Optimizing for Productivity with Char

Aaron Becker, PPL/UIUC

10t Annual Workshop on Charm++ and its Applications
8 May 2012

Friday, May 11, 2012



2roductivity in High Performance Computing

e Creating fast, scalable parallel applications is hard, and getting
harder

e Productivity for HPC programmers is notoriously poor

* As machines get larger, the problem only gets worse

Friday, May 11, 2012



Charj

More productive programs using the Charm
programming model

e Make syntax more meaningful

e Apply static analysis to provide more safety and provide
optimizations that are impossible at the library level

e Facilitate DSLs and “Little Languages”

e Add language-level support for rich runtime features

Friday, May 11, 2012



Problems with Charm

e Most of your code is only seen by a C++ compiler
e No way to do lots of simple things, especially:

e Enforce Charm semantics

e Do compile-time analysis and optimization

e Moving model-specific features into the interface file
sort of works, but it’s difficult and inflexible.

Friday, May 11, 2012



Char] Design Principles

e Keep it simple
e Minimize new syntax
¢ Distinguish between local and remote operations

¢ Integrate tightly with the runtime

Friday, May 11, 2012



Productivity Benefits

e Enforcement of programming model semantics by the compiler
(e.g. assignment of readonly variables)

e Elimination of redundant program information
e Improved messages for Charm-specific syntax errors
e Clear syntactic distinction between remote and local operations

e Optimizations can be done by compiler instead of by hand

Friday, May 11, 2012



Communication Optimization

Friday, May 11, 2012



Data Exchange

How do we communicate data
structures in a parallel application”

-\ N\
—

a el o 5

* *
Send Unpack

Friday, May 11, 2012



Producing Pack/Unpack Functions

e Application data structures must be packed into and unpacked
from buffers to be sent over the network

e MPI| approach: user packs and sends the buffer

e Charm approach: user writes “PUP” method for each type
describing how to pack and unpack it

Friday, May 11, 2012



=xplicit Buffer Management

Send

memcpy (&var, buf, sizeof(var));
memcpy (&var2, buf+sizeof(var),
sizeof(var));

Recelve

memcpy (buf, &var, sizeof(var));
memcpy (buf+sizeof(var), &var2
sizeof(var2));

10




PUP (Pack/Unpack)

void MyType: :pup(PUP::er& p)
1

p | varil;
p | var2;

¥

entry void my entry(MyType m);




Per-Method

Pack/Unpack Functions

¢ In any method, some arguments may contain unneeded data

¢ For remotely invoked methods, this unneeded data hurts

performance

— Pack —»

— Send —»

unneeded data

needed data
12

Friday, May 11, 2012



—xample: Molecular?

class Particle {

}s

vec3 position;
vec3 force;
vec3 accel;
vec3 vel;

void pup(PUP::er& p) {
position;
force;

accel;

vel;

© T T O

class Compute {
void interact(

¥

{
}

vector<Particle> remote particles)

// only needs particle positions

13

Friday, May 11, 2012



—xample: Molecular?

class Particle {

}s

vec3 position;
vec3 force;
vec3 accel;
vec3 vel;

void pup(PUP::er& p) {
position;
force;

accel;

vel;

© T T O

class Compute {
void interact(

¥

{
}

vector<Particle> remote_particles)

// only needs particle positions

14

Friday, May 11, 2012



—xample: Molecular2D

class Particle { class Compute {
vec3 position; void interact(
- vector<Particle> remote particles)
{
// only needs particle positions
}
void pup(PUP::er& p) { }s
p | position;
p | force;
p | accel; - N
p | vel;
K0 '
. /5% of message is wasted!
- Y,

15

Friday, May 11, 2012



Possible Solution

Use a custom type for the argument that only includes needed data

e Causes a proliferation of special-purpose, semantically

meaningless types

e Scales poorly to large applications (lots of methods to handle)

Pack —»

— Send —»

16

Friday, May 11, 2012



—xample: LeanMD

class Particle {

}s

vec3 position;
vec3 force;
vec3 accel;
vec3 vel;

void pup(PUP::er& p) {
position;
force;

accel;

vel;

© T T O

class Compute {
void interact(ParticleDataMsg* m)

¥

{
}

// only needs particle positions

17

Friday, May 11, 2012



—xample: LeanMD

class Particle {

vec3 position; class Compute {

vec3 force; void interact(ParticleDataMsg* m)

vec3 accel; {

vec3 vel; // only needs particle positions
}

void pup(PUP::er& p) { }s

p | position;

| force:-

Ef Efficient communication, but what
;| about time, effort, and lines of code”

18

Friday, May 11, 2012



Generating PUPs in Char

* No need for user to provide PUP functions, since compiler knows
the composition of each user-defined type

e Manage cyclic data structures by tracking memory addresses

¢ \When the type is modified, the PUP function automatically changes
with it, as opposed to Charm

e Programmer can override automatic PUP if needed

19

Friday, May 11, 2012



Live Variable Analysis

¢ \Which fields are not needed on the receiving side?
® Those which cannot be accessed in any path of execution
e That is, anything that is not live at the function’s preamble

e | ive variable analysis can tell us which variables to pack and which
to leave behind

20

Friday, May 11, 2012



—xample: Charj

class Compute {

class Particle { entry void interact(
vec3 position; Array<Particle> ps)
vec3 force; {
vec3 accel; // only needs particle positions
vec3 vel; }
} }s

 Smaller code, high efficiency |
\

21

Friday, May 11, 2012



Productivity Benefits

® Programmer need not write PUP functions
¢ Type safe, avoids order dependence and pointer arithmetic bugs
* Per-method PUPs automatically strip out unneeded data

e Creates smaller messages

® Preserves meaningful types at the application level

¢ | ets the programmer focus on higher-level performance
Issues instead of focusing on packing bytes into buffers

22

Friday, May 11, 2012



Questions?




