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Summary 

How we used NUMA 
architectural information to 

build a CHARM++ load balancer 
and obtained improvements on 

overall performance. 
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Agenda 

NUMA 

Our Load Balancer: NUMALB 

Experimental Setup 

Results 

Concluding Remarks 
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UMA x NUMA 

Uniform Memory Access 

• Centralized shared memory 
– Uniform latencies 

• Data placement does not 
matter 

Non-Uniform Memory Access 

• Distributed shared memory 
– Non-uniform latencies 

• Data placement matters 
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NUMA 

Reduce latencies 
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NUMA 

Reduce contention/improve bandwidth 
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NUMA 

CHARM++ does not consider these characteristics 
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Agenda 

NUMA 

Our Load Balancer: NUMALB 

Experimental Setup 

Results 

Concluding Remarks 
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Load Balancer 

• Application data – CHARM++ LB framework 

– Processor load: execution time 

– Chare load: execution time 

– Communication graph: size and number of messages 

• NUMA topology – archTopology (our library) 

– Core to NUMA node (socket) hierarchy mapping 

– NUMA factor 
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NUMA factor (i, j) = Read latency from i to j 
                                  Read latency on i 
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Load Balancer 

• Heuristic 
– Task mapping is NP-Hard 

– No initial assumptions about the application 

• List scheduling 
– Put tasks on a priority list by load 

– Assign tasks to the processor with the smallest cost on 
a greedy fashion 

• Improve performance 
– by reducing unbalance 

– by reducing remote communication costs 

– while avoiding migrations (data movement costs) 
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Load Balancer 

• Cost function 

    cost(c,p) = load(p) +  

      ɑ × ( rcomm(c,p) × NUMA factor  

      – lcomm(c,p) ) 
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Where 
    c: chare 
    p: core 
    load(p): load (execution time) on core p 
    rcomm(c,p): number of messages sent by chare c to chares on other NUMA node 
    lcomm(c,p): number of messages sent by chare c to chares on the same NUMA node 
    ɑ: communication weight 



/30 

Load Balancer 

Input: C set of chares, P set of cores, M mapping 
Output: M’ mapping of chares to cores 
1.  M’ ← M 
2.  while c ≠ Ø do 
3.    c ← v | v ϵ arg maxu ϵ C load(u) 
4.    C ← C \{c} 
5.    p ← q, q ϵ P Ʌ {(c,q)} ϵ M 
6.    load(p) ← load(p) − load(c) 
7.    M’ ← M’ \ {(c,p)} 
8.    p’ ← q | q ϵ arg minr ϵ P cost(c,r) 
9.    load(p’) ← load(p’) + load(c) 
10.    M’ ← M’ U {(c,p’)} 

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 12 

N
U

M
A

LB
’s

 A
lg

o
ri

th
m

 

take heaviest chare 

get its core 

remove its load from its core 

find core with smallest cost 

add chare load to new core 

map to new core 

remove from mapping 

for the number of chares 



/30 

Agenda 

NUMA 

Our Load Balancer: NUMALB 

Experimental Setup 

Results 

Concluding Remarks 
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Experimental Setup 

• 2 NUMA machines 

• 3 CHARM++ benchmarks 

• 4 other CHARM++ load balancers 

• Statistical confidence of 95% 
– 5% relative error  

– Student’s t-distribution 

– Minimum of 25 executions 

• Performance 
– Gains: Average iteration time (baseline = no LB) 

– Costs: Load balancing overhead 
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Experimental Setup: Machines 

• NUMA16 

– AMD Opteron 

– 8×2 cores @ 2.2 GHz 

– 1 MB private L2 cache 

– 32 GB main memory 

– Low latency for 
memory access 

– Crossbar 

– NUMA factor: 1.1–1.5 
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Experimental Setup: Machines 

• NUMA32 

– Intel Xeon X7560 

– 4×8 cores @ 2.27 GHz 

– 256 KB private L2  

– 24 MB shared L3  

– 64 GB main memory 

– QuickPath 

– NUMA factor: 1.36–
3.6 
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Experimental Setup: Benchmarks 

• kNeighbor 
– Synthetic iterative benchmark where a chare 

communicates with other k chares at each step  
– Completely I/O bound 
– 200 chares, 16 KB messages, k = 8 

• lb_test 
– Synthetic unbalanced benchmark with different possible 

communication patterns 
– 200 chares, random communication graph, load between 

50 and 200 ms 

• jacobi2D 
– Unbalanced two-dimensional five-point stencil 
– 100 chares, 32² data array 
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Experimental Setup: LBs 

• GREEDYLB 
– Iteratively maps the most loaded chares to the least 

loaded cores 

• RECBIPARTLB 
– Recursive bipartition of the communication graph 

– Breadth-first traversal until groups the required load 

• METISLB 
– Graph partitioning algorithms from METIS 

• SCOTCHLB 
– Graph partitioning algorithms from SCOTCH 

• Neither consider the current chare mapping 
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Agenda 

NUMA 

Our Load Balancer: NUMALB 

Experimental Setup 

Results 
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Results: kNeighbor 
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Results: kNeighbor 
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Results: lb_test 
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Results: jacobi2D 
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Results: jacobi2D - Projections 

• jacobi2D on NUMA16 

– 2 steps before LB 

– 4 steps after LB 

 

• The smaller the idle 
parts, the higher the 
efficency  
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NUMALB: 93.5% efficiency 

METISLB: 75% efficiency 
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Results: overheads 

Benchmark Machine Load Balancer 

NUMALB GREEDYLB METISLB RECBIPARTLB SCOTCHLB 

kNeighbor 
NUMA16 25 189 188 176 185 

NUMA32 57 194 195 185 194 

lb_test 
NUMA16 40 188 187 184 184 

NUMA32 48 194 194 192 192 

jacobi2D 
NUMA16 26 94 94 91 93 

NUMA32 33 97 96 93 98 
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Average number of chares migrated 

All load balancers took less than 7 ms for their algorithms. 

Maximum migrations = 33% Minimum migrations = 88% 
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Results: migration times for NUMA16 
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Conclusions 

• Multi-core machines with NUMA design 
introduce new challenges for their efficient use 

• CHARM++ does not consider NUMA asymmetries 

• With our NUMA-aware LB we obtained 

– An average speedup of 1.51 over the baseline 

• Transparent to the user, no previous knowledge 

– 10% improvement over most LBs 

– Migration overheads up to 7 times smaller 

• Migrating at most 33% of all chares 
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Future Work 

• Multi-core load balancer 
– UMA and NUMA machines 

– Communication latencies among cores 

– Use HWLOC representation of cache hierarchy 

• Distributed multi-core load balancer 
– For clusters of multi-core machines 

• Gather and organize communication information 
– Latencies, bandwidth 

– Provide this data to other libraries (like SCOTCH) 
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