
R. Gunter, D. Goodell, J. Dinan, P. Balaji

Optimizing Charm++ over MPI

Ralf Gunter,
David Goodell, James Dinan, Pavan Balaji
April 15, 2013

Programming Models and Runtime Systems Group
Mathematics and Computer Science Division
Argonne National Laboratory

rgunter@mcs.anl.gov

11th Charm++ workshop



R. Gunter, D. Goodell, J. Dinan, P. Balaji

2

The Charm++ stack

 Runtime goodies sit on top 
of LRTS, an abstraction of 
the underlying network API.

– LrtsSendFunc

– LrtsAdvanceCommunication

– Choice of native API (uGNI, DCMF, 
etc) and MPI.

(Sun et al., IPDPS '12)



R. Gunter, D. Goodell, J. Dinan, P. Balaji

3

Why use MPI as the network engine

 Vendor-tuned MPI implementation from day 0.
– Continued development over machine's life-time.

 Prioritizing development.
– Charm's distinguishing features sit above this level.

 Reduce resource usage redundancy in MPI interoperability.



R. Gunter, D. Goodell, J. Dinan, P. Balaji

4

Why not use MPI as the network engine

 Unoptimized default machine layer implementation.
– In non-SMP, communication will stall computation on the rank.

● Many chares are mapped to the same MPI rank.

– In SMP, incoming messages are serialized.

 Charm++'s semantics don't play well with MPI's.



R. Gunter, D. Goodell, J. Dinan, P. Balaji

5

Why use MPI as the network engine

 Vendor-tuned MPI implementation from day 0.
– Continued development over machine's life-time.

 Prioritizing development.
– Charm's distinguishing features sit above this level.

 Reduce resource usage redundancy in MPI interoperability.



R. Gunter, D. Goodell, J. Dinan, P. Balaji

6

Why not use MPI as the network engine
Lo

w
er

 is
 b

et
te

r

Lo
w

er
 is

 b
et

te
r 

fo
r 

M
P

I



R. Gunter, D. Goodell, J. Dinan, P. Balaji

7

Why not use MPI as the network engine
Lo

w
er

 is
 b

et
te

r

Lo
w

er
 is

 b
et

te
r 

fo
r 

M
P

I



R. Gunter, D. Goodell, J. Dinan, P. Balaji

8

The inadequacy of MPI matching for Charm++

 Native APIs have no concept of source/tag/datatype 
matching

– Neither does Charm, but MPI doesn't know it (if using 
Send/Recv)

– One-sided semantics avoid matching.
● Can write directly to desired user buffer.
● Same for rendezvous-based two-sided MPI, but with a 

receiver synchronization trade-off.
● Most importantly, it can happen with little to no 

receiver-side cooperation.



R. Gunter, D. Goodell, J. Dinan, P. Balaji

9

Leveling the field

 Analyzed implementation inefficiencies and semantic 
mismatches.

1.MPI implementation issues
1.MPI's unexpected message queue

2.Charm++ over MPI implementation issues
1.MPI Progress frequency
2.Using MPI Send/Recv vs. MPI one-sided

3.Semantics mismatches
1.MPI tuning for expected vs. unexpected messages

✗

✗
✓

✓



R. Gunter, D. Goodell, J. Dinan, P. Balaji

10

1) Length of MPI's unexpected message queue

 Unexpected messages (no matching Recv) have a twofold 
cost.

– memcpy from temp to user buffer.
– Unnecessary message queue searches.
– Part of why there's an eager and a rendezvous protocol.

 Tested using MPI_T, a new MPI-3 interface for performance 
profiling and tuning. 

– Internal counter keeps track of queue length.
– Refer to section 14.3 of the standard.

✗



R. Gunter, D. Goodell, J. Dinan, P. Balaji

11

1) Length of MPI's unexpected message queue

 Arguably has no significant impact on performance.
– Default uses MPI_ANY_TAG and MPI_ANY_SOURCE, 

meaning MPI_Recv only looks at the head.
– No need for dynamic tag shuffling (another option in the 

machine layer).
– Only affects eager messages.

● Bulk of rendezvous messages is handled as if 
expected.

✗



R. Gunter, D. Goodell, J. Dinan, P. Balaji

12

1) Mprobe/Mrecv instead of Iprobe/Recv.

 In schemes with multiple tags, MPI_Iprobe + MPI_Recv 
walks the queue twice.

 MPI_Mprobe instead deletes entry from queue and outputs a 
handle to it, used by MPI_Mrecv.

 No advantage with double wildcard matching.
 Reduced critical section may help performance with multiple 

commthreads.

✗



R. Gunter, D. Goodell, J. Dinan, P. Balaji

13

2) MPI progress engine frequency

 In Charm, failed Iprobe calls drive MPI's progress engine.
– Pointless spinning around if are no incoming messages.

 Tried reducing calling frequency to 1/16-1/32th of the default 
rate.

– Reduces unexpected queue length.
– Little to no benefit.

● Network may need it to kickstart communication.

✗



R. Gunter, D. Goodell, J. Dinan, P. Balaji

14

3) Eager/rendezvous threshold ✓



R. Gunter, D. Goodell, J. Dinan, P. Balaji

15

3) Eager/rendezvous threshold

 Builds on idea of asynchrony.
– Rendezvous needs active participation from receiver.

 Forces use of preregistered temp buffers on some machines.
 Environment vars aren't the appropriate granularity.

– Implemented per-communicator threshold on MPICH.
● Specified using info hints (section 6.4.4).
● Each library may tune their communicator differently.
● Particularly useful with hybrid MPI/charm apps.
● Available starting from MPICH 3.0.4.

✓



R. Gunter, D. Goodell, J. Dinan, P. Balaji

16

4) Send/Recv vs one-sided machine layer

 Implemented machine layer using MPI-3 RMA to 
generalize what native layers do.

– Dynamic windows (attaching buffers non-collectively);
– Multi-target locks (MPI_Win_lock_all);
– Request-based RMA Get (MPI_Rget).
– Based on “control message” scheme.

● Sends small messages directly; larger ones happen 
via MPI-level RMA.

– Handles multiple incoming messages concurrently.
– Can't be tested yet for performance.

● IBM and Cray MPICH don't currently support MPI-3.

✓



R. Gunter, D. Goodell, J. Dinan, P. Balaji

17

Current workarounds using MPI-2

 Blue Gene/Q: use the pamilrts buffer pool and 
preposted MPI_Irecvs (toggle MPI_POST_RECV on 
machine.c to 1).

– Interconnect seems to be more independent from 
software for RDMA

● Preposting MPI_Irecv help it handle multiple 
incoming messages.

 Cray XE6 (and InfiniBand clusters): increase eager 
threshold to a reasonably large size.

– Cray's eager (E1) and rendezvous (R0) protocols differ 
mostly in their usage of preregistered buffers.



R. Gunter, D. Goodell, J. Dinan, P. Balaji

18

Nearest-neighbors results
Lo

w
er

 is
 b

et
te

r



R. Gunter, D. Goodell, J. Dinan, P. Balaji

19

Nearest-neighbors results
Lo

w
er

 is
 b

et
te

r



R. Gunter, D. Goodell, J. Dinan, P. Balaji

20

Nearest-neighbors results

H
ig

he
r 

is
 b

et
te

r 
fo

r 
M

P
I

Lo
w

er
 is

 b
et

te
r



R. Gunter, D. Goodell, J. Dinan, P. Balaji

21

Future work.

 Fully integrate one-sided 
machine layer with charm.

 No convincing explanation 
yet for ibverbs/MVAPICH 
difference.

 Hybrid benchmark for 
per-communicator 
eager/rendezvous thresholds 
on Cray.



R. Gunter, D. Goodell, J. Dinan, P. Balaji

22

Conclusions

 There's more to MPI slowdown than just “overhead”.
– Mismatch of MPI with Charm semantics is a better 

story.
 Specific MPI-2 techniques per machine.

– May not be portable, like eager/rendezvous threshold for 
Cray XE6 vs preposted Irecv for Blue Gene/Q.

 Send/Recv machine layer should be replaced with 
one-sided version once MPI-3 is broadly available.



R. Gunter, D. Goodell, J. Dinan, P. Balaji

Programming Models and Runtime Systems Group

Group Lead
– Pavan Balaji (scientist)

Current Staff Members
– James S. Dinan (postdoc)
– Antonio Pena (postdoc)
– Wesley Bland (postdoc)
– David J. Goodell (developer)
– Ralf Gunter (research 

associate)
– Yuqing Xiong (visiting 

researcher)

Upcoming Staff Members
– Huiwei Lu (postdoc)
– Yan Li (visiting postdoc)

Past Staff Members
– Darius T. Buntinas (developer)

Advisory Staff
– Rusty Lusk (retired)
– Marc Snir (director)
– Rajeev Thakur (deputy director)

External Collaborators 
(partial)

● Ahmad Afsahi, Queen’s, Canada
● Andrew Chien, U. Chicago
● Wu-chun Feng, Virginia Tech
● William Gropp, UIUC
● Jue Hong, SIAT, Shenzhen
● Yutaka Ishikawa, U. Tokyo, Japan

Current and Past Students
● Xiuxia Zhang (Ph.D.)
● Chaoran Yang (Ph.D.)
● Min Si (Ph.D.)
● Huiwei Lu (Ph.D.)
● Yan Li (Ph.D.)
● David Ozog (Ph.D.)
● Palden Lama (Ph.D.)
● Xin Zhao (Ph.D.)
● Ziaul Haque Olive (Ph.D.)
● Md. Humayun Arafat 

(Ph.D.)
● Qingpeng Niu (Ph.D.)
● Li Rao (M.S.)

● Lukasz Wesolowski (Ph.D.)
● Feng Ji (Ph.D.)
● John Jenkins (Ph.D.)
● Ashwin Aji (Ph.D.)
● Shucai Xiao (Ph.D.)
● Sreeram Potluri (Ph.D.)
● Piotr Fidkowski (Ph.D.)
● James S. Dinan (Ph.D.)
● Gopalakrishnan 

Santhanaraman (Ph.D.)
● Ping Lai (Ph.D.)
● Rajesh Sudarsan (Ph.D.)
● Thomas Scogland (Ph.D.)
● Ganesh Narayanaswamy (M.S.)

● Laxmikant Kale, UIUC
● Guangming Tan, ICT, Beijing
● Yanjie Wei, SIAT, Shenzhen
● Qing Yi, UC Colorado Springs
● Yunquan Zhang, ISCAS, Beijing
● Xiaobo Zhou, UC Colorado Springs



R. Gunter, D. Goodell, J. Dinan, P. Balaji

Acknowledgments

Funding Grant Providers

Infrastructure Providers



R. Gunter, D. Goodell, J. Dinan, P. Balaji

25

3) Send/Recv vs one-sided machine layer

 One-sided communication 
better suits charm's 
asynchrony.

– Send/Recv puts too 
much burden on 
receiver.

– All native machine 
layers take advantage 
of this.

(Sun et al., IPDPS '12)



R. Gunter, D. Goodell, J. Dinan, P. Balaji

26

3) Send/Recv vs one-sided machine layer

 Vendor-supplied MPI 
implementations already do 
this internally.

 Two-sided matching 
semantics are just 
inappropriate.

– “Tuned” for expected 
messages.

– Blue Gene/Q suffers from 
serialization because of 
Send/Recv.

(Cray Inc., PRACE '12)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22
	Programming Models and Runtime Systems Group
	Acknowledgments
	Slide 25
	Slide 26

