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The Charm++ stack

 Runtime goodies sit on top 
of LRTS, an abstraction of 
the underlying network API.

– LrtsSendFunc

– LrtsAdvanceCommunication

– Choice of native API (uGNI, DCMF, 
etc) and MPI.

(Sun et al., IPDPS '12)
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Why use MPI as the network engine

 Vendor-tuned MPI implementation from day 0.
– Continued development over machine's life-time.

 Prioritizing development.
– Charm's distinguishing features sit above this level.

 Reduce resource usage redundancy in MPI interoperability.



R. Gunter, D. Goodell, J. Dinan, P. Balaji

4

Why not use MPI as the network engine

 Unoptimized default machine layer implementation.
– In non-SMP, communication will stall computation on the rank.

● Many chares are mapped to the same MPI rank.

– In SMP, incoming messages are serialized.

 Charm++'s semantics don't play well with MPI's.
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The inadequacy of MPI matching for Charm++

 Native APIs have no concept of source/tag/datatype 
matching

– Neither does Charm, but MPI doesn't know it (if using 
Send/Recv)

– One-sided semantics avoid matching.
● Can write directly to desired user buffer.
● Same for rendezvous-based two-sided MPI, but with a 

receiver synchronization trade-off.
● Most importantly, it can happen with little to no 

receiver-side cooperation.
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Leveling the field

 Analyzed implementation inefficiencies and semantic 
mismatches.

1.MPI implementation issues
1.MPI's unexpected message queue

2.Charm++ over MPI implementation issues
1.MPI Progress frequency
2.Using MPI Send/Recv vs. MPI one-sided

3.Semantics mismatches
1.MPI tuning for expected vs. unexpected messages

✗

✗
✓

✓
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1) Length of MPI's unexpected message queue

 Unexpected messages (no matching Recv) have a twofold 
cost.

– memcpy from temp to user buffer.
– Unnecessary message queue searches.
– Part of why there's an eager and a rendezvous protocol.

 Tested using MPI_T, a new MPI-3 interface for performance 
profiling and tuning. 

– Internal counter keeps track of queue length.
– Refer to section 14.3 of the standard.

✗
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1) Length of MPI's unexpected message queue

 Arguably has no significant impact on performance.
– Default uses MPI_ANY_TAG and MPI_ANY_SOURCE, 

meaning MPI_Recv only looks at the head.
– No need for dynamic tag shuffling (another option in the 

machine layer).
– Only affects eager messages.

● Bulk of rendezvous messages is handled as if 
expected.

✗



R. Gunter, D. Goodell, J. Dinan, P. Balaji

12

1) Mprobe/Mrecv instead of Iprobe/Recv.

 In schemes with multiple tags, MPI_Iprobe + MPI_Recv 
walks the queue twice.

 MPI_Mprobe instead deletes entry from queue and outputs a 
handle to it, used by MPI_Mrecv.

 No advantage with double wildcard matching.
 Reduced critical section may help performance with multiple 

commthreads.

✗
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2) MPI progress engine frequency

 In Charm, failed Iprobe calls drive MPI's progress engine.
– Pointless spinning around if are no incoming messages.

 Tried reducing calling frequency to 1/16-1/32th of the default 
rate.

– Reduces unexpected queue length.
– Little to no benefit.

● Network may need it to kickstart communication.

✗
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3) Eager/rendezvous threshold ✓
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3) Eager/rendezvous threshold

 Builds on idea of asynchrony.
– Rendezvous needs active participation from receiver.

 Forces use of preregistered temp buffers on some machines.
 Environment vars aren't the appropriate granularity.

– Implemented per-communicator threshold on MPICH.
● Specified using info hints (section 6.4.4).
● Each library may tune their communicator differently.
● Particularly useful with hybrid MPI/charm apps.
● Available starting from MPICH 3.0.4.

✓
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4) Send/Recv vs one-sided machine layer

 Implemented machine layer using MPI-3 RMA to 
generalize what native layers do.

– Dynamic windows (attaching buffers non-collectively);
– Multi-target locks (MPI_Win_lock_all);
– Request-based RMA Get (MPI_Rget).
– Based on “control message” scheme.

● Sends small messages directly; larger ones happen 
via MPI-level RMA.

– Handles multiple incoming messages concurrently.
– Can't be tested yet for performance.

● IBM and Cray MPICH don't currently support MPI-3.

✓



R. Gunter, D. Goodell, J. Dinan, P. Balaji

17

Current workarounds using MPI-2

 Blue Gene/Q: use the pamilrts buffer pool and 
preposted MPI_Irecvs (toggle MPI_POST_RECV on 
machine.c to 1).

– Interconnect seems to be more independent from 
software for RDMA

● Preposting MPI_Irecv help it handle multiple 
incoming messages.

 Cray XE6 (and InfiniBand clusters): increase eager 
threshold to a reasonably large size.

– Cray's eager (E1) and rendezvous (R0) protocols differ 
mostly in their usage of preregistered buffers.
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Future work.

 Fully integrate one-sided 
machine layer with charm.

 No convincing explanation 
yet for ibverbs/MVAPICH 
difference.

 Hybrid benchmark for 
per-communicator 
eager/rendezvous thresholds 
on Cray.
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Conclusions

 There's more to MPI slowdown than just “overhead”.
– Mismatch of MPI with Charm semantics is a better 

story.
 Specific MPI-2 techniques per machine.

– May not be portable, like eager/rendezvous threshold for 
Cray XE6 vs preposted Irecv for Blue Gene/Q.

 Send/Recv machine layer should be replaced with 
one-sided version once MPI-3 is broadly available.
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3) Send/Recv vs one-sided machine layer

 One-sided communication 
better suits charm's 
asynchrony.

– Send/Recv puts too 
much burden on 
receiver.

– All native machine 
layers take advantage 
of this.

(Sun et al., IPDPS '12)
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3) Send/Recv vs one-sided machine layer

 Vendor-supplied MPI 
implementations already do 
this internally.

 Two-sided matching 
semantics are just 
inappropriate.

– “Tuned” for expected 
messages.

– Blue Gene/Q suffers from 
serialization because of 
Send/Recv.

(Cray Inc., PRACE '12)
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