
Charm++ Workshop

Scalable in-memory checkpoint for hard and soft
error protection with automatic restart on failure

Xiang Ni

Parallel Programming Laboratory
University of Illinois at Urbana-Champaign

May, 2013

1 / 25

Charm++ Workshop

Fault Tolerance Philosophy in Charm++

Outline

1 Fault Tolerance Philosophy in Charm++

2 Asynchronous Checkpoint/Restart

3 Replication enhanced Checkpoint Restart

2 / 25

Charm++ Workshop

Fault Tolerance Philosophy in Charm++

Our Philosophy

Keep progress rate despite failures

Time

P
ro

gr
es

s

Fault Tolerance Support

No Fault Tolerance Support

100%

Slowdown

Checkpoint

Failure

Recovery

P
o
w

er

TimeFailure

Checkpoint Checkpoint
Recovery

Optimize for the common case

Minimize performance overhead
3 / 25

Charm++ Workshop

Fault Tolerance Philosophy in Charm++

Optimize for the common case

Failures rarely bring down more than one node at a time

In Jaguar (now Titan, top 1 supercomputer), 92.27% of
failures are individual node crashes

So, our strategies are geared to handle all single-node failures
and most multi-node failures

 0.1

 1

 10

 100

System 12 System 18 System 19 System 20 System 21 MPP2 Tsubame Mercury

Fr
eq

ue
nc

y
(%

)

1 node 2 nodes 3 nodes 4 nodes > 4 nodes

4 / 25

Charm++ Workshop

Fault Tolerance Philosophy in Charm++

Minimize performance overhead

Automatic restart:

Failure detection in runtime system
Immediate rollback-recovery

Parallel recovery

Faster checkpoint

Double in-memory checkpoint/restart

Semi-blocking checkpointing: asynchronously store the
checkpoint remotely

Node A Node B Node C

! " #

! " #

$ %

& '

& '

! " #

$ %

$ %

& '

Objects

 Remote
Checkpoint

 Local
Checkpoint

B is the buddy of A

5 / 25

Charm++ Workshop

Fault Tolerance Philosophy in Charm++

Minimize performance overhead

Automatic restart:

Failure detection in runtime system
Immediate rollback-recovery

Parallel recovery

Faster checkpoint

Double in-memory checkpoint/restart
Semi-blocking checkpointing: asynchronously store the
checkpoint remotely

5 / 25

Charm++ Workshop

Asynchronous Checkpoint/Restart

Outline

1 Fault Tolerance Philosophy in Charm++

2 Asynchronous Checkpoint/Restart

3 Replication enhanced Checkpoint Restart

6 / 25

Charm++ Workshop

Asynchronous Checkpoint/Restart

Blocking Checkpoint

NODE 1

NODE 2

barrier checkpoint done

𝜏blocking

βα

β α

𝛿blocking

τblocking checkpoint
interval

δblocking checkpoint
overhead

Each node has a buddy node to store the checkpoint.

Resume computation after all the nodes have successfully
saved the checkpoints in their buddy nodes.

7 / 25

Charm++ Workshop

Asynchronous Checkpoint/Restart

Semi-blocking Checkpointing

NODE 1

NODE 2

barrier local checkpoint
done

remote checkpoint
done

𝛳

βα

β

𝛿 φ
𝜏

α

τ checkpoint interval
δ local checkpoint overhead
θ overlap period
ϕ remote checkpoint interference

Resume computation as soon as each node stores its own
checkpoint (local checkpoint).

Interleave the transmission of the checkpoint to buddy with
application execution (remote checkpoint).

8 / 25

Charm++ Workshop

Asynchronous Checkpoint/Restart

Single Checkpoint Overhead

 0

 10

 20

 30

 40

 50

 60

 70

128 256 512 1024

Ch
ec

kp
oi

nt
 O

ve
rh

ea
d(

s)

Number of Cores

blocking checkpoint
semi blocking checkpoint

Wave2D Weak Scaling

 0

 5

 10

 15

 20

 25

 30

 35

 40

128 256 512 1024

Ch
ec

kp
oi

nt
 O

ve
rh

ea
d(

s)

Number of Cores

blocking checkpoint
semi blocking checkpoint

ChaNGa Strong Scaling

Semi-Blocking checkpoint reduces checkpoint overhead
significantly.

9 / 25

Charm++ Workshop

Asynchronous Checkpoint/Restart

Leveraging Solid State Drives

Solid State Drive: becoming increasingly available on
individual nodes

Full SSD strategy

Half SSD strategy

Only store remote checkpoint in SSD
Faster checkpoint and restart

10 / 25

Charm++ Workshop

Asynchronous Checkpoint/Restart

Asynchronous Checkpointing to SSD with IO thread

worker
thread

worker
thread

worker
thread

worker
thread

IO
thread

write
to
SSD

SSD
request

Checkpoint
finishes

IO threads

Write checkpoint to/Read
checkpoint from SSD
When receive request
from worker thread.
Notify worker thread
When SSD is done with
certain request.

11 / 25

Charm++ Workshop

Asynchronous Checkpoint/Restart

Checkpoint/Restart on SSD

 0

 5

 10

 15

 20

 25

 30

0.45 1.34 2.23

Ti
m

in
g

Pe
na

lty
(s

)

Checkpoint Size/Node(GB)

half−aio
full−aio
half−sio
full−sio

 5

 10

 15

 20

 25

 30

 35

 40

 45

0.45 1.34 2.23

R
es

ta
rt

Ti
m

e(
s)

Checkpoint Size/Node(GB)

in−memory
half−aio
full−aio

Half SSD strategy with asynchronous IO
reduces the timing penalty for
checkpointing to SSD

Restart from SSD does not incur extra
overhead

aio asynchronous IO
sio synchronous IO

12 / 25

Charm++ Workshop

Replication enhanced Checkpoint Restart

Outline

1 Fault Tolerance Philosophy in Charm++

2 Asynchronous Checkpoint/Restart

3 Replication enhanced Checkpoint Restart

13 / 25

Charm++ Workshop

Replication enhanced Checkpoint Restart

New challenge: soft error

Not just from cosmic rays

Computer electronic’s sensitivity to radiation increases as their
dimensions and operating voltage decreases because of the
requirements for high performance and low power.

What may happen if soft failure rate keeps increasing?

1

10

100

1000

10000

2K 4K 8K 16K 32K 64K 128K256K512K1024K

FI
T

 r
at

e
(s

of
t

da
ta

 c
or

ru
pt

io
n)

Number of Sockets

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

V
ul

ne
ra

bi
lit

y

14 / 25

Charm++ Workshop

Replication enhanced Checkpoint Restart

Partition framework in Charm++

Ranking

Local rank
Global rank

Inter-partition communication

CmiInterSyncSend(local rank, partition,
size, message)
CmiInterSyncSendAndFree(local rank,
partition, size, message)

15 / 25

Charm++ Workshop

Replication enhanced Checkpoint Restart

Partition framework in Charm++

Ranking

Local rank
Global rank

Inter-partition communication

CmiInterSyncSend(local rank, partition,
size, message)
CmiInterSyncSendAndFree(local rank,
partition, size, message)

15 / 25

Charm++ Workshop

Replication enhanced Checkpoint Restart

Partition framework in Charm++

Ranking

Local rank
Global rank

Inter-partition communication

CmiInterSyncSend(local rank, partition,
size, message)
CmiInterSyncSendAndFree(local rank,
partition, size, message)

15 / 25

Charm++ Workshop

Replication enhanced Checkpoint Restart

Replication enhanced Fault Tolerance Overview

Periodic soft data corruption detection

Automatically correct soft error from checkpoint

Yes, there are benefits for hard failure!

No need for remote checkpointing

16 / 25

Charm++ Workshop

Replication enhanced Checkpoint Restart

Replication enhanced Fault Tolerance Overview

Extension from the double in-memory checkpointing

Node A Node B

! " #

! " #

$ %

$ %

Node A Node B

! " #

! " #

$ %

$ %

Objects

 Remote
Checkpoint

 Local
Checkpoint

Replica 1 Replica 2
buddy

17 / 25

Charm++ Workshop

Replication enhanced Checkpoint Restart

Replication enhanced Fault Tolerance Overview

replica 1 replica 2

transfer checkpoint for soft error detection

hard
error

hard error detected by replica 2

replica 2 sends checkpoints
to replica 1 for recovery

soft error detected, both
replicas roll back

application
execution

checkpoint

recovery

Job
Starts

T1

T2

T3

TIME

18 / 25

Charm++ Workshop

Replication enhanced Checkpoint Restart

Initial Result: soft error detection overhead

 0

 0.5

 1

 1.5

 2

 2.5

 3

1k 2k 4k 8k 16k

T
im

e
(s

)

Number of Cores per Replica

checkpoint

Jacobi3D AMPI

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

1k 2k 4k 8k 16k

T
im

e
(s

)

Number of Cores per Replica

checkpoint

LeanMD

19 / 25

Charm++ Workshop

Replication enhanced Checkpoint Restart

Optimization

Topology aware mapping

43

4

4

4

4

4

4

43

3

3

3

3

3

3

2

2

2

2

2

2

2

21

1

1

1

1

1

1

1 1

1

1

1

1

1

1

Replica 2 nodes

2

2

2

2

2

2

2

23

3

3

3

3

3

3

3

(a) Default-mapping

1

1

1

1

1

1

1

1

(b) Optimal-mapping

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0 1 0 1 0 1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Replica 1 nodes

1

inter-replica messages[0-4]

20 / 25

Charm++ Workshop

Replication enhanced Checkpoint Restart

Optimization

Checksum

Issue with checksum

How to handle floating point round off error?

21 / 25

Charm++ Workshop

Replication enhanced Checkpoint Restart

Optimization

Checksum

Issue with checksum

How to handle floating point round off error?

21 / 25

Charm++ Workshop

Replication enhanced Checkpoint Restart

Result: after optimization

 0

 0.5

 1

 1.5

 2

 2.5

 3

1k 2k 4k 8k 16k

T
im

e
(s

)

Number of Cores per Replica

checkpoint
optimal mapping

checksum

Jacobi3D AMPI

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

1k 2k 4k 8k 16k

T
im

e
(s

)

Number of Cores per Replica

checkpoint
optimal mapping

checksum

LeanMD

22 / 25

Charm++ Workshop

Replication enhanced Checkpoint Restart

Result: recovery from hard failures

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1k 2k 4k 8k 16k

T
im

e
(s

)

Number of Cores per Replica

default
optimal

Jacobi3D AMPI

 0

 0.05

 0.1

 0.15

 0.2

1k 2k 4k 8k 16k

T
im

e
(s

)

Number of Cores per Replica

default
optimal

LeanMD

23 / 25

Charm++ Workshop

Thanks

Thanks!

Questions?

24 / 25

	Fault Tolerance Philosophy in Charm++
	Asynchronous Checkpoint/Restart
	Replication enhanced Checkpoint Restart

