
Improving CHARM++ Performance
with a NUMA-aware Load Balancer

Laércio Lima Pilla1,2, Christiane Pousa2, Daniel Cordeiro2,3,

Abhinav Bhatele4, Philippe O. A. Navaux1,

Jean-François Méhaut2, Laxmikant V. Kale4

1Federal University of Rio Grande do Sul – Porto Alegre, Brazil
2Grenoble University – Grenoble, France

3University of São Paulo – São Paulo, Brazil
4University of Illinois at Urbana-Champaign – Urbana, IL, USA

9th Annual Workshop on CHARM++ and its Applications

/30

Summary

How we used NUMA
architectural information to

build a CHARM++ load balancer
and obtained improvements on

overall performance.

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 2

/30

Agenda

NUMA

Our Load Balancer: NUMALB

Experimental Setup

Results

Concluding Remarks

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 3

/30

UMA x NUMA

Uniform Memory Access

• Centralized shared memory
– Uniform latencies

• Data placement does not
matter

Non-Uniform Memory Access

• Distributed shared memory
– Non-uniform latencies

• Data placement matters

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 4

P P P P

Interconnection

Memory

M M M M

P P P P

Interconnection

Address space

Processor

/30

NUMA

Reduce latencies

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 5

M0
C C
C C

M2
C C
C C

M4
C C
C C

M1
C C
C C

M3
C C
C C

M5
C C
C C

M0
C C
C C

M2
C C
C C

M4
C C
C C

M1
C C
C C

M3
C C
C C

M5
C C
C C

Core

/30

NUMA

Reduce contention/improve bandwidth

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 6

M0
C C
C C

M2
C C
C C

M4
C C
C C

M1
C C
C C

M3
C C
C C

M5
C C
C C

M0
C C
C C

M2
C C
C C

M4
C C
C C

M1
C C
C C

M3
C C
C C

M5
C C
C C

/30

NUMA

CHARM++ does not consider these characteristics

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 7

M0
C C
C C

M2
C C
C C

M4
C C
C C

M1
C C
C C

M3
C C
C C

M5
C C
C C

Physical organization

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

M

C

C

C

C

C

C

CHARM++’s vision (UMA)
No memory hierarchy

No locality

/30

Agenda

NUMA

Our Load Balancer: NUMALB

Experimental Setup

Results

Concluding Remarks

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 8

/30

Load Balancer

• Application data – CHARM++ LB framework

– Processor load: execution time

– Chare load: execution time

– Communication graph: size and number of messages

• NUMA topology – archTopology (our library)

– Core to NUMA node (socket) hierarchy mapping

– NUMA factor

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 9

NUMA factor (i, j) = Read latency from i to j
 Read latency on i

/30

Load Balancer

• Heuristic
– Task mapping is NP-Hard

– No initial assumptions about the application

• List scheduling
– Put tasks on a priority list by load

– Assign tasks to the processor with the smallest cost on
a greedy fashion

• Improve performance
– by reducing unbalance

– by reducing remote communication costs

– while avoiding migrations (data movement costs)
4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 10

/30

Load Balancer

• Cost function

 cost(c,p) = load(p) +

 ɑ × (rcomm(c,p) × NUMA factor

 – lcomm(c,p))

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 11

Where
 c: chare
 p: core
 load(p): load (execution time) on core p
 rcomm(c,p): number of messages sent by chare c to chares on other NUMA node
 lcomm(c,p): number of messages sent by chare c to chares on the same NUMA node
 ɑ: communication weight

/30

Load Balancer

Input: C set of chares, P set of cores, M mapping
Output: M’ mapping of chares to cores
1. M’ ← M
2. while c ≠ Ø do
3. c ← v | v ϵ arg maxu ϵ C load(u)
4. C ← C \{c}
5. p ← q, q ϵ P Ʌ {(c,q)} ϵ M
6. load(p) ← load(p) − load(c)
7. M’ ← M’ \ {(c,p)}
8. p’ ← q | q ϵ arg minr ϵ P cost(c,r)
9. load(p’) ← load(p’) + load(c)
10. M’ ← M’ U {(c,p’)}

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 12

N
U

M
A

LB
’s

 A
lg

o
ri

th
m

take heaviest chare

get its core

remove its load from its core

find core with smallest cost

add chare load to new core

map to new core

remove from mapping

for the number of chares

/30

Agenda

NUMA

Our Load Balancer: NUMALB

Experimental Setup

Results

Concluding Remarks

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 13

/30

Experimental Setup

• 2 NUMA machines

• 3 CHARM++ benchmarks

• 4 other CHARM++ load balancers

• Statistical confidence of 95%
– 5% relative error

– Student’s t-distribution

– Minimum of 25 executions

• Performance
– Gains: Average iteration time (baseline = no LB)

– Costs: Load balancing overhead

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 14

/30

Experimental Setup: Machines

• NUMA16

– AMD Opteron

– 8×2 cores @ 2.2 GHz

– 1 MB private L2 cache

– 32 GB main memory

– Low latency for
memory access

– Crossbar

– NUMA factor: 1.1–1.5

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 15

M
L2 L2

C C

M
L2 L2

C C

M
L2 L2

C C

M
L2 L2

C C

M
L2 L2

C C

M
L2 L2

C C

M
L2 L2

C C

M
L2 L2

C C

/30

Experimental Setup: Machines

• NUMA32

– Intel Xeon X7560

– 4×8 cores @ 2.27 GHz

– 256 KB private L2

– 24 MB shared L3

– 64 GB main memory

– QuickPath

– NUMA factor: 1.36–
3.6

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 16

M

L2

C

L2

C

L2

C

L2

C

L2

C
L2

C
L2

C
L2

C

L3

M

L2

C

L2

C

L2

C

L2

C

L2

C
L2

C
L2

C
L2

C

L3

M

L2

C

L2

C

L2

C

L2

C

L2

C
L2

C
L2

C
L2

C

L3

M

L2

C

L2

C

L2

C

L2

C

L2

C
L2

C
L2

C
L2

C

L3

/30

Experimental Setup: Benchmarks

• kNeighbor
– Synthetic iterative benchmark where a chare

communicates with other k chares at each step
– Completely I/O bound
– 200 chares, 16 KB messages, k = 8

• lb_test
– Synthetic unbalanced benchmark with different possible

communication patterns
– 200 chares, random communication graph, load between

50 and 200 ms

• jacobi2D
– Unbalanced two-dimensional five-point stencil
– 100 chares, 32² data array

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 17

/30

Experimental Setup: LBs

• GREEDYLB
– Iteratively maps the most loaded chares to the least

loaded cores

• RECBIPARTLB
– Recursive bipartition of the communication graph

– Breadth-first traversal until groups the required load

• METISLB
– Graph partitioning algorithms from METIS

• SCOTCHLB
– Graph partitioning algorithms from SCOTCH

• Neither consider the current chare mapping
4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 18

/30

Agenda

NUMA

Our Load Balancer: NUMALB

Experimental Setup

Results

Concluding Remarks

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 19

/30

Results: kNeighbor

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 20

32.0

26.9

22.4

14.9

22.1

13.5

21.5

17.9

22.8

16.9

22.1

16.1

0

5

10

15

20

25

30

35

NUMA16 NUMA32

A
ve

ra
ge

 it
e

ra
ti

o
n

 t
im

e
 (

in
 m

s)

Baseline NumaLB GreedyLB MetisLB RecBipartLB ScotchLB

No sensible difference
among LBs

30%

45%

Smaller is
better

/30

Results: kNeighbor

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 21

32.0

26.9

22.4

14.9

22.1

13.5

21.5

17.9

22.8

16.9

22.1

16.1

0

5

10

15

20

25

30

35

NUMA16 NUMA32

A
ve

ra
ge

 it
e

ra
ti

o
n

 t
im

e
 (

in
 m

s)

Baseline NumaLB GreedyLB MetisLB RecBipartLB ScotchLB

Homogeneous distribution

Group chares and
migrate them together

to the same core

Shared cache, faster communication

30%

45%

/30

Results: lb_test

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 22

1.01

0.6

0.83

0.43

0.93

0.51

0.84

0.46

0.83

0.47

0.88

0.43

0

0.2

0.4

0.6

0.8

1

1.2

NUMA16 NUMA32

A
ve

ra
ge

 it
e

ra
ti

o
n

 t
im

e
 (

in
 s

)

Baseline NumaLB GreedyLB MetisLB RecBipartLB ScotchLB

Best performance by communication-aware LBs

Best average performance

28%

17%

/30

Results: jacobi2D

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 23

1.74

0.42

1.03

0.27

1.24

0.36

1.31

0.4

1.21

0.39

1.11

0.29

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

NUMA16 NUMA32

A
ve

ra
ge

 it
e

ra
ti

o
n

 t
im

e
 (

in
 s

)

Baseline NumaLB GreedyLB MetisLB RecBipartLB ScotchLB

Best performance.
Keeps proximity among chares

on a NUMA node scale

41%

36%

SCOTCHLB shows similar
performance

/30

Results: jacobi2D - Projections

• jacobi2D on NUMA16

– 2 steps before LB

– 4 steps after LB

• The smaller the idle
parts, the higher the
efficency

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 24

NUMALB: 93.5% efficiency

METISLB: 75% efficiency

/30

Results: overheads

Benchmark Machine Load Balancer

NUMALB GREEDYLB METISLB RECBIPARTLB SCOTCHLB

kNeighbor
NUMA16 25 189 188 176 185

NUMA32 57 194 195 185 194

lb_test
NUMA16 40 188 187 184 184

NUMA32 48 194 194 192 192

jacobi2D
NUMA16 26 94 94 91 93

NUMA32 33 97 96 93 98

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 25

Average number of chares migrated

All load balancers took less than 7 ms for their algorithms.

Maximum migrations = 33% Minimum migrations = 88%

/30

Results: migration times for NUMA16

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 26

lo
g

sc
al

e

0.001

0.01

0.1

1

10

100

1KB 10KB 100KB 1MB 10MB 100MB

A
ve

ra
ge

 m
ig

ra
ti

o
n

 t
im

e
 (

in
 s

)

Size of chares (log scale)

200 chares, ScotchLB

100 chares, ScotchLB

200 chares, NumaLB

100 chares, NumaLB
Similar

Speedup of 2.9
200 chares

Speedup of 5.3
100 chares

Speedup of 7.1
200 chares

/30

Agenda

NUMA

Our Load Balancer: NUMALB

Experimental Setup

Results

Concluding Remarks

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 27

/30

Conclusions

• Multi-core machines with NUMA design
introduce new challenges for their efficient use

• CHARM++ does not consider NUMA asymmetries

• With our NUMA-aware LB we obtained

– An average speedup of 1.51 over the baseline

• Transparent to the user, no previous knowledge

– 10% improvement over most LBs

– Migration overheads up to 7 times smaller

• Migrating at most 33% of all chares

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 28

/30

Future Work

• Multi-core load balancer
– UMA and NUMA machines

– Communication latencies among cores

– Use HWLOC representation of cache hierarchy

• Distributed multi-core load balancer
– For clusters of multi-core machines

• Gather and organize communication information
– Latencies, bandwidth

– Provide this data to other libraries (like SCOTCH)

4/18/2011 Improving Charm++ Performance with a NUMA-aware Load Balancer 29

Improving CHARM++ Performance
with a NUMA-aware Load Balancer

Laércio Lima Pilla
Contact: llpilla@inf.ufrgs.br

9th Annual Workshop on CHARM++ and its Applications

Thank you.

