
Programming models for quantum
chemistry applications

Jeff Hammond, James Dinan,
Edgar Solomonik and Devin Matthews

Argonne LCF and MCS, UC Berkeley and UTexas

8 May 2012

Jeff Hammond Charm++ workshop

Abstract (for posterity)

Quantum chemistry applications have long been associated with irregular

communication patterns and load-balancing, which motivated the development

of Global Arrays (GA), the Distributed Data Interface (DDI) and, more

recently, the Super Instruction Assembly Language (SIAL), which form the

basis for essentially all parallel implementations of wavefunction-based quantum

chemistry methods, as found in codes like NWChem, GAMESS, ACES III and

others. In this talk, the mathematical and algorithmic fundamentals of a

popular family of quantum chemistry methods known as coupled-cluster

methods and various parallelization schemes associated with their

implementation for supercomputers. First, the aforementioned runtimes (GA,

DDI, SIAL) will be compared to Charm++ on various axes, including

asynchronous communication, dynamic load-balancing, data decomposition,

and topology awareness. Second, we describe the Cyclops Tensor Framework,

which is a completely new approach to coupled-cluster methods that uses some

of the key concepts found in Charm++. Finally, a case is made for using

Charm++ to implement reduced-scaling coupled cluster methods.

Jeff Hammond Charm++ workshop

Atomistic simulation in chemistry

1 classical molecular dynamics (MD) with
empirical potentials

2 quantum molecular dynamics based upon
density-function theory (DFT)

3 quantum chemistry with wavefunctions
e.g. perturbation theory (PT), coupled-cluster
(CC) or quantum monte carlo (QMC).

Jeff Hammond Charm++ workshop

Classical molecular dynamics

Image courtesy of Benôıt Roux via ALCF.

Solves Newton’s equations of
motion with empirical terms and
classical electrostatics.

Size: 100K-10M atoms

Time: 1-10 ns/day

Scaling: ∼ Natoms

Math: N-body

Data from K. Schulten, et al. “Biomolecular modeling in the era of

petascale computing.” In D. Bader, ed., Petascale Computing:

Algorithms and Applications.

Jeff Hammond Charm++ workshop

Car-Parrinello molecular dynamics

Image courtesy of Giulia Galli via ALCF.

Forces obtained from solving an
approximate single-particle
Schrödinger equation.

Size: 100-1000 atoms

Time: 0.01-1 ps/day

Scaling: ∼ Nx
el (x=1-3)

Math: FFT, eigensolve.

F. Gygi, IBM J. Res. Dev. 52, 137 (2008); E. J. Bylaska et al. J.

Phys.: Conf. Ser. 180, 012028 (2009).

Jeff Hammond Charm++ workshop

Wavefunction theory

,

MP2 is second-order PT and is accurate via
magical cancellation of error.

CC is infinite-order solution to many-body
Schrödinger equation truncated via clusters.

QMC is Monte Carlo integration applied to
the Schrödinger equation.

Size: 10-100 atoms, maybe 100-1000 atoms
with MP2.

Time: N/A (LOL)

Scaling: ∼ Nx
bf (x=4-7)

Math: DLA (tensors)

Image courtesy of Karol Kowalski and Niri Govind.

Jeff Hammond Charm++ workshop

Basic Quantum Chemistry

Jeff Hammond Charm++ workshop

The Fock build

Pseudocode for Fij = V ij
klDkl :

for i,j,k,l:

if symmetry criteria(i,j,k,l):

if dynamic load balancer(me):

if schwartz criteria(i,j,k,l):

Get block d(k,l) from D

Compute v(i,j,k,l)

f(i,j) += v(i,j,k,l) * d(k,l)

Accumulate f(i,j) to F

Time to compute v(i , j , k , l) varies wildly, Schwartz screening adds
irregularity.

Jeff Hammond Charm++ workshop

The SCF iterations

Build Fock matrix, solve generalized eigenvalue problem,
repeat until converged.

Direct algorithms replaced out-of-core storage of V (Almlöf).

Replicated F with allreduce is now common but not
weak-scalable.

Until MPI-3 is widely available, dynamic load-balancing is
unpleasant.

Jeff Hammond Charm++ workshop

Enter magic runtimes

Global Arrays (GA) emerged before MPI-1 was settled,
inspired by Linda and building upon TCGMSG, and was
codesigned with NWChem from the beginning. ARMCI
emerged later.

DDI is a reimplementation of GA for GAMESS but lacks math
abstractions (e.g. ScaLAPACK wrappers) that are probably
unappreciated by most computer scientists.

SIAL emerged much later as part of ACES III. Adopts many
concepts from TCE but uses DSL-based abstraction to reduce
runtime demands (MPI-1 and polling but could easily use
ARMCI).

Jeff Hammond Charm++ workshop

Magic runtime properties I

Asynchrony: GA/ARMCI true passive-target progress,
supports nonblocking; DDI has half the processes
(oversubscribed 2x) in MPI polling loop; SIAL, like UPC and
Charm++, doesn’t need strong progress.

Interoperability: GA/ARMCI works fine with MPI (dupes
world now); DDI (ab)uses world; SIAL DSL seems
incompatible with MPI but this is solvable.

Load-balancing: GA and DDI use same (dumb)
NXTVAL-style DLB, although Scioto and now Tascel address
this. SIAL has both static and dynamic algorithms.

Jeff Hammond Charm++ workshop

Magic runtime properties II

Hierarchical parallelism: no support for topology-aware
anything except for intra/internode. To be fair,
MPI {Cart,Graph} create aren’t perfect.

Data-distribution: GA supports standard, user-defined and
chemistry-specific distributions; DDI was 1D last time I
looked; SIAL supernumber concept is basically identical to
TCE tiling and hashing.

Phases: GA doesn’t support MSA-style explicit epochs (yet)
but user can implement caching (QMCPACK/Einspline and
Jim’s IPDPS 2012) and replication. Breaking BSP via GA
sync bypass is special . . .

Jeff Hammond Charm++ workshop

Coupled-cluster theory

Jeff Hammond Charm++ workshop

Coupled-cluster theory

The coupled–cluster (CC) wavefunction ansatz is

|CC 〉 = eT |HF 〉

where T = T1 + T2 + · · ·+ Tn.

T is an excitation operator which promotes n electrons from
occupied orbitals to virtual orbitals in the Hartree-Fock Slater
determinant.

Inserting |CC 〉 into the Schödinger equation:

ĤeT |HF 〉 = ECCe
T |HF 〉 Ĥ|CC 〉 = ECC |CC 〉

Jeff Hammond Charm++ workshop

Coupled-cluster theory

|CC 〉 = exp(T)|0〉
T = T1 + T2 + · · ·+ Tn (n # N)

T1 =
∑

ia

tai â
†
aâi

T2 =
∑

ijab

tabij â†aâ
†
bâj âi

|ΨCCD〉 = exp(T2)|ΨHF 〉
= (1 + T2 + T 2

2)|ΨHF 〉
|ΨCCSD〉 = exp(T1 + T2)|ΨHF 〉

= (1 + T1 + · · ·+ T 4
1 + T2 + T 2

2 + T1T2 + T 2
1T2)|ΨHF 〉

Jeff Hammond Charm++ workshop

Coupled-cluster theory

Projective solution of CC:

ECC = 〈HF |e−THeT |HF 〉
0 = 〈X |e−THeT |HF 〉 (X = S ,D, . . .)

CCD is:
ECC = 〈HF |e−T2HeT2 |HF 〉

0 = 〈D|e−T2HeT2 |HF 〉

CCSD is:
ECC = 〈HF |e−T1−T2HeT1+T2 |HF 〉

0 = 〈S |e−T1−T2HeT1+T2 |HF 〉
0 = 〈D|e−T1−T2HeT1+T2 |HF 〉

Jeff Hammond Charm++ workshop

Notation

H = H1 + H2

= F + V

F is the Fock matrix. CC only uses the diagonal in the canonical
formulation.

V is the fluctuation operator and is composed of two-electron
integrals as a 4D array.

V has 8-fold permutation symmetry in V rs
pq and is divided into six

blocks: V kl
ij , V

ka
ij , V jb

ia , V
ab
ij , V bc

ia , V cd
ab .

Indices i , j , k , . . . (a, b, c , . . .) run over the occupied (virtual)
orbitals.

Jeff Hammond Charm++ workshop

CCD Equations

Rab
ij = V ab

ij + P(ia, jb)

[
T ae
ij I be − T ab

im Imj +
1

2
V ab
ef T

ef
ij +

1

2
T ab
mnI

mn
ij − T ae

mj I
mb
ie − Ima

ie T eb
mj + (2T ea

mi − T ea
im)Imb

ej

]

I ab = (−2Vmn
eb + Vmn

be)T ea
mn

I ij = (2Vmi
ef − V im

ef)T
ef
mj

I ijkl = V ij
kl + V ij

ef T
ef
kl

I iajb = V ia
jb − 1

2
V im
eb T

ea
jm

I iabj = V ia
bj + V im

be (T
ea
mj −

1

2
T ae
mj)−

1

2
Vmi
be T

ae
mj

Jeff Hammond Charm++ workshop

Turning CC into GEMM 1

Some tensor contractions are
trivially mapped to GEMM:

I ijkl + = V ij
ef T

ef
kl

I (ij)(kl) + = V (ij)
(ef)T

(ef)
(kl)

I ba + = V b
c T

c
a

Other contractions require
reordering to use BLAS:

I iabj + = V im
be T

ea
mj

Ibj ,ia + = Vbe,imTmj ,ea

Jbi ,ja + = Wbi ,meUme,ja

J jabi + = Wme
bi U ja

me

J(ja)(bi) + = W (me)
(bi) U(ja)

(me)

Jzx + = W y
x U

z
y

Jeff Hammond Charm++ workshop

Turning CC into GEMM 2

Reordering can take as much time as GEMM in the node-level
implementation (e.g. NWChem). Why?

Routine flops mops pipelined
GEMM O(mnk) O(mn +mk + kn) yes
reorder 0 O(mn +mk + kn) no

Increased memory bandwidth on GPU makes reordering less
expensive (compare matrix transpose).

(There is a chapter in my thesis with profiling results and more
details if anyone cares.)

Jeff Hammond Charm++ workshop

Tensor Contraction Engine

Jeff Hammond Charm++ workshop

Tensor Contraction Engine

What does it do?

1 GUI input quantum many-body theory e.g. CCSD.

2 Operator specification of theory (as in a theory paper).

3 Apply Wick’s theory to transform operator expressions into
array expressions (as in a computational paper).

4 Transform input array expression to operation tree using many
types of optimization (i.e. compile).

5 Generate F77/GA/NXTVAL implementation for NWChem or
C++/MemoryGrp for MPQC or F90/.. for UTChem.

Developer can intercept at various stages to modify theory,
algorithm or implementation (may be painful).

Jeff Hammond Charm++ workshop

TCE Input

We get 73 lines of serial F90 or 604 lines of parallel F77 from this:

1/1 Sum(g1 g2 p3 h4) f(g1 g2) t(p3 h4) {g1+ g2}{p3+ h4}
1/4 Sum(g1 g2 g3 g4 p5 h6) v(g1 g2 g3 g4) t(p5 h6) {g1+
g2+ g4 g3}{p5+ h6}
1/16 Sum(g1 g2 g3 g4 p5 p6 h7 h8) v(g1 g2 g3 g4) t(p5 p6
h7 h8) {g1+ g2+ g4 g3}{p5+ p6+ h8 h7}
1/8 Sum(g1 g2 g3 g4 p5 h6 p7 h8) v(g1 g2 g3 g4) t(p5 h6)

t(p7 h8) {g1+ g2+ g4 g3}{p5+ h6} {p7+ h8}

LaTeX equivalent of the first term:

∑

g1,g2,p3,h4

fg1,g2tp3,h4{g
†
1g2}{p

†
3h4}

Jeff Hammond Charm++ workshop

Summary of TCE module

http://cloc.sourceforge.net v 1.53 T=30.0 s

Language files blank comment code

Fortran 77 11451 1004 115129 2824724

SUM: 11451 1004 115129 2824724

Perhaps <25 KLOC are hand-written; ∼100 KLOC is utility code
following TCE data-parallel template.

Expansion from TCE input to massively-parallel F77 is ∼ 200
(drops with language abstractions).

Jeff Hammond Charm++ workshop

TCE template

Pseudocode for Ra,b
i ,j = T c,d

i ,j ∗ V c,d
a,b :

for i,j in occupied blocks:

for a,b in virtual blocks:

for c,d in virtual blocks:

if symmetry criteria(i,j,a,b,c,d):

if dynamic load balancer(me):

Get block t(i,j,c,d) from T

Permute t(i,j,c,d)

Get block v(a,b,c,d) from V

Permute v(a,b,c,d)

r(i,j,c,d) += t(i,j,c,d) * v(a,b,c,d)

Permute r(i,j,a,b)

Accumulate r(i,j,a,b) block to R

Jeff Hammond Charm++ workshop

TCE profile

ccsd t2 8 (DGEMM-like):

timer min max avg
dgemm 68.605 91.296 81.282
ga acc 0.042 0.070 0.050
ga get 5.845 7.779 6.679
nxtask 0.012 28.710 13.638
tce sort4 6.184 8.174 7.347

tce sortacc4 7.892 11.042 9.290

nxtask timings are a Blue Gene/P artifact and should be ignored.

Jeff Hammond Charm++ workshop

Observations about the TCE template

1 Blocking get means no overlap.
(fix with double buffering but memory usage increases)

2 Dynamic load balancing is global shared counter.
(see next talk)

3 Get+Permute of t(i,j,c,d)/v(a,b,c,d) for all (a,b)/(i,j).
(data-affinity + reuse or global permute)

4 Permute is a nasty operation.
(need fused contraction at DGEMM speed)

There are an uncountable number of missing optimizations in any
scientific code. NWChem is certainly not special in this regard.

Some of these issues hurt more on Blue Gene than COTS. . .

Jeff Hammond Charm++ workshop

TCE Template for MMM

Pseudocode for C i
j = Ai

k ∗ Bk
j :

for i in I blocks:

for j in J blocks:

for k in K blocks:

if dynamic load balancer(me):

Get block a(i,k) from A

Get block b(k,j) from B

c(i,j) += a(i,k) * b(k,j)

Accumulate c(i,j) block to C

This is clearly not the best way to do MMM!

Jeff Hammond Charm++ workshop

A better way

Adopt the TCE node kernel approach in parallel:
tensor contraction = permute + matmul.

Parallel permute = parallel sorting = well-understood.

Parallel matmul = well-understood.

Therefore, parallel tensor contractions are solved, up to the
implementation details and future algorithm developments in
sorting and matmul.

All existing TCE technology for higher-level optimizations are still
valid. Our abstraction provides a much cleaner performance model
for TCE to target.

Jeff Hammond Charm++ workshop

Cyclops Tensor Framework

Edgar Solomonik (PPL alum) develops CTF.

Upper-level interface and CC codes by Devin Matthews (UTexas).

Jeff Hammond Charm++ workshop

Cyclops Tensor Framework

Can we apply the absolute state-of-the-art in dense matrix
algorithms to tensors without much difficulty (and thereby
capture all previous develops with respect to communication
minimization, topology-awareness, numerical precision and
fault-detection)?

Can we completely eliminate the irregularity associated with
permutation symmetry and irregular blocking that create a
signficant load-balancing challenge?

Can we do it without sacrificing any of the productivity of
high-level abstractions as found in TCE?

Jeff Hammond Charm++ workshop

Data decompositions

Jeff Hammond Charm++ workshop

Data decompositions

Triangle of squares or square of triangles?
i.e. DGEMM vs. topo (triangle network topology anyone?)

  



If you fold the triangle into a rectangle, what does the
communication topology look like?

Jeff Hammond Charm++ workshop

Data decompositions

Calculate memory overhead for square tiling in 4D, 6D, 8D.
Triangle-pack surface tiles and lose DGEMM. . .

Jeff Hammond Charm++ workshop

Performance

Note: 6D and 8D are actually more difficult cases than found in
CCSDT and CCSDTQ, but they represent that CTF can exploit all
the symmetry available in both the inner and outer indices.

 16

 64

 256

 1024

 4096

 16384

32 64 128 256 512 1024

G
ig

af
lo

ps

#cores

Cyclops TF weak scaling on XE6

theoretical peak
4D sym (CCSD)

6D sym (CCSDT)
8D sym (CCSDTQ)

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

1024 2048 4096 8192
G

ig
af

lo
ps

#cores

Cyclops TF weak scaling on BG/P

theoretical peak
4D sym (CCSD)

6D sym (CCSDT)
8D sym (CCSDTQ)

Have not had time to look at BGP 8D scaling issues; likely due to
weird dimensions.

Jeff Hammond Charm++ workshop

Science

CCD is already running. This is what the code looks like:

void calcE(DistTensor & T2AA, DistTensor & T2AB, DistTensor & T2BB,
DistTensor & TTAA, DistTensor & TTAB, DistTensor & TTBB,
DistTensor & VABIJAA, DistTensor & VABIJAB, DistTensor & VABIJBB,
DistTensor & D2AA, DistTensor & D2AB, DistTensor & D2BB,
DistTensor & Z2AA, DistTensor & Z2AB, DistTensor & Z2BB,
DistTensor & E CCD)

{
TTAA["ABIJ"] = Z2AA["ABIJ"]*D2AA["ABIJ"];
TTAB["AbIj"] = Z2AB["AbIj"]*D2AB["AbIj"];
TTBB["abij"] = Z2BB["abij"]*D2BB["abij"];

E CCD = VABIJAA["ABIJ"]*TTAA["ABIJ"];
E CCD += VABIJAB["AbIj"]*TTAB["AbIj"];
E CCD += VABIJBB["abij"]*TTBB["abij"];

TTAA["ABIJ"] -= T2AA["ABIJ"];
TTAB["AbIj"] -= T2AB["AbIj"];
TTBB["abij"] -= T2BB["abij"];

T2AA["ABIJ"] += TTAA["ABIJ"];
T2AB["AbIj"] += TTAB["AbIj"];
T2BB["abij"] += TTBB["abij"];

}

Can you find the code corresponding to ECCD = V ab
ij ∗ T ab

ij ?

Jeff Hammond Charm++ workshop

Summary

CTF is perfectly statically load-balanced thanks to cyclic
distribution.

CTF can immediately utilize SUMMA, Cannon, Strassen,
2.5D, etc. dense MMM.

No automatic code generation but Devin’s interface makes
writing CC almost trivial. Each permutation-unique term is
one line of code.

We’re not out of the woods yet. . .

Nontrivial integer computation in parallel redistribution code.

Still exploring virtualization dimensions and thread parallelism.

Not bad given that this project began in May 2011 and is
unfunded except for DOE-CSGF (Edgar and Devin).

Jeff Hammond Charm++ workshop

Reduced-scaling coupled-cluster

Jeff Hammond Charm++ workshop

Acknowledgments

Jeff Hammond Charm++ workshop

