9th Annual Workshop on CHARM++ and its Applications

Improving CHARM++ Performance
with a NUMA-aware Load Balancer

Laércio Lima Pillal2, Christiane Pousa?, Daniel Cordeiro?3,
Abhinav Bhatele#, Philippe O. A. Navaux?,
Jean-Francois Méhaut?, Laxmikant V. Kale*

'Federal University of Rio Grande do Sul — Porto Alegre, Brazil
’Grenoble University — Grenoble, France
3University of Sdo Paulo — Sdo Paulo, Brazil
4University of lllinois at Urbana-Champaign — Urbana, IL, USA

INf. © @menr Wivria TSP

UFRGS

C APES

Summary

How we used NUMA
architectural information to
build a CHARM++ load balancer
and obtained improvements on
overall performance.

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 2/30

4/18/2011

Agenda

NUMA
Our Load Balancer: NUMALB

Experimental Setup
Results
Concluding Remarks

Improving Charm++ Performance with a NUMA-aware Load Balancer

3/30

UMA x NUMA

Uniform Memory Access Non-Uniform Memory Access

* Centralized shared memory ¢ Distributed shared memory

— Uniform latencies — Non-uniform latencies

* Data placement does not * Data placement matters
matter ‘
i Address space i
P P P P il M M M M |i
| | | | LT LTI EE T F==--- = --- o ooy

Interconnection P P P P

! | | | |

Processor Memory Interconnection

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 4/30

NUMA

Reduce latencies

Core/w
MO gg—w-gg
|
M2 gg—mz-gg
|
M4 gg—ms-gg

C clc

MO AFCTC M1 Mt
clc clc
M2 Mt M3 M=t
clc C
M3 AicTc C

4/18/2011

Improving Charm++ Performance with a NUMA-aware Load Balancer

5/30

Reduce contention/improve bandwidth

NUMA

C|C C|C
MO clc M1 clc

C|C C|C
M2 clc M3 clc

I

C|C C|C
M4 clc M5 clc

C|C

—| M1
C|C
C|C C|C
M2 clc M3 clc
C|C C|C
M4 clc M5 clc

4/18/2011

Improving Charm++ Performance with a NUMA-aware Load Balancer

6/30

NUMA

CHARM++ does not consider these characteristics

Physical organization CHARM++’s vision (UMA)
No memory hierarchy
MO = C|C — M1 = C|C No locality
C|C C|C CH IC
| | C C
= e
C|C C|C
- — - CH — C
Vi2 C|C M3 C|C C V] C
CH — C
I I C C
clc clc =0 e
M4 = —| M5 u o
clc > Miclc o e

/30

4/18/2011

Agenda

NUMA
Our Load Balancer: NUMALB

Experimental Setup
Results
Concluding Remarks

Improving Charm++ Performance with a NUMA-aware Load Balancer

8/30

Load Balancer

* Application data — CHARM++ LB framework
— Processor load: execution time
— Chare load: execution time
— Communication graph: size and number of messages

* NUMA topology — archTopology (our library)

— Core to NUMA node (socket) hierarchy mapping

— NUMA factor

NUMA factor (i, j) = Read latency from i to j
Read latency on i

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 9/30

Load Balancer

* Heuristic
— Task mapping is NP-Hard
— No initial assumptions about the application

* List scheduling
— Put tasks on a priority list by load

— Assign tasks to the processor with the smallest cost on
a greedy fashion

* Improve performance
— by reducing unbalance
— by reducing remote communication costs
— while avoiding migrations (data movement costs)

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 10/30

Load Balancer

e Cost function
cost(c,p) = load(p) +

ax(r.,.mic,p)x NUMA factor

— Icomm(clp))

Where
c: chare
p: core
load(p): load (execution time) on core p
r.o.mm(C,P): NnuMber of messages sent by chare c to chares on other NUMA node
|.,m(C,p): number of messages sent by chare c to chares on the same NUMA node
a: communication weight

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 11/30

Load Balancer

Input: C set of chares, P set of cores, M mapping

& Output: M mapping of chares to cores
S 1L MM

‘' 2. whilecz@do for the number of chares
D.OD 3. c&v|vearg max, . -load(u) take heaviest chare
< 4 C & C\{c}
wn 5. p&<qg,gePNA{(cqg)leM get its core

2 6. /Oad(p) & /Oad(p) - load(c) remove its load from its core
<< /. M’ &< M\ {(c,p)} remove from mapping

% 8. p’ < q | g eargmin,_,cost(c,r) find core with smallest cost
= 9. load(p’) < load(p’) + load(c) add chare load to new core

10. LM & MU {(C,p’)} map to new core

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 12/30

4/18/2011

Agenda

NUMA
OurlLead BalanrcerNuUMALB
Experimental Setup

Results
Concluding Remarks

Improving Charm++ Performance with a NUMA-aware Load Balancer

13/30

Experimental Setup

2 NUMA machines
e 3 CHARM++ benchmarks
e 4 other CHARM++ load balancers

 Statistical confidence of 95%
— 5% relative error
— Student’s t-distribution
— Minimum of 25 executions
* Performance
— Gains: Average iteration time (baseline = no LB)
— Costs: Load balancing overhead

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer

14/30

° N

i 12 12 | L2
— AMD Opteron cl¢ C1¢€
| |
— 8x2 cores @ 2.2 GHz
12 | L2 12 | L2
— 1 MB private L2 cache My C|C C|C
— 32 GB main memory ' '
— Low latency for M H2=2 2 2
C|C C|C
memory access | ,
— Crossbar v L2 | L2 12 | L2
— NUMA factor: 1.1-1.5 Cl¢C e

4/18/2011

Experimental Setup: Machines

UMAI16 12

Improving Charm++ Performance with a NUMA-aware Load Balancer

15/30

Experimental Setup: Machines

i NUMA32 L21L2|L2|L2 L21L2|L2|L2
— Intel Xeon X7560 CICICfC ClCcfc
M = L3 L3
— Ax8 cores @ 2.27 GHz
clclclc clclclc
— 256 KB private L2 12|2]2fL2 12|2]12[r2
— 24 MB shared L3
. L21L2|L2]|L2 L21L2|L2]|L2
— 64 GB main memory ARGIE clclelc
— QuickPath MH| L3 L3
— NUMA factor: 1.36— clclclc clclclc
36 L21L2|L2|L2 L21L2|L2]|L2

4/18/2011

Improving Charm++ Performance with a NUMA-aware Load Balancer

16/30

Experimental Setup: Benchmarks
 kNeighbor

— Synthetic iterative benchmark where a chare
communicates with other k chares at each step

— Completely 1/0 bound
— 200 chares, 16 KB messages, k=8

* |b_test

— Synthetic unbalanced benchmark with different possible
communication patterns

— 200 chares, random communication graph, load between
50 and 200 ms

* jacobi2D
— Unbalanced two-dimensional five-point stencil
— 100 chares, 322 data array

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 17/30

Experimental Setup: LBs

* GGREEDYLB

— lteratively maps the most loaded chares to the least
loaded cores

* RECBIPARTLB
— Recursive bipartition of the communication graph
— Breadth-first traversal until groups the required load

* METISLB

— Graph partitioning algorithms from METIS
* SCOTCHLB

— Graph partitioning algorithms from SCOTCH

* Neither consider the current chare mapping

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 18/30

4/18/2011

Agenda

NUMA
OurlLoad Balanrcer—NUMALB

ExperH

ental-Setup

Results

Concluding Remarks

Improving Charm++ Performance with a NUMA-aware Load Balancer

19/30

Average iteration time (in ms)

Results: kNeighbor

R, R NN W W
N O »h o »1 O wum
| | | | | |

o
|

32.0

_ . Smaller is
No sensible difference better
among LBs 26.9

21.5 2%-C

NUMA16 NUMA32

W Baseline @ NumalB [GreedylLB B MetisLB M RecBipartLB @ ScotchlLB

4/18/2011

Improving Charm++ Performance with a NUMA-aware Load Balancer 20/30

Average iteration time (in ms)

Results: kNeighbor

Homogeneous distribution

R, R NN W W
N O »h o »1 O wum
| | | | | |

o
|

4/18/2011

32.0

| Shared cache, faster communication |

26.9

21.5

Group chares and

migrate them together

to the same core

17
17

9 16.9 16.1

NUMA16 NUMA32
W Baseline @ NumalB [GreedylLB B MetisLB M RecBipartLB @ ScotchlLB

Improving Charm++ Performance with a NUMA-aware Load Balancer

21/30

Average iteration time (in s)

Results: b test

1.2

L o1 Best performance by communication-aware LBs

1 - 0.93

0.88

0.84 0.83 | Best average performance

NUMA16 NUMA32
W Baseline @ NumalB [GreedylLB B MetisLB M RecBipartLB @ ScotchlLB

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 22/30

Average iteration ti

Results: jacobi2D

1.74

Best performance.

4/18/2011

Keeps proximity among chares

on a NUMA node scale

SCOTCHLB shows similar
performance

NUMA16 NUMA32
W Baseline @ NumalB [GreedylLB B MetisLB M RecBipartLB @ ScotchlLB

Improving Charm++ Performance with a NUMA-aware Load Balancer

23/30

Results: jacobi2D - Projections

METISLB: 75% efficiency

12,500,000 14,500,000
]

e jacobi2D on NUMA16 ..

B B

el S | B | S

PE 3 M B S

-2 StepS bEfOFE LB vEs e
PE7 [

- 4 StepS after LB 10 | ‘Zi!il:&;—j:_j:
PE11 % i F T 2000 W8

PE12 L r | I | I

PE13 ; : | I | .

| I |

peis I N . | N | .

NUMALB: 93 5/: eff|C|ency

onds

* The smaller the idle
parts, the higher the = =.—.==

PE2 i
PE3 | OSRRRRURRE O ARTRRRRREY 200 h
ITTIr— TS

efficency I B

MM—T—T,
JLLLLI
[T
[TTTTIT ¢
[TTTITTT,
PE7 | SERRREEE 00 SRRRRERY 0 0 AR 00 ¢
[TTTTT?
TTTTT
[
[

prg N |
THEN HHH HEH 4
PE10
PE1L
PE12

PE13
PE 14
PE

4/18/2011 Improving Charm++ Performance W|th a NUMA-aware Load Balancer 24/

Results: overheads

Average number of chares migrated

Benchmark | Machine Load Balancer
NUMALB | GREEDYLB | METISLB | RECBIPARTLB | SCOTCHLB
NUMA16 25 189 188 176 185
kNeighbor
NUMA32 57 194 195 185 194
b test NUMA16 40 188 187 184 184
es
- NUMA32 48 194 194 192 192
NUMA16 26 94 94 91 93
jacobi2D
NUMA32 33 97 96 93 98
Y Y

4/18/2011

Maximum migrations = 33%

All load balancers took less than 7 ms for their algorithms.

Improving Charm++ Performance with a NUMA-aware Load Balancer

Minimum migrations = 88%

25/30

ults: migration times for NUMA16

Speedup of 7.1

200 chares :

—1 Speedup of 5.3

100 chares -9-200 chares, ScotchlLB

<8-100 chares, ScotchLB

Res
100
)
= 10
(o))
£
wd qu .
st 1
S
e
eT1]
== 0.1
£
Q
3
E, 0.01 -
<
0.001

200 chares, NumalB
=100 chares, NumalLB

Similar

Speedup of 2.9
200 chares

4/18/2011

1KB 10KB 100KB 1MB 10MB 100MB
Size of chares (log scale)

Improving Charm++ Performance with a NUMA-aware Load Balancer 26/30

4/18/2011

Exper

-
1

Agenda

ental-Setup

Resuylts

Concluding Remarks

Improving Charm++ Performance with a NUMA-aware Load Balancer

27/30

Conclusions

* Multi-core machines with NUMA design
introduce new challenges for their efficient use

* CHARM++ does not consider NUMA asymmetries
* With our NUMA-aware LB we obtained

— An average speedup of 1.51 over the baseline

* Transparent to the user, no previous knowledge
— 10% improvement over most LBs

— Migration overheads up to 7 times smaller
* Migrating at most 33% of all chares

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 28/30

Future Work

* Multi-core load balancer
— UMA and NUMA machines
— Communication latencies among cores
— Use HWLOC representation of cache hierarchy

* Distributed multi-core load balancer
— For clusters of multi-core machines

e Gather and organize communication information

— Latencies, bandwidth
— Provide this data to other libraries (like SCOTCH)

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 29/30

9th Annual Workshop on CHARM++ and its Applications

Improving CHARM++ Performance
with a NUMA-aware Load Balancer

Thank you.

Laércio Lima Pilla
Contact: llpilla@inf.ufrgs.br

.“1': (o @srenose I nriA [INYH §

UUUUU

