-domains of the decomposed domain, the
load imbalance across processors can be significant.”

Xue, M.; Droegemeier, K.K.; Weber, D. Numerical Prediction of High-Impact
Local Weather: A Driver for Petascale Computing. In: Petascale Computing:
Algorithms and Applications. 2007.

33

Outline Brams Porting MPI to AMPI Load Balancing Conclusions

animation

Processor Virtualization in Weather Models

Outline
ntroduction Brams
rams Porting MPI to AMPI Load Bz i
oad Balancing Conclusions

[he Promise O 08 anuing the ¥ ameterizalion of Moist pnvection Usiag &
The P T Load Palancil {he Par 1 1o €
Model Dat2 Load index

5. P. MusEALS anp DAL CONNORS

Calorado, Baulder, Tolt

Flecrrival and Compiter Engingering, Universiy' ¢

| 3. Hiats
|
Load-Balanci
" <
| neing Algorithms for Clip, te N
ate Madels-

| lan T, Wewter apg Arian R. Taons
! n i

Mathematies 5 te
athematies and Compnter §
= He

e Division

R B

e o et
A subgrid orography <cheme {Ghan et L. 2002 has been

applied to the Nationsl Center for Armespheric B

LOAD BALANCING AND SCALABILITY (NOAR) Cantiunity Atosliers Model (CAl

OF A SUBGRID OROGRAPHY SCHEME Common Land Model (CLM3). CAM (Callins et al.,

1N A GLOBAL CLIMATE MODEL 2004} is u global atmospher cineulafion code designtd 1o
run on a variely oh computational platforms. including

dingle processar workstations, shared memory machines,

distributed iy SYSIEMS. symmetsic multiple processor

(SMP) svstems. and most recemty vn disribuied veRier

AOTIPN

Gteven Ghan

Introduction

"Most implementations of atmospheric prediction models do not
perform dynamic load balancing, however, because of the
complexity of the associated algorithms and because of the
communication overhead associated with moving large blocks of
data across processors.”

Xue, M.; Droegemeier, K.K.; Weber, D. Numerical Prediction of High-Impact

Local Weather: A Driver for Petascale Computing. In: Petascale Computing:

Algorithms and Applications. 2007.

33

Outline Introduction Brams Porting MPI to AMPI Load Balancing Conclusions

Adaptive MPI

o Since parallel weather models are typically
implemented in MPI, can we use AMPI to
reduce complexity of the associated algorithms?

o Can we deal with the communication overhead
of this environment?

33

BRAMS

Brazilian developments on the
Regional Atmospheric Modeling System

It is a multipurpose regional numerical prediction model designed to
simulate atmospheric circulations at many scales;

It is used both for production and research world wide;

It has its roots on RAMS, that solves the fully compressible
non-hydrostatic equations;

It is equipped with a multiple grid nesting scheme which allows the
model equations to be solved simultaneously on any number of
two-way interacting computational meshes of increasing spatial
resolution;

It has a set of state-of-the-art physical parameterizations
appropriate to simulate important physical processes such as
surface-air exchanges, turbulence, convection, radiation and cloud
microphysics.

33

Outline

Introduction

Porting MPI to AMPI
BRAMS

Domain decomposition

Load Balancing

Conclusions

10

/33

Virtualization with AMPI

4
1)

N

12/{ 13 ‘\ 4

8

<

o

7

[oY
b

. - 16 virtual procs.

4 procs

4 processors

Benefits of Virtualization

@ Adaptive overlapping of communication and computation;
@ Automatic load balancing;
@ Flexibility to run on arbitrary number of processors;
@ Optimized communication library support;
@ Better cache performance.
Chao Huang and Gengbin Zheng and Sameer Kumar and Laxmikant V. Kale,

Performance Evaluation of Adaptive MPI, Proceedings of ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming 2006.

12

33

Outline Introduction Brams Load Balancing Conclusions
. . . .
Benefits of Virtualization

Adaptive overlapping of communication and computation;

Automatic load balancing;

Flexibility to run on arbitrary number of processors;
@ Optimized communication library support;
@ Better cache performance.
Chao Huang and Gengbin Zheng and Sameer Kumar and Laxmikant V. Kale,

Performance Evaluation of Adaptive MPI, Proceedings of ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming 2006.

12

Benefits of Virtualization

@ Adaptive overlapping of communication and computation;
@ Automatic load balancing;
@ Flexibility to run on arbitrary number of processors;
@ Optimized communication library support;
@ Better cache performance.
Chao Huang and Gengbin Zheng and Sameer Kumar and Laxmikant V. Kale,

Performance Evaluation of Adaptive MPI, Proceedings of ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming 2006.

12

33

Outline Introduction Brams Porting MPI to AMPI Load Balancing Conclusions

Global Variable Privatization

@ Manual Change

@ Automatic Globals Swapping (swapglobals)

13/ 33

Outline Introduction Brams Load Balancing Conclusions
Global Variable Privatization

@ Manual Change

global static commons
BRAMS 10205 519 32
WRF3 8661 550 70

@ Automatic Globals Swapping (swapglobals)

13/ 33

Outline Introduction Brams Porting MPI to AMPI Load Balancing

Global Variable Privatization

@ Manual Change

global static commons

BRAMS 10205 519 32
WRF3 8661 550 70

@ Automatic Globals Swapping (swapglobals)

@ It does not support static variables

Conclusions

13 /33

Outline Introduction Brams Load Balancing
Global Variable Privatization

@ Manual Change

global static commons
BRAMS 10205 519 32
WRF3 8661 550 70

@ Automatic Globals Swapping (swapglobals)

@ It does not support static variables
@ We can transform static in globals and keep the same semantic

Conclusions

13 /33

Outline Introduction Brams Porting MPI to AMPI Load Balancing Conclusi

sions

BRAMS: Performance with only virtualization

inttalization parallel total
4p - No Virtualization 3945 164.865 168.805
4o - bdwp 8.0 2315 231405

On ABE - x86 cluster

14 / 33

Outline Introduction Brams Porting MPI to AMPI Load Balancing Conclusi

sions

BRAMS: Performance with only virtualization

inttalization parallel total
4p - No Virtualization 3945 164.865 168.805
4o - bdwp 8.0 2315 231405

On ABE - x86 cluster

14 / 33

Outline Introduction Brams Load Balancing Conclusions
Automatic Globals Swapping

@ the code is compiled as a shared library (with PIC - Position
Independent Code)

Load address unknown

e L Global variables
XX0010
o 2: op 2 extern int a;
segment add S_F'F_U.kbx
— a = 42;
Fixed distance from
code to GOT Q Q
XK1000 movl a@GOT (%ebx), %eax
GOT
movl $42, (Yeax)
Data <
segment
| In a context switch, to change
_— every entry in the GOT.
Levine, J.R. Linker & Loaders. A drawback is that the GOT
2000. might be big.

15/ 33

Outline Introduction Brams Porting MPI to AMPI Load Balancing Conclusions

Thread Local Storage (TLS)

Thread local storage is used by kernel threads to privatize data.

16 / 33

Thread Local Storage (TLS)

Thread local storage is used by kernel threads to privatize data.

Handling Global & Static Variables

® Global and static variables are not thread-safe
Can we switch those variables when we switch threads?

B Globals: Executable and Linking Format (ELF)
Executable has a Global Offset Table containing global data
GOT pointer stored at %ebx register
Switch this pointer when switching between threads
Support on Linux, Solaris 2.x, and more

® |ntegrated in Charm++/AMPI
Invoked by compile time option —swapglobals

B Statics in C codes: __thread privatizes them
Requires linking to pthreads library

05/02/08 AMP| — Charm-++ Workshop 2008 18

16

33

Thread Local Storage (TLS)

Thread local storage is used by kernel threads to privatize data.

Handling Global & Static Variables

B Global and static variables are not thread-safe

ya ital #l Il I ital th dan

/
Use Posix Threads to simulate cooperative user-level
threads. This version is very portable but inefficient.

Written by Milind Bhandarkar around November 2000

B Statics in C codes: __thread privatizes them ;
Requires linking to pthreads library

05/02/08 AMP| — Charm-++ Workshop 2008 18

16

33

Our approach

@ Use TLS to privatize data in user-level threads;

@ Employ this mechanism in AMPI (including thread migration);

© Change the gfortran compiler to produce TLS code for every
global and static data.

RODRIGUES, E. R.; NAVAUX, P. O. A.,; PANETTA, J.; MENDES, C. L. A
New Technique for Data Privatization in User-level Threads and its Use in
Parallel Applications. In: ACM 25th Symposium On Applied Computing ,
2010.

17

33

Outline Introduction Brams Load Balancing Conclusions
Comparison between Swapglobals and TLS

Contexrt switch time comparison
350

T T T T T T T
using GOT —+—
using TLS —¥—

250 - q

context switch time {nicroseconds}

58 - 1

] ie8e 2888 38088 4888 Sesa 6e08 7eee el s 9688 16868
anount of global variables

18

Outline Introd duction Brams Load Balancing Conclusions
BRAMS: Performance virtualization with TLS

initialization parallel total

4p - No Virtualization 3.94s 164.86s 168.80s
4p - Bdvp (swapglobals) 8.5 223155 231.40s
TLS 4p - 6dvp 1945 141.16s 149.10s

On ABE - x86 cluster

19 / 33

Outline Introd duction Brams Load Balancing Conclusions
BRAMS: Performance virtualization with TLS

initialization parallel total

4p - No Virtualization 3.94s 164.86s 168.80s
4p - Bdvp (swapglobals) 8.5 223155 231.40s
TLS 4p - 6dvp 1945 141.16s 149.10s

On ABE - x86 cluster

19 / 33

Benefits of Virtualization

o Evaluate the reasons for the improvement

o Run a bigger case: Brams on 64 processors and
up to 1024 virtual processors (threads)

o We performed these experiments on Kraken -
Cray XTb5 at Oak Ridge

20 / 33

Porting MPI to AMPI

Benefits of Virtualization
Adaptive overlapping of communication and computation

64 processors - No virtualization — Average usage 43.78%

Usage Percent %

Profile of Usage for Processors 0-63
(Time 2385165.0 ~ 2430347.0 ms)

33

Porting MPI to AMPI

Benefits of Virtualization
Adaptive overlapping of communication and computation

64 processors - 256 virtual processors — Average usage 73.52%

Profile of Usage for Processors 0-63
(Time 2063227.0 ~ 2096998.0 ms)

xR
L
<
o
o
=
1]
o
o
=
<
“
=]

Porting MPI to AMPI

Benefits of Virtualization
Adaptive overlapping of communication and computation

64 processors - 1024 virtual processors — Average usage 73.02%

Profile of Usage for Processors 0-63
(Time 2019469 0 ~ 2051905 0 ms)

x
L
=
o
o
™
@
o
@
=
.
1]
=

33

Outline Introduction Brams Porting MPI to AMPI Load Balancing Conclusions

Benefits of Virtualization
Better cache performance

L2 cache misses L3 cache misses

64p - No Virtualization 194M 132M
64p - 256vp 165M 70M
04p - 1024vp 14TM 61M

average per processor, 20 timesteps

22 /33

Outline Introduction Brams Porting MPI to AMPI Load Balancing Conclusions

Benefits of Virtualization

3
25 1
il |
=
@ 15 |
E
1 4
05 r 1
64p - No Virtualization
64p - 256vp ———
0 64p - 1024vp —
0 500 1000 1500 2000 2500

timestep

23 /33

Outline Introduction Brams Porting MPI to AMPI Load Balancing Conclusions

Brams Load Imbalance

24 /33

Outline Introduction Brams Porting MPI to AMPI Conclusions
.
Load Balancing

Since the application has a fixed communication pattern and the
cost of migrating threads may be high (due to the large memory
footprint), we decided to test the existing load balancer
RefineCommLB.

25 /33

Load Balancing

Since the application has a fixed communication pattern and the
cost of migrating threads may be high (due to the large memory
footprint), we decided to test the existing load balancer
RefineCommLB.

RefineCommLB is a Charm++ load balancer that improves the
load balance by incrementally adjusting the existing thread
distribution. It also takes into account the communication among
threads.

25 /33

Outline Introduction Brams Porting MPI to AMPI Conclusions
BRAMS: Load Balancing

every 600 timesteps

Mo Load Balancer VS, RefineCommLB

time (s)

05 | 1
Mo Load Balancer
5 Load Balancer (RefineqommLB) —
0 500 1000 1500 2000 2500

timestep

26 / 33

New Load Balancer

o Keep neighbor threads close to each other;

o Assign contiguous threads in 2D space to the
Same processor;

o Possibly use application information to adjust
rebalance.

27 / 33

New Load Balancer

o Keep neighbor threads close to each other;

o Assign contiguous threads in 2D space to the
Same processor;

o Possibly use application information to adjust
rebalance.

Implementing a Load balancer on Charm is straightforward (see
G.Zheng's presentation at the 4th Charm-++ Workshop)

27 / 33

Load Balancing

Hilbert Curve
maps a multidimensional space to a 1-D space

[[[[[H N 11
_|u A N ﬁL _|u)
e el e e e e
[J T O [11]
o slli==l k=il 1=
T T (TP TR [P Toh
Pl YSH P e 8
[11 | _||_ LT T LT T
ol nlE leh el b e
mmy g e)
Al S AP TS
o OO T
0t RN RN e n
Eppun i i
I Bt e A R

33

Load Balancing

Hilbert Curve

Neighbor points on the curve are also close in the N-D space

[[[[[H N 11
_|u A N ﬁL _|u)
e el e e e e
[J T O [11]
o slli==l k=il 1=
T T (TP TR [P Toh
Pl YSH P e 8
[11 | _||_ LT T LT T
ol nlE leh el b e
mmy g e)
Al S AP TS
o OO T
0t RN RN e n
Eppun i i
I Bt e A R

33

Outline

Introduction Brams Porting MPI to AMPI
.
Hilbert Curve

In this figure, there are 256 threads and 16 processors

e e e
] []]
NI I S A v I A I
1T T FTH=T T T O
BN R ARy ERED
By gty et g
11 14] [1 1]
[11 T T 11]
-+ -
|] | _
[] 1] 11
LI I |]
—II L _—lL_II—_

H [
]]]]
1 11 11]
| 11 T

Conclusions

28

33

Outline Introduction Brams Porting MPI to AMPI Conclusions
.
Hilbert Curve

We cut it so that each segment has approximately the same load

e e e
] []]
NI I S A v I A I
1T T FTH=T T T O
BN R ARy ERED
By gty et g
11 14] [1 1]
[11 T T 11]
-+ -
|] | _
[] 1] 11
LI I |]
—II L _—lL_II—_

H [
]]]]
1 11 11]
| 11 T

28

33

Outline

Introduction

Brams

Porting MPI to AMPI

Hilbert Curve

We may expand...

Load Balancing

e e e
] []]
NI I S A v I A I
1T T FTH=T T T O
BN R ARy ERED
By gty et g
11 14] [1 1]
[11 T T 11]
-+ -
|] | _
[] 1] 11
LI I |]
—II L _—lL_II—_

H [
]]]]
1 11 11]
| 11 T

Conclusions

28/

33

Outline

Introduction

or shrink

Brams Porting MPI to AMPI
Hilbert Curve

each segment according to the measured loads
M e e e e e e
[(] [[
EEEEEE SR A e
T [I R
I i iy i
[oy
11 4 4 M1 4 M 17
| 1 O T]
T] L
EEppEE H L U
11 - 1 11
EEppEE I L] |
NESSERREEEEEEEy e pmny pE
] []]
1 4 A 1 rAe
1 1 1 T -

Conclusions

28

33

Outline Introduction Brams Porting MPI to AMPI Load Balancing Conclusions

50 .

40 r

load

Brams imbalance - 1024 threads and 64 processors

0 200 400 600 800 1000
rank #
50 .

40+

30

load

20+

0l The same load as above along the Hilbert line

0 200 400 600 800 1000
hilbert sequence

29 /33

load

Introduction Brams Porting MPI to AMPI Load Balancing

ir Conclusions
50
40+
30
il Brams imbalance - 1024 threads and 64 processors
10 -
0
0 200 400 600 800 1000
rank #
% ‘ ‘ . _ -
! » -
jz We cut the sequence so that each processor gets approximately the same load |
(LR
0 200 400 600 800 1000

hilbert sequence

29 /33

Outline Introduction

Brams

Porting MPI to AMPI

Results

Load Balancing

New Load Balancer called every 600 timesteps

2.4

22 r

time (3)

0.6

{,.\H-\H"\"I |

Mo Load

Ealancer —
SFQ

500

1000
timesteps

1500

2000

2500

Conclusions

30 /33

Outline Introduction Brams Porting MPI to AMPI Load Balancing Conclusions

Results
New Load Balancer called every 600 timesteps
2.4 ; ;
No Load Balancer ——
SFQ
22 | 1
2 L 4

time (s)

' |
“‘un|hui.l.lm|luw”” 1

<,|.\|\-\"-|\-|I I

0.6 - I | I | \
0 500 1000 1500 2000 2500

imesteps

30 /33

Outline Introduction

Brams

Porting MPI to AMPI

Results

Load Balancing

delaying the second Load Balancer call 150 timesteps

2.4

22 r

18 r

time (3)

0.6

Mo Load
adju

Balancer —
tell SFC

500

1000

timestep

1500

2000

2500

Conclusions

30 /33

Outline Introduction

We may need an adaptive scheme to call the Load Balancer

2.4

Brams

Porting MPI to AMPI

Lesson

Load Balancing

22 r

18 r

time (3)

0.6

Mo Load
adju

Balancer —
tell SFC

500

1000

timestep

1500

2000

2500

Conclusions

30 /33

Conclusions

Conclusions

o Weather models may suffer from load imbalance
even with a regular domain decomposition due
to nonuniform atmospheric processes;

o Virtualization itself improved performance;

o Execution time of the rebalanced run was
reduced up to 10% in comparison to the purely

virtualized execution;

31

33

Conclusions

Ongoing work

o Investigate adaptive schemes to call the Load
Balancer;

o Possibly use application information to enhance
the balancing schemes based solely on observed
load;

e Evaluate other Load Balancers.

32 /33

Questions

33 /33

	Outline
	Introduction
	Brams
	Porting MPI to AMPI
	Load Balancing
	Conclusions

