Fault Tolerance Support for Supercomputers with Multicore Nodes

Esteban Meneses Xiang Ni

Exascale Supercomputer:100 M of cores

"an Exascale system could be expected to have a failure ... every 35–39 minutes" Exascale Computing Study

"insufficient resilience of the software infrastructure would likely render extreme scale systems effectively unusable"

The International Exascale Software

Contents

- Charm++ Fault Tolerance Infrastructure.
- Fault Tolerance in SMP.
- Preliminary Results.
- Multiple Concurrent Failure Model.
- Future Work.

Fault Tolerance in Charm++

- Object Migration
- Load Balancing
- Runtime Support
- SMP version

Strategies

Team-based
Message Logging

Parallel Restart

Team-based Load Balancer

The minimum unit of failure is a **node**

Single node failure support

Causal Message Logging → determinants in shared memory

Lock contention → hybrid scheme

Load balancing → increase communication inside a node

Experiments

- Hardware:
 - Abe@NCSA: I 200 8-way SMP nodes.
 - Ranger@TACC: 3936 16-way SMP nodes.
- Benchmarks:
 - Ring: Charm++ nearest neighbor exchange.
 - Jacobi: 7-point stencil.

Checkpoint Time

Restart Time

Message Logging Overhead

Single Node Failure

- All protocols presented tolerate a single node failure.
- They may recover from a multiple failure.
- Multiple concurrent failures are rare.
- Cost to tolerate them is high:
 - Checkpoint/restart: more checkpoint buddies.
 - Causal Message logging: determinants must be stored in more locations.

Distribution of Multiple Failures

Multiple Concurrent Failures

- Analytical Model:
 - Multiple Failure Distribution: (heavy-tailed).
 - Checkpoint/Restart: probability of losing both a node and its buddy.
 - Message Logging: probability of losing a node and another node it contacts.

Buddy Assignment

Ring Mapping

Pair Mapping

Checkpoint/Restart

Message Logging

Conclusions

- Fault Tolerance for SMP better matches the failure reality of supercomputers.
- Single node failure support is robust enough for failure pattern in supercomputers.
- Load balancer is key to enhance fault tolerance in SMP.

Future Work

- Optimize message logging in SMP.
- Add load balancer to reduce communication overhead.
- Early stages of supercomputer: correlated failures.

Aknowledgments

- Ana Gainaru (NCSA).
- Leonardo Bautista Gómez (Tokyo Tech).
- This research was supported in part by the US Department of Energy under grant DOE DE-SC0001845 and by a machine allocation on the Teragrid under award ASC050039N.

Thanks!

Q&A

Multiple Failures Model

Survivability

	S
Checkpoint/Restart	0.999402
Message Logging (2)	0.997624
Message Logging (4)	0.995285
Message Logging (8)	0.990716
Message Logging (16)	0.981973