
4/25/2011 1

Jack Dongarra
University of Tennessee

Oak Ridge National Laboratory
University of Manchester

Architecture-Aware Algorithms and
Software for Peta and Exascale

Computing

Presenter
Presentation Notes
E =c*v^2*f
C=capacity; f proposal to v

Its on a single chip
multiple distinct processing engines
multi independent threads of control or program counters

Bw discrete chips (on bus) 2GB/s multicore 40 GB/s
Latency 60 ns to 3 ns
Energy 500 pJ 5 pJ

Freq pro v
Power proposional to v^2F or v^3

http://www.research.ibm.com/
http://www.research.ibm.com/
http://www.research.ibm.com/

2

H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful
Computers in the World

- Yardstick: Rmax from LINPACK MPP
Ax=b, dense problem

- Updated twice a year
SC‘xy in the States in November
Meeting in Germany in June

- All data available from www.top500.org

Size

R
at

e

TPP performance

Performance Development

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

59.7 GFlop/s

400 MFlop/s

1.17 TFlop/s

2.56 PFlop/s

31 TFlop/s

44.16 PFlop/s

SUM

N=1

N=500

6-8 years

My Laptop

1993 1995 1997 1999 2001 2003 2005 2007 2009 2010My iPhone (40 Mflop/s)

36rd List: The TOP10
Rank Site Computer Country Cores Rmax

[Pflops]
% of
Peak

Power
[MW]

Flops/
Watt

1 Nat. SuperComputer
Center in Tianjin

Tianhe-1A, NUDT
Intel + Nvidia GPU + custom China 186,368 2.57 55 4.04 636

2 DOE / OS
Oak Ridge Nat Lab

Jaguar, Cray
AMD + custom USA 224,162 1.76 75 7.0 251

3 Nat. Supercomputer
Center in Shenzhen

Nebulea, Dawning
Intel + Nvidia GPU + IB China 120,640 1.27 43 2.58 493

4 GSIC Center, Tokyo
Institute of Technology

Tusbame 2.0, HP
Intel + Nvidia GPU + IB Japan 73,278 1.19 52 1.40 850

5
DOE / OS

Lawrence Berkeley Nat
Lab

 Hopper, Cray
AMD + custom USA 153,408 1.054 82 2.91 362

6
Commissariat a

l'Energie Atomique
(CEA)

Tera-10, Bull
Intel + IB France 138,368 1.050 84 4.59 229

7 DOE / NNSA
Los Alamos Nat Lab

Roadrunner, IBM
AMD + Cell GPU + IB USA 122,400 1.04 76 2.35 446

8 NSF / NICS
U of Tennessee

Kraken, Cray
AMD + custom USA 98,928 .831 81 3.09 269

9 Forschungszentrum
Juelich (FZJ)

Jugene, IBM
Blue Gene + custom Germany 294,912 .825 82 2.26 365

10 DOE / NNSA
LANL & SNL

Cielo, Cray
AMD + custom USA 107,152 .817 79 2.95 277

36rd List: The TOP10
Rank Site Computer Country Cores Rmax

[Pflops]
% of
Peak

Power
[MW]

GFlops/
Watt

1 Nat. SuperComputer
Center in Tianjin

Tianhe-1A, NUDT
Intel + Nvidia GPU + custom China 186,368 2.57 55 4.04 636

2 DOE / OS
Oak Ridge Nat Lab

Jaguar, Cray
AMD + custom USA 224,162 1.76 75 7.0 251

3 Nat. Supercomputer
Center in Shenzhen

Nebulea, Dawning
Intel + Nvidia GPU + IB China 120,640 1.27 43 2.58 493

4 GSIC Center, Tokyo
Institute of Technology

Tusbame 2.0, HP
Intel + Nvidia GPU + IB Japan 73,278 1.19 52 1.40 850

5
DOE / OS

Lawrence Berkeley Nat
Lab

 Hopper, Cray
AMD + custom USA 153,408 1.054 82 2.91 362

6
Commissariat a

l'Energie Atomique
(CEA)

Tera-10, Bull
Intel + IB France 138,368 1.050 84 4.59 229

7 DOE / NNSA
Los Alamos Nat Lab

Roadrunner, IBM
AMD + Cell GPU + IB USA 122,400 1.04 76 2.35 446

8 NSF / NICS
U of Tennessee

Kraken, Cray
AMD + custom USA 98,928 .831 81 3.09 269

9 Forschungszentrum
Juelich (FZJ)

Jugene, IBM
Blue Gene + custom Germany 294,912 .825 82 2.26 365

10 DOE / NNSA
LANL & SNL

Cielo, Cray
AMD + custom USA 107,152 .817 79 2.95 277

500 Computacenter LTD HP Cluster, Intel + GigE UK 5,856 .031 53

Countries Share

Absolute Counts
US: 274
China: 41
Germany: 26
Japan: 26
France: 26
UK: 25

Performance Development in
Top500

0.1

1

10

100

1000

10000

100000

000000

0000000

0000000

1E+09

1E+10

1E+11

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

1 Eflop/s

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

100 Pflop/s

10 Pflop/s

N=1

N=500

Gordon
Bell

Winners

Potential System Architecture

Systems 2010 2018 Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s O(1000)

Power 6 MW ~20 MW

System memory 0.3 PB 32 - 64 PB O(100)

Node performance 125 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 25 GB/s 2 - 4TB/s O(100)

Node concurrency 12 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 3.5 GB/s 200-400GB/s O(100)

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 225,000 O(billion) O(10,000)

Storage 15 PB 500-1000 PB (>10x system
memory is min)

O(10) – O(100)

IO 0.2 TB 60 TB/s (how long to drain the
machine)

O(100)

MTTI days O(1 day) - O(10)

Presenter
Presentation Notes
Missing Latencies
Message injection rates
Flops/watt cost money and bytes/flop that costs money
Joule/op in 2009, 2015 and 2018:
	2015: 100 pj/op
Capacity doesn’t cost as much power as bandwidth
	how many joules to move a bit
	2 picojoule/bit
	75pj/bit for accessing DRAM
32 Petabytes: with system memory at same fraction of system
Need $ number

Best machine for 20MW and best machine for $200M
Memory op is 64 bit word of memory
	75 picojoule bit for (multiply by 64) (DDR 3 spec)
	50 pj/ for an entire 64 bit op
Memory technology in 5pj/bit by 2015 if we invest soon
Anything more aggressive than 4pj/bit is close to the limit (will not sign up for 2pj/bit)
2015 10 pj/flop
	5pj/flop in 2018
So we are talking 30:1 ratio of memory reference per flop
 10pj/operation to bring a byte in
8 terabits * 1pj -> 8 watts
JEDEC is fundamentally broken (DDR4 is the end)
	Low swing differential
	insertion of known technology
20GB/s per component to 1 order of magnitude more
	10-12 Gigabits/second per wire

16-64 using courant limited scaling of hydro codes
Cost per DRAM in that timeframe and how much to spend

outstanding memory references per cycle- bandwidth * latency
	above based on memory reference size
	memory concurrency
	200 cycles from DRAM (2GHz) is 100ns (40ns for memory alone). With queues will be 100ns
	O(1000) references per node to memory
	O(10k) for 64 byte cache lines?

Need to add system bisection:
	2015: whatever local node bandwidth: factor of 4-8 or 2-4 against per-node interconnect bandwidth
	2018:
	
Occupancy vs latency:
	zero occupancy (1 slot for message launch)
	5ns per
	
2-4 in 2015
2-4 in 2018

10^4 vs 10^9th

Potential System Architecture
with a cap of $200M and 20MW

Systems 2010 2018 Difference
Today & 2018

System peak 2 Pflop/s 1 Eflop/s O(1000)

Power 6 MW ~20 MW

System memory 0.3 PB 32 - 64 PB O(100)

Node performance 125 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 25 GB/s 2 - 4TB/s O(100)

Node concurrency 12 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 3.5 GB/s 200-400GB/s O(100)

System size (nodes) 18,700 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 225,000 O(billion) O(10,000)

Storage 15 PB 500-1000 PB (>10x system
memory is min)

O(10) – O(100)

IO 0.2 TB 60 TB/s (how long to drain the
machine)

O(100)

MTTI days O(1 day) - O(10)

Presenter
Presentation Notes
Missing Latencies
Message injection rates
Flops/watt cost money and bytes/flop that costs money
Joule/op in 2009, 2015 and 2018:
	2015: 100 pj/op
Capacity doesn’t cost as much power as bandwidth
	how many joules to move a bit
	2 picojoule/bit
	75pj/bit for accessing DRAM
32 Petabytes: with system memory at same fraction of system
Need $ number

Best machine for 20MW and best machine for $200M
Memory op is 64 bit word of memory
	75 picojoule bit for (multiply by 64) (DDR 3 spec)
	50 pj/ for an entire 64 bit op
Memory technology in 5pj/bit by 2015 if we invest soon
Anything more aggressive than 4pj/bit is close to the limit (will not sign up for 2pj/bit)
2015 10 pj/flop
	5pj/flop in 2018
So we are talking 30:1 ratio of memory reference per flop
 10pj/operation to bring a byte in
8 terabits * 1pj -> 8 watts
JEDEC is fundamentally broken (DDR4 is the end)
	Low swing differential
	insertion of known technology
20GB/s per component to 1 order of magnitude more
	10-12 Gigabits/second per wire

16-64 using courant limited scaling of hydro codes
Cost per DRAM in that timeframe and how much to spend

outstanding memory references per cycle- bandwidth * latency
	above based on memory reference size
	memory concurrency
	200 cycles from DRAM (2GHz) is 100ns (40ns for memory alone). With queues will be 100ns
	O(1000) references per node to memory
	O(10k) for 64 byte cache lines?

Need to add system bisection:
	2015: whatever local node bandwidth: factor of 4-8 or 2-4 against per-node interconnect bandwidth
	2018:
	
Occupancy vs latency:
	zero occupancy (1 slot for message launch)
	5ns per
	
2-4 in 2015
2-4 in 2018

10^4 vs 10^9th

Factors that Necessitate Redesign of
Our Software

• Steepness of the ascent from terascale
to petascale to exascale

• Extreme parallelism and hybrid design
• Preparing for million/billion way

parallelism

• Tightening memory/bandwidth
bottleneck
• Limits on power/clock speed

implication on multicore
• Reducing communication will become

much more intense
• Memory per core changes, byte-to-flop

ratio will change

• Necessary Fault Tolerance
• MTTF will drop
• Checkpoint/restart has limitations
• shared responsibility

Software infrastructure does not exist today

Commodity plus Accelerators

11

Intel Xeon
8 cores
3 GHz

8*4 ops/cycle
96 Gflop/s (DP)

Nvidia C2050 “Fermi”
448 “Cuda cores”

1.15 GHz
448 ops/cycle

515 Gflop/s (DP)

Commodity Accelerator (GPU)

Interconnect
PCI-X 16 lane

64 Gb/s
1 GW/s 17 systems on the TOP500 use GPUs as accelerators

We Have Seen This Before
• Floating Point Systems FPS-164/MAX

Supercomputer (1976)
• Intel Math Co-processor (1980)
• Weitek Math Co-processor (1981)

1980

1976

Future Computer Systems
• Most likely be a hybrid design

Think standard multicore chips and accelerator
(GPUs)

• Today accelerators are attached
• Next generation more integrated
• Intel’s MIC architecture “Knights Ferry” and

“Knights Corner” to come.
48 x86 cores

• AMD’s Fusion in 2012 - 2013
Multicore with embedded graphics ATI

• Nvidia’s Project Denver plans to develop
an integrated chip using ARM
architecture in 2013.

13

14

Major Changes to Software
• Must rethink the design of our

software
Another disruptive technology
• Similar to what happened with cluster

computing and message passing
Rethink and rewrite the applications,
algorithms, and software

Exascale algorithms that expose and exploit
multiple levels of parallelism

• Synchronization-reducing algorithms
Break Fork-Join model

• Communication-reducing algorithms
Use methods which have lower bound on
communication

• Mixed precision methods
2x speed of ops and 2x speed for data movement

• Reproducibility of results
Today we can’t guarantee this

• Fault resilient algorithms
Implement algorithms that can recover from
failures 15

• Break into smaller tasks and remove
dependencies

* LU does block pair wise pivoting

Parallel Tasks in LU/LLT/QR

•Objectives
High utilization of each core
Scaling to large number of cores
Shared or distributed memory

•Methodology
Dynamic DAG scheduling
Explicit parallelism
Implicit communication
Fine granularity / block data layout

•Arbitrary DAG with dynamic scheduling

17

Cholesky
4 x 4

Fork-join
parallelism

PLASMA: Parallel Linear Algebra s/w
for Multicore Architectures

DAG scheduled
parallelism

Time

Synchronization Reducing Algorithms

8-socket, 6-core (48 cores total) AMD Istanbul 2.8 GHz

Regular trace
Factorization steps pipelined
Stalling only due to natural
load imbalance
Reduce ideal time
Dynamic
Out of order execution
Fine grain tasks
Independent block operations

Pipelining: Cholesky Inversion

19

POTRF+TRTRI+LAUUM: 25 (7t-3)
Cholesky Factorization alone: 3t-2

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

Pipelined: 18 (3t+6)

Big DAGs: No Global Critical Path

20

• DAGs get very big, very fast
• So windows of active tasks are used; this means no

global critical path
• Matrix of NBxNB tiles; NB3 operation

• NB=100 gives 1 million tasks

Tile LU factorization
10 x 10 tiles
300 tasks
100 task window

PLASMA Scheduling
Dynamic Scheduling: Sliding Window

Tile LU factorization
10 x 10 tiles
300 tasks
100 task window

PLASMA Scheduling
Dynamic Scheduling: Sliding Window

Tile LU factorization
10 x 10 tiles
300 tasks
100 task window

PLASMA Scheduling
Dynamic Scheduling: Sliding Window

Tile LU factorization
10 x 10 tiles
300 tasks
100 task window

PLASMA Scheduling
Dynamic Scheduling: Sliding Window

Communication Avoiding Algorithms
• Goal: Algorithms that communicate as little as possible
• Jim Demmel and company have been working on algorithms

that obtain a provable minimum communication.
• Direct methods (BLAS, LU, QR, SVD, other decompositions)

• Communication lower bounds for all these problems
• Algorithms that attain them (all dense linear algebra, some

sparse)
• Mostly not in LAPACK or ScaLAPACK (yet)

• Iterative methods – Krylov subspace methods for Ax=b, Ax=λx
• Communication lower bounds, and algorithms that attain them

(depending on sparsity structure)
• Not in any libraries (yet)

• For QR Factorization they can show:

26

Standard QR Block Reduction

• We have a m x n matrix A we want to
reduce to upper triangular form.

Standard QR Block Reduction

• We have a m x n matrix A we want to
reduce to upper triangular form.

Q1
T

Standard QR Block Reduction

• We have a m x n matrix A we want to
reduce to upper triangular form.

R

A = Q1Q2Q3R = QR

Q1
T Q2

T Q3
T

Communication Avoiding QR
Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0

R1

R2

R3

R0

R2

R0 R R

D1

D2

D3

Domain_Tile_QR

Domain_Tile_QR

Domain_Tile_QR

Domain_Tile_QR

D0

D1

D2

D3

D0

Communication Avoiding QR
Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0

R1

R2

R3

R0

R2

R0 R R

D1

D2

D3

Domain_Tile_QR

Domain_Tile_QR

Domain_Tile_QR

Domain_Tile_QR

D0

D1

D2

D3

D0

Communication Avoiding QR
Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0

R1

R2

R3

R0

R2

R0 R R

D1

D2

D3

Domain_Tile_QR

Domain_Tile_QR

Domain_Tile_QR

Domain_Tile_QR

D0

D1

D2

D3

D0

Communication Avoiding QR
Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0

R1

R2

R3

R0

R2

R0 R R

D1

D2

D3

Domain_Tile_QR

Domain_Tile_QR

Domain_Tile_QR

Domain_Tile_QR

D0

D1

D2

D3

D0

Communication Avoiding QR
Example

A. Pothen and P. Raghavan. Distributed orthogonal factorization. In The 3rd
Conference on Hypercube Concurrent Computers and Applications, volume II, Applications,
pages 1610–1620, Pasadena, CA, Jan. 1988. ACM. Penn. State.

R0

R1

R2

R3

R0

R2

R0 R R

D1

D2

D3

Domain_Tile_QR

Domain_Tile_QR

Domain_Tile_QR

Domain_Tile_QR

D0

D1

D2

D3

D0

Communication Reducing QR
Factorization

Quad-socket, quad-core machine Intel Xeon EMT64 E7340 at 2.39 GHz.
Theoretical peak is 153.2 Gflop/s with 16 cores.

Matrix size 51200 by 3200

Mixed Precision Methods

• Mixed precision, use the lowest
precision required to achieve a given
accuracy outcome

Improves runtime, reduce power
consumption, lower data movement
Reformulate to find correction to
solution, rather than solution; Δx rather
than x.

36

37

Idea Goes Something Like This…
• Exploit 32 bit floating point as much as

possible.
Especially for the bulk of the computation

• Correct or update the solution with selective
use of 64 bit floating point to provide a
refined results

• Intuitively:
Compute a 32 bit result,
Calculate a correction to 32 bit result using
selected higher precision and,
Perform the update of the 32 bit results with the
correction using high precision.

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

END

Mixed-Precision Iterative Refinement
• Iterative refinement for dense systems, Ax = b, can work this

way.

Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.

L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

END

Mixed-Precision Iterative Refinement
• Iterative refinement for dense systems, Ax = b, can work this

way.

Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt
results when using DP fl pt.
It can be shown that using this approach we can compute the solution
to 64-bit floating point precision.

• Requires extra storage, total is 1.5 times normal;
• O(n3) work is done in lower precision
• O(n2) work is done in high precision
• Problems if the matrix is ill-conditioned in sp; O(108)

0

50

100

150

200

250

300

350

400

450

500

960 3200 5120 7040 8960 11200 13120

Matrix size

G
flo

p/
s

Ax = b

Single Precision

Double Precision

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
SP/DP peak is 1030 / 515 GFlop/s

0

50

100

150

200

250

300

350

400

450

500

960 3200 5120 7040 8960 11200 13120

Matrix size

G
flo

p/
s

Ax = b

Single Precision

Mixed Precision

Double Precision

Similar results for Cholesky & QR

FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
SP/DP peak is 1030 / 515 GFlop/s

Power Profiles
PLASMA DP

PLASMA Mixed Precision

N = 8400, using 4
cores

PLASMA
DP

PLASMA
Mixed

Time to Solution (s) 39.5 22.8

GFLOPS 10.01 17.37

Accuracy 2.0E-02 1.3E-01

Iterations 7

System Energy
(KJ)

10852.8 6314.8

|| Ax − b ||
(|| A |||| X || + || b ||)Nε

Two dual-core 1.8 GHz AMD Opteron processors
Theoretical peak: 14.4 Gflops per node
DGEMM using 4 threads: 12.94 Gflops
PLASMA 2.3.1, GotoBLAS2
Experiments:

PLASMA LU solver in double precision
PLASMA LU solver in mixed precision

Reproducibility

• For example when done in parallel can’t
guarantee the order of operations.

• Lack of reproducibility due to floating point
nonassociativity and algorithmic adaptivity
(including autotuning) in efficient production
mode

• Bit-level reproducibility may be unnecessarily
expensive most of the time

• Force routine adoption of uncertainty
quantification

Given the many unresolvable uncertainties in
program inputs, bound the error in the outputs
in terms of errors in the inputs

43

xi∑

A Call to Action: Exascale is a Global
Challenge

• Hardware has changed dramatically while
software ecosystem has remained stagnant

• Community codes unprepared for sea change
in architectures

• No global evaluation of key missing
components

• The IESP was Formed in 2008
• Goal to engage international computer

science community to address common
software challenges for Exascale

• Focus on open source systems software that
would enable multiple platforms

• Shared risk and investment
• Leverage international talent base

Presenter
Presentation Notes
PIES

International Exascale Software
Program

Build an international plan for
coordinating research for the next

generation open source software for
scientific high-performance

computing

Improve the world’s simulation and modeling
capability by improving the coordination and
development of the HPC software environment
Workshops:

www.exascale.org

Presenter
Presentation Notes
When I was asked what are we really doing here construct a doc which has a coordinated research plan and roadmap to be used by agencies to build a program in exasw. Too big an effort to do along.
We seek to create an common, open source software infrastructure for scientific computing that enables leading edge science and engineering groups to develop applications that exploit the full power of the exascale computing platforms that will come on-line in the 2018-2020 timeframe.

Example Organizational Structure:
Incubation Period (today):

• IESP provides coordination internationally,
while regional groups have well managed
R&D plans and milestones

IESP

US-DOEEU-EESIJP US-NSF

www.exascale.org

Conclusions
• For the last decade or more, the research

investment strategy has been
overwhelmingly biased in favor of hardware.

• This strategy needs to be rebalanced -
barriers to progress are increasingly on the
software side.

• Moreover, the return on investment is more
favorable to software.

Hardware has a half-life measured in years, while
software has a half-life measured in decades.

• High Performance Ecosystem out of balance
Hardware, OS, Compilers, Software, Algorithms, Applications

• No Moore’s Law for software, algorithms and applications

`
48

“We can only see a short
distance ahead, but we
can see plenty there
that needs to be done.”

Alan Turing (1912 —
1954)

• www.exascale.org

Published in the January 2011 issue of
The International Journal of High
Performance Computing Applications

	Slide Number 1
	Slide Number 2
	Performance Development
	36rd List: The TOP10
	36rd List: The TOP10
	Countries Share
	Performance Development in Top500
	Potential System Architecture� �
	Potential System Architecture�with a cap of $200M and 20MW �
	Factors that Necessitate Redesign of Our Software
	Commodity plus Accelerators	
	We Have Seen This Before
	Future Computer Systems
	Major Changes to Software
	Exascale algorithms that expose and exploit multiple levels of parallelism
	Slide Number 16
	PLASMA: Parallel Linear Algebra s/w for Multicore Architectures
	Synchronization Reducing Algorithms
	Pipelining: Cholesky Inversion
	Big DAGs: No Global Critical Path
	PLASMA Scheduling�Dynamic Scheduling: Sliding Window
	PLASMA Scheduling�Dynamic Scheduling: Sliding Window
	PLASMA Scheduling�Dynamic Scheduling: Sliding Window
	PLASMA Scheduling�Dynamic Scheduling: Sliding Window
	Communication Avoiding Algorithms
	Standard QR Block Reduction
	Standard QR Block Reduction
	Standard QR Block Reduction
	Communication Avoiding QR �Example
	Communication Avoiding QR �Example
	Communication Avoiding QR �Example
	Communication Avoiding QR �Example
	Communication Avoiding QR �Example
	Slide Number 35
	Mixed Precision Methods
	Idea Goes Something Like This…
	Mixed-Precision Iterative Refinement
	Mixed-Precision Iterative Refinement
	Ax = b
	Ax = b
	Power Profiles
	Reproducibility
	A Call to Action: Exascale is a Global Challenge
	International Exascale Software Program
	Example Organizational Structure:�Incubation Period (today):
	Conclusions
	`

