Preparing our Multi-Physics Applications for

Advanced/Future Architectures

Charm++ Workshop
May 7, 2012

Rob Neely

B Lawrence Livermore
National Laboratory

LLNL-PRES-556396

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Overview

= A bit on my background

= Some ASC perspective on exascale planning

= Multi-physics applications, and the challenges they present
= Co-design and proxy applications

= Efforts ongoing at LLNL in tackling exascale challenges

= Programming models survey

Lawrence Livermore National Laboratory e 5556396 ‘&

Office of Science and NNSA have been planning an
exascale initiative since at least 2009

Sustained joint government and industry research and
development is needed to revolutionize processors, power,

and programming.
p g g Technical issues

e System power

* Memory

Programming
model

Operating
system

Reliability and
resiliency

Given the magnitude of the proposed investments, the novelty and challenges of a Science-
NNSA joint effort and the lack of broad government consensus on the requirements for
exascale, building this program has been extraordinarily difficult....

t Lawrence Livermore National Laboratory 3

Exascale ramp up planning has been lengthy...

= CY2008-2009 Scientific Grand Challenges Workshops

+ Science drives Scientific Grand Challenge Workshops Climate Science (11/08)

BN igh Energy Physics (12/08)

Nuclear Physics (1/09)
Fusion Energy (3/09)

= CY2009

* ASCand ASCR charter laboratories to develop a Exascale
Roadmap (E7 Group)

Nuclear Energy (5/09)
= CY2010 Biology (8/09)
« HQBriefings to Koonin and D’Agostino Material Science and Chemistry (8/09)
« Decadal Cost Est: <= $6B National Security (10/09)
« NNSA=$3B ($2B+) & Science = $3B ($1B+) Cross-cutting technologies (2/10)

« Presentations to OMB by ASCR and ASC
« NNSA workshop on SW requirements for exascale

= CY2or11
« OMB pass back for FY12 forces slow start $126 M
— ~$40M Science and $6M ASC is “new”
+ Science codesign effort launched
« Senate Letter “cannot cede leadership” to Obama

If we don’t make aggressive changes to
our ASC apps to account for fine-
grained parallelism, and we end up
with bandwidth and capacity memory

limitations — the impact is that effective
* Kusnezov “what if we do nothing?” exercise utilization of machines remains largely
« Congress requests a Plan of HQ - public on March 21. flat, even as they become > 100x faster

Will focus more on research first, platforms later as

opposed to ab initio integrated effort in peak performance.

« HQdisbands E7 ‘planning group’ and replaces with E7
“exascale’” execs - focused on ‘execution’

t Lawrence Livermore National Laboratory

The challenge from China (and Japan and Russia and France and
Germany and India) is real and will not go away

China has three (3) architectural tag teams
* Haverecently held #1 position

« Largely US technology today, but....

« Exascale by 2018/19 (?)

increasingly indigenous technology

« Have told Intel they will hold all the top ten spots by
2015

» Next: a concerted effort on apps: defense, industrial
applications and science

Leadership is another word for control

« Control the arc of high end IT innovation for the coming
decades

+ Compete effectively in energy economy

* Out compute in nuclear design and in assessment of
adversary’s devices?

“China is developing three new members of its
home-grown Godson family of microprocessors.

The most powerful new member of the family,
Godson-3C, will have 16 CPU cores.”
3GHz * 16 * 8 = 384 GF/s/Processor

LINPACK Efficlency

100%

90%

80% -

70%

60%

Kei (the top in the 37th TOPS00)
*

2 Jaguar (the top in the 35th TOPS00) Sequoia—
L & :

N3 T i -
. & <— Tianhe 1A (the top in the 36th TOPS00)
<
L2
a L&
g
=
0.00 1.00 200 T 300 400 5.00 6.00 700 8.00 9.00

LINPACK Performance (PF)

Minoru Nomura - Science and Technology Trends
Quarterly review No. 21 Jan 2012

Futuristic Chinese Center planned for Exascale

t Lawrence Livermore National Laboratory

The impact of no exascale initiative on ASC
application performance is potentially dire

1000.0

100.0

10.0

Pflops/sec

1.0

0.1

t Lawrence

PCF Target
performance
e = < failure o1
. capability runs
PCF pegpost example app needs - D' - 4 mid\es » (cap b/)
—-— 3
e e P = vendor targets (no
//), investment)
I, mix —
i _ P " Peakperformance
pig Nt o = (limited by memory
(lower bound, 2D) size)

Peak performance
(limited by mem size
and bandwidth)

Assumes enhanced physics data tables

I I I I I I I I]
o O _A4 N o <& 1 OV N 00 O O
o i i i i i i i i i i o
© O O O O o o o o o o o
N~ N N N & N & N & N & N

ASC apps require major work to avail fine-grained parallelism. Vendor roadmaps currently incur

memory bandwidth and capacity limitations. Thus, effective utilization of machines remains largely

flat (bottom curve), even with > 100x peak performance. ASC programmatic demands continue

rising (PCF pegposts and UQ curves above)

We’re facing an enormous challenge of how to move our
multi-physics apps to exascale machines.

Often > 10 physics packages
10 to ~30 third party libraries
Long life-time projects with >1 million lines of code

15+ years of development by large teams (10 — 20+ FTEs)

Many different spatial, temporal scales
Variety of parallelism approaches
Steerable / interactive interfaces
Multi-language (C++, C, Fortran90, Python)
End users are typically not developers (no ability to just fix and recompile)

All have adapted excellent SQA processes for major evolutionary restructuring

Algorithms tuned for minimal turn-around time instead of maximal
computational efficiency

We must continue to deliver our programmatic mission while addressing

the needs of next generation advanced architectures.

Lawrence Livermore National Laboratory LLNL-PRES-551777 &

Exascale computing presents unique challenges to

multi-physics integrated codes

Improved
Physics
Laser beam effects

Plasma blow-off
and effect on
drive, symmetry

Improved

Capsule implosion

details time/)
Explosion Ime/space

symmetry
Atomic physics
Line radiation
transport

Improved Understanding
(predictive capability)

Resolution
(multi-scale,

HEDP Example

P’ Laser-Plasma
~__Interaction (LPI)

Non-LTE plasma |
blow-off y

3D capsule
implosion &
explosion

1 .
B R 38 =2
y ¢ S TN
& i R
g 1
b/ o |
A S
3N ™
p 1 S W
et B a
b s | 2V
b
&

mﬂ\\i

frso ov

In-situ
diagnostic
modeling

3D capsule
drive

ggggggggggggg

Lawrence Livermore National Laboratory
Lawrence Livermore National Laboratory

‘l

SOS16, Santa Barbara CA, March 13-15 2012

Our physics packages have differing computational

requirements, making generalizations difficult

« Below are examples of some common physics packages
» Typical characteristics of each package are listed, with those
that typically limit performance listed in red

Typical

Hydrodynamics

Deterministic

Monte Carlo

Diffusion

Characteristics

Transport

Transport

temporal locality

temporal locality

temporal locality

Memory needs 0.1 -1 KB/zone 40 - 240 KB/zone | 3 - 30 KB/zone 0.1 - 1 KB/zone
Memory access Regular with Regular, low Irregular, low Regular, good
pattern modest spatial and | spatial but high spatial and spatial and

temporal locality

Communication
pattern

Point to point,
surface
communication

Point to point,
some volume

Point to point,
some volume

Collective
communications
and point to point

Mflops per zone 0.02-0.1 (10X for | 2—-12 .03 - .07 0.1-3

per cycle iterative schemes)

/O (startup data) | 20-160 MB (EOS) | 0.3-12 MB 100 - 300 MB 0.1 - 1 KB/zone
(Nuclear) (Nuclear)

Lawrence Livermore National Laboratory

&
LLNL-PRES-556396

Evolve or Rewrite? This is a fundamental
question we’re addressing

OpenMp e
CUDA.

« Gain experience with massive scratch”

Evolve existing code bases | Undertake new
scaling (Sequoia) |

« Evaluate and gain e

. Implement fine-grained with new programmi
l==0ing « Develop proxy appli

) App!lcatlon-controlled streamline explorati
resilience

« Determine degree o

« GPU directives needed (if any)

» Leverage validated code base |

It’s too early to choose a technology to rewrite our applications
HOWEVER

It’'s never too early to explore and influence promising technologies

Lawrence Livermore National Laboratory T — &

Advanced Architectures Software
Development (AASD) Project

= Launched in Sept 2011 to coordinate activities in WCI integrated
code teams aimed at next gen architecture app development

= Provide developers much-needed “free energy” to explore new
technologies

AASD = Work with research and vendor
y 4 N\ community to identify promising
ATEMPS| and applicable technologies
o) = |Inform programmatic funding of
T l key technologies before they end

due to lack of research funding

Lawrence Livermore National Laboratory e 5556396 "&

Current and projected AASD projects in the
first 6-8 months of the effort

ybr|d IndexSets
Exploiting SIMD in IndexSets

Threading Building Blocks

On-node
concurrency

GPU programming — CUDA and
directives

EOS data table sharing
CR and NVRAM

Steering proxy app

Memory
models

app

Material library threading and
vectorization

Embed IC staff in other Co-
design efforts

Proxy App relevance

Collab- Proxy

Chapel 5-year plan

Prog.
Models oOration

Dynamic run-time systems

Build general (DSL-like) abstractions for loop traversal over unstructured
lists

Automated ways to develop alternate loop bodies to exploit vectorization
when available

Explore the applicability of Intel TBB to Kull

Exploring use of OpenACC style directives to extract performance on
GPUs, with performance comparisons to hand-written CUDA

Share (read-only) EOS tables between MPI tasks in shared mem space

Explore SCR (Scalable Checkpoint Restart) in a real application, attempt
use of NVRAM storage for “burst buffers”

Build framework to explore combinations of front end (python, LUA, basis)
and back end (C++, C, F90) code steering technologies

Explore threading of existing materials library, and what it will take to
extract SIMD vectorization

ExMatEx: Learn and apply GREMLIN and ASPEN models
CodEx: Deeper understanding of metrics and SST

Work with Heroux @ SNL to understand and apply results of their L2

Establish co-design relationship with Chapel with a goal of establishing it
as basis for future application design

Explore dynamic PM’s using Charm++ as proxy for HPX, SWARM, etc...

Lawrence Livermore National Laboratory

12Ll_

LLNL-PRES-556396

NNSA/ASC is developing a co-design strategy

Co-design

in partnership with Office of Science

Exascale
Applications

-~
- -

/
")
4
Z

Algorithm
Develop

Computer
Science,
Applied Math,
Research
Communities

Application teams

App Requirements
Proxy Proxy . .
s o collaborating closely with
| <: hardware and system
Open Shared Experiment| \/fendor .
Application | ANAYSS | vendor | Analysis software designers to
Cobosian oo CoDeedl oo inform and influence
Tools | Informed Resuits architectural trade-offs
HW HW
Require | HW Constraints | Design

Proposed DOE
co-design

ecosystem (in

progress)

—

ASC co-design hubs
focus on in-house EPICs
and representative

proxy apps

Joint consortium
between ASC and
ASCR to streamline
vendor interactions

CD Centers & Hubs
coordinate with vendors
they wish to work with,
possibly with “deep IP”
exchange

—

Leverage each others
foci (e.g. research vs.
apps), hold joint

workshops, develop @ @ @

LLNL LANL SNL ExMatEx CESAR Exact
CDHub CDHub CDHub (Materials) (Reactors) (Combustion)

~ s
Ss o ~ ’ Py -
~. ~ So P e e
~ ~ ~ .
~ ~ ~ - ’ ’
~ .
. ~. So Re of o
. >, “ ¢ < B

Exascale Co-Design Consortium (ECDC)

\ \{/ /

Vendor Community

Vendor A Vendor B

ASC NSApp

Co-design Project
Co-led by tri-lab representatives

8 ¥ 3

ASCR Co-design
Centers

Vendor C Vendor D | Vendor E

Lawrence Livermore National Laboratory

13Ll_

LLNL-PRES-556396

(One of) the difficulties of co-design

Co-design gets more difficult the further you get from open
collaboration and the closer you get to the “truth”

@)

Open Co-design

. . Released Proxy
National Unclassified, Apps
Security but not open Standard [Deep NDA]
Applications applications Open vendor NDA

k information /

* ASC : Involve staff with clearances in co-design efforts

* Vendor : Firewalling of lab staff from engaging in multiple “deep
NDA” involvements

Lawrence Livermore National Laboratory e 5556396 “&

Proxy applications are a core strategy for
co-design

Sub-select
test suite

!

74
Apply metrics to Extract proxy
full code - identify app with 1+
“hot spots” hot-spots
hat
What candidate x-
lessons Repeat as formations?
learned? needed
Appl
Ieszlsz From candidates > ¥
T _ identify transformations to
full code improve proxy-app metrics

Does this approach “converge”?

Lawrence Livermore National Laboratory LLNL-PRES-556396 “&

Proxy apps development is being pursued
strategically along two axes

Proxy apps represent a
powerful and holistic training
tool to give our own developers
a head start on technology
exploration and software
architecture and design

= Simple, open, and
easy to pick up and
explore

= Must accurately
represent original
applications

= The collection
should account for
more than just fast
numerical
performance

These are more than just a benchmark

Lawrence Livermore National Laboratory LLNL-PRES-556396 &

LLNLis developing a large multi-physics compact app
(XxALE) to use for study (based on ALE3D)

= (Hyd | AE
ydro- 2
& dynamics o E g g 12 KO / SGEOS
i @
o g % 5 3l & g : = | Chemical Mats
8 IEIZEE 8| Mz|2|E | Msib
= Slg|8F T 73 B - m Over-
=\ - A = Geodynlib = link
2 Vi unified data model =
sta) % LEOS / Sesame H
> 4 - Co-0
o Software Services ® Cheetah = P
& =5 = » 8
5 ClB]l ol » |odw|%_|2 ®
3 ol =g s |I89<clz == [
>SS 2] 235zl m
3 =87 EIERE |
=) slle=e °> S |5
® £ 8 = «Q Legend
Q Physics
z g o FEI Components / Libraries
% || = R - Services
S| 2|[18% g. %éI 3 Party
a o 3|8
\ Other
Codes
Visit | " TrueGrid

Lawrence Livermore National Laboratory T — "

Current proposed set of LLNL Proxy Apps
Name | Descripton ~ |language |Type

| AMG (hypre) | AlgebraicMultigrid [C,MPLOMP__ [Mini |
| CLOMP_____| OpenMP, TM/SE performance & overheads ______ [C,OMP [Mini |
Monte Carlo transport C++ MPI, OMP Skeleton
Lulesh Explicit Lagrange shock hydro on unstructured mesh C++, MPI, OMP Mini
f3d kernels Single precision vectorization, complex arithmetic C, OMP, (yorick) Mini
Mulard* High order diffusion (MFEM based) C++, MPI Compact
LIP Livermore Interpolation Package (used by LEOS) C Mini
Blast* High order hydrodynamics (MFEM based) C++, MPI Compact
HEART Vectorization C, OMP Kernel
EOS_fm4 Gruneisen analytic equation of state C Kernel
MIAVAS Array-of-structs vs struct-of-arrays C Kernel
AdvB Advection C++, MPI Mini
ioperf HDF5 LLNL benchmark Cc Skeleton
Steer OS support for code steering Py, Mini
LLNLLoops 2 SIMD vectorization Cc Kernel
AMR Adaptive Mesh Refinement ? Compact
Contact Slide surfaces, contact (LDEC-based?) ? Mini
Mslib* Element by element material models C Compact

Sequoia Exists / Exists / Under Undeveloped
Benchmark released unreleased development

Current list (with download links) will be available at http://codesign.linl.gov

* May be restricted

Lawrence Livermore National Laboratory

18 lL
LLNL-PRES-556396

Co-design

LULESH and Mulard are two new proxy
apps developed in the past year

LULESH: Livermore Unstructured Lagrangian

Explicit Shock Hydrodynamics

» Representative of data structures and numerics of a major
ASC application

» Performs a Sedov (blast wave) calculation

» 3D unstructured hex mesh
« 8 different versions (and counting)

Mulard: multigroup radiation diffusion

* 10-100 coupled diffusion equations transport radiation
* Many, large scale linear solves

 Lots of data, complicated setup

« Each group matrix has similar structures

« Can assemble all groups at once

» Can solve groups independently or together

Lawrence Livermore National Laboratory T — b

Experience on existing platforms is giving us insight
into scalability for upcoming petascale architectures

= Existing petascale platforms at LLNL:
- Dawn (BlueGene/P) — 147k cores (.5 Pf)
« Zin (Linux TLCC2) — 45k cores (.97 Pf)

= O(P) data structures quickly rear their heads

= Threading is a requirement for performance on Sequoia (BG/Q)
for best performance

= SCR (Scalable Checkpoint-Restart) intercepts file I/0 to main
memory, and is in direct response to:

 Increased file 1/0 times
« Resilience issues at scale

Lawrence Livermore National Laboratory e 5556396 il 4

We’re dusting off our OpenMP books (and
learning some new tricks, too)

= Too little work relative to the Overhead
- Make sure time saved with parallelism exceeds overhead spent

= Shared Memory: Ensure all have latest data values (flushed)

= Data Race Conditions — Tricky & random, use tools to find!
- Multiple threads updating data simultaneously

= Private variables, critical sections, & other restrictions
- Unnecessary or excessive restrictions slows threads down

= Thread Scheduling / Chunking / Affinity (Multi-Socket)
« Where will related thread run? Near data? Cache preload?

= Amdahl’s Law still applies! Don’t sequentialize unnecessarily
- Time dominated by sequential sections as parallelism scaled up

= Plus, Transactional Memory (via compiler directives) is available
on BlueGene/Q- early results are encouraging

Lawrence Livermore National Laboratory RS S5036 L

Sequential work loops are common in parallel
applications

1
for every owned zone { —

for every material

{ EErrrrrL
}
}
2 E—)
for every owned zone {
for every material LLLLLLLLL
{
}
: 3
for every owned zone { —
for every material SORRREEREE
{
} time
} —

Lawrence Livermore National Laboratory T — I

We’re exploring the use of the TBB pipeline construct
to expose more parallelism (at the cost of additional
complexity)

(for every owned zone {\ for every owned zone { Gor every owned zone {\
for every material for every material for every material

{ {

} }

(&, J

Once a segment of work from
one loop is completed, its

output becomes available as L

input to the next loop.

The syntax is a bit “disruptive”

time

—

Lawrence Livermore National Laboratory LLNL-PRES-556396 i 4

Index Sets are a common data structure for
managing subsets

An index set defines a
traversal over a subset of
items in an ordered collection.

for (int i = 0 ; i < len ; ++i) {

// expression with
// “data[index[i] 1”

}

Indirection makes SIMD ZM — { 0-20 : 24 : 32 : 40 }

vectorization difficult or
impossible (without gather/
scatter)

24UL_

Lawrence Livermore National Laboratory LLNL-PRES 556396

Index Set types and tradeoffs

Recall Z,, = {0—20, 24,32, 40}

= Structured Range
« Consists of contiguous range (or IJK), possibly with stride
- High performance, but limited iteration patterns
« Traversal can vectorize well at compile time

= Unstructured List

« Consists of a set of arbitrary index values
- Lower performance, but very flexible iteration patterns
« Not directly vectorizable, streams more data through cache

= Hybrid
« Binds structured & unstructured sets in a single traversal construct

« Can yield best of both types, but normally requires add’| compiler
support, source-to-source translation, or manual loop splitting

Lawrence Livermore National Laboratory LLNL-PRES-556396 &

Using hybrid “range” abstractions allows for
multiple versions of the same loop

for (int i = begin ; i < end ; ++i) {

// expression with “data[i]” Structured

for (int i = 0 ; i < len ; ++i) {

Unstructured

// expression with “data[index[i] 1”

}

+ Allows detailed optimizations within each loop
— Hybrid traversal requires multiple loops & loop bodies

— Modification & specialization for platform-specific
traversals requires changing loops throughout code

Lawrence Livermore National Laboratory

LLLLLLLLLLLLLLLL

GPU explorations on LULESH mini-app
Current double-precision speedup is 9.8X (16.0X single)

Speedup by stage Change in run-time %

30 20.00%

5 15.00% M ElemInitStress

M ElemIntegrateStress
10.00%

20
m ElemCalcHourglass

5.00%

15 B NodeAcceleration

0.00% m NodeAccelBC
10

5.00% m NodeVelocity

B NodePosition

-10.00%

M ElemKinematics

-15.00%

m ElemLagrangePt2

CPU run-time % GPU run-time %

B ElemMonotonicQGrad

® ElemMonotonicQ

m ElemMaterialProp
W ElemVolume

W ElemTimeConstraints

Moving beyond the software pipeline provides a
mechanism for exploiting additional concurrency

= Current codes process physics packages in a mostly serial
fashion
= Future architecture challenge:

- Can physics packages be run simultaneously on different
sets of processors?

- What are the communication and accuracy constraints?

Package A and B run simultaneously on different sets of processors and
feed results to package C

Lawrence Livermore National Laboratory

28LLL

LLNL-PRES-556396

We are studying the effects of persistent memory
characteristics on our algorithms

Disk Persistent Memory
Random access is bad Random access is good
Reading and writing good Reading is better than writing
Concurrent requests are bad Concurrent requests are good
Binary Search
180
100000 ’ ° 1 O
64M random 8 byte 10s 160 Intel SLC SSD
90000 / g —— Fusion-io
80000 / : 140 1 - 4- Host RAM Disk
@ 70000 = 120 |
5 // 128 Threads g o
EGOODO // #-64 Threads § 100 |
§ 50000 ~#-32 Thread §
LT I
gaoooo /l(/' U E 60 |
20000 //4‘/‘ %
/ ~#—4 Threads E 40 |
(]
10000 gttt 32
20
0
50 60 70 80 90 100 0
Percentage of Read Ops
1 2 4 8
Courtesy: Maya Gokhale Number of Threads
There is a factor of 9x increase in number Interconnect bandwidth impacts application
of 1/Os per second for read-only access run time by 2-3x

Lawrence Livermore National Laboratory T — 29@2

Persistent variables are synchronized to persistent
memory during a low latency checkpoint

template<class T>
struct PersistentType

{
typedef
std::vector<T,PERM_NS::allocator<T> >
vector;

b

PERM struct Domain { ...
PersistentType<Real_t>::vector m_x; /*
coordinates */
PersistentType<Real_t>::vector m_y ;
PersistentType<Real_t>::vector m_z ;

while(domain.time() < domain.stoptime()) {
if(ready_to_write){
backup(); /* Persistent memory library call */
ready_to_write = false;
}
Timelncrement() ;
LagrangelLeapFrog() ;
if (domain.cycle() >= checkpoint_iter) break;

}

= The programmer designates certain variables as permanent
= These variables are allocated into the persistent memory and used normally in

the program

= Checkpoints, at program points specified by programmer, copy the persistent

memory region to a file

= Restart initializes persistent variables from the file

Lawrence Livermore National Laboratory

"L
LLNL-PRES-556396 &3

One approach to checkpointing targets future

exascale architectures

Today: Explicit copying, global files Exascale: Implicit copy, local files

* Checkpoint files are created ina e The checkpoint file format is
common format that a library application specific.
NEEEE e The application does not need to do
* The application copies program explicit copy of individual variables.
variables to the checkpoint file e The checkpoint file is written to
using library calls. local persistent memory.
* The checkpoint file is written to a
global storage area network.
[CremtigSatem]
=

N - FT ~ W N N N N N -

1 Login/ 4 Gateway noces @ 4 Gatew: mde‘:@
144 Port IBA 4x i 1RPS “"& GW GW GW oW oW GWE
Uplinks to Master 2x1 GE & over !é
spine switcl

RAID

Convpute e | | Comgptte Nade | | Compate Male Cugate Nuade
134 Dual Socket Quad Core Compute Nodes (1,072 cores)| [st I | [soiiace | - | =
[
12x24 = 288 Port (144D 144U) InfiniBand 4x DDR

=) m...m

ASIES]
s s

Today’s clusters separate storage from compute At exascale storage is in the compute cluster

Lawrence Livermore National Laboratory

31 l!!
LLNL-PRES-556396 31

Source-to-source Compiler Resiliency
Transformations for Processor Soft Errors

Original Source Code Generated Source Code

void relax_tmr_elemental
void relax () — O

{
#prggma resiliency elemental for (int i = 1; i < arraySize-1; i++)
for (int i = 1; i < arraySize-1; i++) {
array[i] = (array[i-1] + array[i+1]) / 2.0; register float varla = array[i];
} Wor'_(done register float var2a = array[i-1];
3 times

register float var3a = array[i+l];

» Triple Modular Redundancy as a compiler transformati

. register float varlb = array[i];
» Leverages ROSE source-to-source compiler

register float var2b = array[i-1];

» Targets soft errors in processor hardware register float var3b = array[i+1];
« Could be supported directly via pragmas in the code fo) ,
register float varlc = array[i];

semi-automated solution register float var2c = array[i-1]; Test for
« Compliments memory resiliency checking (previous register float var3c = array[i+1l; .o

slide) varla = (var2a + var3a) / 2.0; results
« Optimizations for memory reuse varlb = (var2b + var3b) / 2.0;
« Control over where separate computations could be varic = (var2c + var3c)Rups

done: if (varla != varlb || varla != varic)

- Same cores {

// Handle arbitration by recomputing value.

- Separate cores, processors, sockets, nodes ... printf ("Detected an error...\n");

planets © }
« Threaded solutions ...

Lawrence Livermore National Laboratory LLNL-PRES-556396 b

CoDesign Tool Flow using ROSE
Automatic Generation of Skeletons for Rapid Analysis

This is about these arrows

HW/SW Co-Design Evaluation

-[Compact

Apps J» Skeleton
ROSE Autotunin
Apps > g

Optimizations

"R

Node Communication
Architecture Network
Simulators Simulators

Reports (perf,

I Manual process power, etc)

I Automated or Semi-Automated process

Lawrence Livermore National Laboratory T — &

Example of Automated Skeleton Code Generation:

Before/After

do { Before

if (rank < size - 1)
MPI_Send(xlocal[maxn/size], maxn, MPI_DOUBLE,
rank + 1, @, MPI_COMM_WORLD);
if Crank > @)
MPI_Recv(xlocal[@], maxn, MPI_DOUBLE, rank - 1, O,
MPI_COMM_WORLD, &status);
if Crank > @)
MPI_Send(xlocal[1], maxn, MPI_DOUBLE, rank - 1, 1,
MPI_COMM_WORLD);
if (rank < size - 1)
MPI_Recv(xlocal[maxn/size+1], maxn, MPI_DOUBLE,
rank + 1, 1, MPI_COMM_WORLD, &status);
itent ++;
diffnorm = 0.0;
for (i=i_first; i<=i_last; i++)
for (j=1; j<maxn-1; j++) {
xnew[i][j] = (xlocal[i][j+1] + xlocal[i]J[j-1] +
xlocal[i+1]1[j] + xlocal[i-1][j1) /
4.0;
diffnorm += (xnew[i][j] - xlocal[il[j]) *
(xnew[i][J] - xlocal[il[j1);

for (i=i_first; i<=i_last; i++)
for (j=1; j<maxn-1; j++)
xlocal[i][j] = xnew[i][j];

MPI_Allreduce(&diffnorm, &gdiffnorm, 1, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD);

gdiffnorm = sqrt(gdiffnorm);

if Crank == @) printf("At iteration ¥d, diff is %e\n”,

itcnt, gdiffnorm);
} while (gdiffnorm > 1.0e-2 && itcnt < 100);

do § After

if (rank < size - 1)
MPI_Send(xlocal[maxn / size], maxn, MPI_DOUBLE,
rank + 1, @, MPI_COMM_WORLD)
if Crank > @)
MPI_Recv(xlocal[@], maxn, MPI_DOUBLE, rank - 1, O,
MPI_COMM_WORLD, &status);
if Crank > @)
MPI_Send(xlocal[1], maxn, MPI_DOUBLE, rank - 1, 1,
MPI_COMM_WORLD);
if (rank < size - 1)
MPI_Recv(xlocal[maxn/size+1], maxn, MPI_DOUBLE,
rank + 1, 1, MPI_COMM_WORLD, &status);
itent ++;

MPI_Allreduce(&diffnorm, &gdiffnorm, 1, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD);

} while (gdiffnorm > 1.0e-2 && itcnt < 100);

Lawrence Livermore National Laboratory

34“&’

LLNL-PRES-556396

There are many research efforts ongoing
under ExaCT (LDRD)

= Algebraic Multigrid (AMG) Solvers | ey o
- Scalability, Performance Modeling
= Resilience “1’2 ——
Scalable Checkpoint-Restart (SCR) i ’ 00 e

« Algorithmic Fault Tolerance

= Load Balance Analysis P
- Evaluating the Effectiveness of Load Balance Algorlthr’\‘gl; EXF by

ocess()

mplni
pW
alLoad =

—IO(‘) j

6
11

= Multicore
« Memory Sharing with SBLLMalloc

. Debugglng Analysis :.?.:
- Stack Trace Analysis Tool (STAT) Tool ‘5 ° s,
. AutomaDeD & CAPEK SR

Lawrence Livermore National Laboratory LLNL-PRES-556396 &

Goal of Survey to Characterize Novel Programming
Models that might have Applicability for Exascale

Characterization includes:

« The easeinlearningand —)p L
adopting these languages. E | CURVEY OF NOVEL

» The specific benefits to Pon oARMLELING
switching to the new

APPLICATIONS AT EXASCALE
language paradigm. RN
= The robustness of the
model.

= The potential of this model
to meet programming
needs in the future, —)
regardless of its present
state.

Rich Cook, Evi Dube, lan Lee, Lee Nau,
Charles Shereda, and Felix Wang

November 17, 2011

w Lawrence Livermore National Laboratory 36

We characterized 10 systems spanning
several data and control models

System (a) Programming Model (b) Data Model Control Model

Chapel Partitioned Global Address Global memory view Global view
Space (PGAS)

X10 Asynchronous PGAS Global memory view Global view

Fortress PGAS Global memory view Global view

Cilk Plus Multithreaded Global memory view (single Global view (single node)
node only)

Intel Parallel Building Blocks Multithreaded Global memory view (single Global view (single node)
node only)

UPC PGAS Global memory view Global view

Charm++ Object-oriented Local memory view ?

AMPI Message passing Local memory view Local view

OpenCL GPU language GPU memory view (datais Global view (single node)
transferred to and from GPU
memory)

CUDA GPU language GPU memory view (datais Global view (single node)
transferred to and from GPU
memory)

The Appendix mentions Titanium, Global Arrays, ParallelX and High Performance
ParallelX, writing Domain Specific Languages, and OpenMP Advancement

@ Lawrence Livermore National Laboratory

37

Characterizations provide basic overview to allow developer
to determine if further investigation is warranted

Owner / Cray Inc. (head of team is based in Seattle, WA)
Development

Location

Project Website http://chapel.cray.com/index.html
Download Page http://chapel.cray.com/download.html

Platforms Available Most UNIX-based systems, Mac OS X, Windows. Works in
conjunction with the GASNet library which works with various
interconnects.

Each characterization starts with the A characterization leaves the
information above and developer with future reference
= Overview = Language Specs
= Present State of the Model = Tutorials
= Tool Availability = Presentations and Videos

B e = Programmer’s Assistance
= Suitability to LLNL Application Codes

= Wiki’s
= Resources and Additional Information _
and/or Bibliography = Papers, Articles, Journals

= Downloads

@ Lawrence Livermore National Laboratory 38

Metrics included flexibility, data compatibility, ease of use,

evolutionary shift to measure suitability to LLNL Apps

Pros to a language:

Data structures allow for
adaptive meshes and sparse
matrices

Programming ease and
elegance

Domains distributed across
locales of clustered system

Simplifies, enhances data
distribution

Code based on C++, Fortran,
Java so easy to learn

Cons to a language:

Dramatic change in
approach

Inability to exist as
secondary language

Not heavily tested as
scientific app code

Limited functionality

@ Lawrence Livermore National Laboratory

39

Our research culminated with a set of suggestions
regarding these models

oy

S a

OpenCL

= We recommend a further study of Chapel -
specifically, an application port.

= We recommend monitoring X10 & Intel PBB. znvmlA

CU DA.

= We recommend MPI support staff familiarize
themselves with Charm++ /AMPI and to see if
some of its innovations can be applied to
issues such as fault tolerance at large scale.

Y)

=Raesr
CHAPEL
=

= We recommend maintaining expertise in
OpenCL and CUDA but caution against o
developing a significant codebase, especially @
in CUDA, which is proprietary.

Intel
. ArBB/TBB
Report available at: /

https://asc.linl.gov/exascale/references.php (Under “Miscellaneous”)

t Lawrence Livermore National Laboratory 40

Excellent example of confluence of merging efforts

to propel LLNL forward to Advanced Archltectures
= |nitial Development of 4
Proxy App

April 2011

= Programming Model
Survey

= |nvitation for Chapel lead
to visit LLNL

= LLNL gaining basic
familiarity

= Reciprocated visit to

Seattle

 Block Coding -> Unstructured
Coding ~ 6 hours

« 25 extra lines of code!

March 2012

vvvvvvvvvv

w Lawrence Livermore National Laboratory

The message to our application developers must be
clear

= We cannot stand still

« Concurrency, memory restrictions, memory bandwidth, vectorization,
scaling, accelerators, resilience...

* Programming models abound: languages, run-time systems, power and
resilience management, ...

« Even commodity clusters will be “advanced architectures” in coming
years

= We can’t do this alone - collaboration is more important than
ever

« Between code teams, internal lab efforts, labs, and NNSA and ASCR

= Despite the lack of well-funded post-petascale strategy, DOE is
making significant progress

« Three funded co-design centers
« ASCR funded projects (e.g. X-stack)
« FastForward RFP out

@ Lawrence Livermore National Laboratory

Charm++ offers an opportunity to explore dynamic
run-time programming models

= Clearly, Charm++ has “staying power”!

= Until now, MPI (with occasional coarse-grained threading)
has carried the day

- No longer...

= Understanding the benefits of programming models such
as Charm++ or AMPI on our algorithms is a desired goal

* Need one or more proxy apps that demonstrate advantages

= Has Charm++’s “time to shine” arrived?
« Let’s find out together!

= Goal for next years’ Charm++ workshop — LLNL/Charm++
success stories

@ Lawrence Livermore National Laboratory

B Lawrence Livermore
National Laboratory

