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Fault Tolerance Philosophy in Charm++

Our Philosophy

Keep progress rate despite failures
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Fault Tolerance Philosophy in Charm++

Optimize for the common case

Failures rarely bring down more than one node at a time

In Jaguar (now Titan, top 1 supercomputer), 92.27% of
failures are individual node crashes

So, our strategies are geared to handle all single-node failures
and most multi-node failures
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Fault Tolerance Philosophy in Charm++

Minimize performance overhead

Automatic restart:

Failure detection in runtime system
Immediate rollback-recovery

Parallel recovery

Faster checkpoint

Double in-memory checkpoint/restart

Semi-blocking checkpointing: asynchronously store the
checkpoint remotely
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Asynchronous Checkpoint/Restart

Blocking Checkpoint

NODE 1 

NODE 2 

barrier checkpoint done

𝜏blocking

βα
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τblocking checkpoint
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δblocking checkpoint
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Each node has a buddy node to store the checkpoint.

Resume computation after all the nodes have successfully
saved the checkpoints in their buddy nodes.
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Asynchronous Checkpoint/Restart

Semi-blocking Checkpointing

NODE 1 

NODE 2 

barrier local checkpoint 
done

remote checkpoint 
done
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Resume computation as soon as each node stores its own
checkpoint (local checkpoint).

Interleave the transmission of the checkpoint to buddy with
application execution (remote checkpoint).
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Asynchronous Checkpoint/Restart

Single Checkpoint Overhead
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Semi-Blocking checkpoint reduces checkpoint overhead
significantly.
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Asynchronous Checkpoint/Restart

Leveraging Solid State Drives

Solid State Drive: becoming increasingly available on
individual nodes

Full SSD strategy

Half SSD strategy

Only store remote checkpoint in SSD
Faster checkpoint and restart
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Asynchronous Checkpoint/Restart

Asynchronous Checkpointing to SSD with IO thread

worker 
thread

worker 
thread
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Write checkpoint to/Read
checkpoint from SSD
When receive request
from worker thread.
Notify worker thread
When SSD is done with
certain request.
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Asynchronous Checkpoint/Restart

Checkpoint/Restart on SSD
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reduces the timing penalty for
checkpointing to SSD

Restart from SSD does not incur extra
overhead
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Replication enhanced Checkpoint Restart

Outline

1 Fault Tolerance Philosophy in Charm++

2 Asynchronous Checkpoint/Restart

3 Replication enhanced Checkpoint Restart

13 / 25



Charm++ Workshop

Replication enhanced Checkpoint Restart

New challenge: soft error

Not just from cosmic rays

Computer electronic’s sensitivity to radiation increases as their
dimensions and operating voltage decreases because of the
requirements for high performance and low power.

What may happen if soft failure rate keeps increasing?
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Replication enhanced Checkpoint Restart

Partition framework in Charm++

Ranking

Local rank
Global rank

Inter-partition communication

CmiInterSyncSend(local rank, partition,
size, message)
CmiInterSyncSendAndFree(local rank,
partition, size, message)
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Replication enhanced Checkpoint Restart

Replication enhanced Fault Tolerance Overview

Periodic soft data corruption detection

Automatically correct soft error from checkpoint

Yes, there are benefits for hard failure!

No need for remote checkpointing
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Replication enhanced Checkpoint Restart

Replication enhanced Fault Tolerance Overview

Extension from the double in-memory checkpointing
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Replication enhanced Checkpoint Restart

Replication enhanced Fault Tolerance Overview

replica 1 replica 2
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Replication enhanced Checkpoint Restart

Initial Result: soft error detection overhead
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Replication enhanced Checkpoint Restart

Optimization

Topology aware mapping
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Replication enhanced Checkpoint Restart

Optimization

Checksum

Issue with checksum

How to handle floating point round off error?
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Replication enhanced Checkpoint Restart

Result: after optimization

 0

 0.5

 1

 1.5

 2

 2.5

 3

1k 2k 4k 8k 16k

T
im

e 
(s

)

Number of Cores per Replica

checkpoint
optimal mapping

checksum

Jacobi3D AMPI

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

1k 2k 4k 8k 16k

T
im

e 
(s

)

Number of Cores per Replica

checkpoint
optimal mapping

checksum

LeanMD

22 / 25



Charm++ Workshop

Replication enhanced Checkpoint Restart

Result: recovery from hard failures
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Thanks

Thanks!

Questions?
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