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Global Arrays (technologies)

Physically distributed data
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Single, shared data structure

http://www.emsl.pnl.gov/docs/global/

Shared-memory-like model
— Fast local access
— NUMA aware and easy to use
— MIMD and data-parallel modes
— Inter-operates with MPI, ...

BLAS and linear algebra interface

Ported to major parallel machines
— IBM, Cray, SGI, clusters,...

Originated in an HPCC project

Used by most major chemistry codes,
financial futures forecasting,
astrophysics, computer graphics

Supported by DOE

One of the legacies of 4
Jarek Nieplocha, PNNL
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Global Arrays: A Portable “Shared-Memory” Programming Model for
Distributed Memory Computers

Jaroslaw Nieplocha, Robert J. Harrison and Richard J. Littiefield

Pacific Northwest Laboratory*, P.O. Box 999, Richland WA 99352

Abstract

Partability, efficiency, and ease of coding are all important
considerations in choosing the programming model for a
scalable parallel application. The message-passing pro-
gramming model is widely used because of its portability,
yet some applications are too complex to code in it while
also trying to maintain a balanced computation load and
avoid redundant computations. The shared-memory pro-
gramming model simplifies coding, but it is not portable
and often provides little control over interprocessor data
transfer costs.This paper describes a new approach, called
Global Arrays (GA), that combines the better features of
both other models, leading to both simple coding and effi-
cient execution. The key concept of GA is that it provides a
portable interface through which each process in a MIMD
parallel program can asynchronously access logical blocks
of physically distributed matrices, with no need for explicit
cooperation by other processes. We have implemented GA
libraries on a variety of computer systems, including the In-
tel DELTA and Paragon, the IBM SP-1 (all message-pass-
ers), the Kendall Square KSR-2 (a nonuniform access
shared-memory machine), and networks of Unix worksta-

chemistry. At the same time, we and our colleagues at the
Pacific Northwest Laboratory (PNL) have a short-term goal
of developing, within the next three years, a suite of parallel
chemistry application codes to be used in production mode
for chemistry research at PNL's Environmental and Molec-
ular Science Laboratory (EMSL) and elsewhere. The pro-
gramming model and implementations described here have
turned out to be useful for both purposes.

Two assumptions permeate our work. The first is that
most high performance parallel computers currently and
will continue to have physically distributed memories with
Non-Uniform Memory Access (NUMA) timing character-
istics, and will thus work best with application programs
that have a high degree of locality in their memory refer-
ence patterns. The second assumption is that extra program-
ming effort is and will continue to be required to construct
such applications. Thus, a recurring theme in our work is to
develop techniques and tools that allow applications with
explicit control of locality to be developed with only a tol-
erable amount of extra effort.

There are significant tradeoffs between the important
5



History and Design

* Prototyping at very start of NWChem project

— Model full application not just kernel
— 80-20 rule — more like 90-10 rule

* GA designed to solve a problem

— Distributing large data structures while supporting
irregular computation

— Entire HF code

— First 2 attempts (Linda-like) worked for kernel but
not the rest of the code



Non-uniform memory access model of
computation

Shared Object

Shared Object
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Dynamic load balancing
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Distributed data SCF

 First success for NWChem and Global Arrays

do tiles of 1
do tiles of j
do tiles of k
do tiles of 1 -
get patches 13, 1k, 11, jk, jl, ki
Mini-apps used to compute integrals

evaluate HPCs ~ accumulate results back into patches

languages Chapel,
X10, Fortress
- just the data flow B = block size

[
tcomm: O(Bz) tcompute =0 (B4> R — O<Bz> 9

tcomm

- Parallel loop nest




Higher-performance code

Looks nothing like that!

Sort shell pairs to evaluate 1n similar batches
— Precomputation, vectorization — 10-fold speedup

— Big increase 1n complexity and memory use
Integral evaluation code — 100K lines!

Careful screening with rigorous inequalities
— Robustness, minimize overhead

10



Highest-performance code

Looks nothing like that!
Strives for near linear scaling

Coulomb interaction

— Mix of FMM, FFT, and other fast methods
— (near) linear scaling with system size
Exchange interaction

— Heavy screening and physical thresholding

And this 1s just 1% of NWChem functionality

11
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What 1s MADNESS?

* A general purpose numerical environment for
reliable and fast scientific simulation

— Chemistry, nuclear physics, atomic physics, material
science, nanoscience, climate, fusion, ...

* A general purpose parallel programming
environment designed for the peta/exa-scales

* Addresses many of the sources of complexity that

constrain our HPC ambitions
Applications
http://code.google.com/p/m-a-d-n-e-s-s _
http://harrison2.chem.utk.edu/~rjh/madness/

Parallel Runtime




Why MADNESS?

* Reduces S/W complexity

— MATLAB-like level of composition of scientific
problems with guaranteed speed and precision

— Programmer not responsible for managing
dependencies, scheduling, or placement

* Reduces numerical complexity
— Solution of integral not differential equations

— Framework makes latest techniques 1n applied math
and physics available to wide audience



Big picture

Want robust algorithms that scale correctly with
system size and are easy to write

Robust, accurate, fast computation

— Gaussian basis sets: high accuracy yields dense
matrices and linear dependence — O(N°)

— Plane waves: force pseudo-potentials — O(N°)
— O(N log™N log*e) is possible, guaranteed €
Semantic gap

— Why are our equations just O(100) lines but programs
O(1M) lines?

Facile path from laptop to exaflop



E.g., with guaranteed precision of 1e-6 form a
numerical representation of a Gaussian 1n the
cube [-20,207°, solve Poisson’s equation, and plot
the resulting potential
(all running 1n parallel with threads+MPI)

Let

Q = [-20,20]3

e = le—6

g = X — exp (— ($%+x%+$%))*ﬂ_l'5
In

f=7Fg

w = V72 (=dx7x*f)
print "norm of f",(f),"energy", (f|u) *0.5

plot u
End

output: norm of £ 1.00000000e+00 energy 3.98920526e-01

There are only two lines doing real work. First the Gaussian (g) is projected into
the adaptive basis to the default precision. Second, the Green’s function is applied.
The exact results are norm=1.0 and energy=0.3989422804.



g = z—exp(—2*7(x)) He atom

2
V= I —=— —
| @ Hartree-Fock
M
1 s=: G ) : :
. Compose directly in terms of
¢»=7,9 functions and operators
A= —1.0
for 7 € [0, 10] This 1s a Latex rendering of a
¢ = ¢x || program to solve the Hartree-Fock
P o= et peeplsl) equations for the helium atom
! & _!' i v 40 .
Y = =2 (-2xA=V?) " (V*¢) The compiler also output a C++
Y = a (V % plip — @) code that can be compiled without
| (|1} modification and run in parallel
o = P
print "iter",i, "norm", ||@||, "eval™, A
end

End



“Fast” algorithms

Fast in mathematical sense
— Optimal scaling of cost with accuracy & size

Multigrid method — Brandt (1977)

— Iterative solution of differential equations
— Analyzes solution/error at different length scales

Fast multipole method — Greengard, Rokhlin
(1987)

— Fast application of dense operators
— Exploits smoothness of operators

Multiresolution analysis
— Exploits smoothness of operators and functions



The math behind the MADNESS

e Multiresolution V,.cV,c.-cl.
V=Vt V=V |44V =V

« Low-separation fxnx)=2 0,11/ (x)+0(e)
rank =t

— T
* Low-operator A—Z u,o,v,+0(€)
rank



Why “think” multiresolution?

* It is everywhere in nature/chemistry/physics

— Core/valence; high/low frequency; short/long range;
smooth/non-smooth; atomic/nano/micro/macro scale

* Common to separate just two scales
— E.g., core orbital heavily contracted, valence flexible
— More efficient, compact, and numerically stable

* Multiresolution
— Recursively separate all length/time scales

— Computationally efficient and numerically stable

— Coarse-scale models that capture fine-scale detail



How to “‘think’ multiresolution

* Consider a ladder of function spaces

VOCV1C°"C Vn

— E.g., increasing quality atomic basis sets, or finer resolution
grids, ...

* Telescoping series
Vn:Vo"'(Vl_Vo)"'""" V.=V,

— Instead of using the most accurate representation, use the
difference between successive approximations

— Representation on V, small/dense; differences sparse

— Computationally efficient; possible insights
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Another Key Component

* Trade precision for speed — everywhere
— Don’t do anything exactly
— Perform everything to O(¢)

— Require
* Robustness
* Speed, and

* Guaranteed, arbitrary, finite precision



Please forget about wavelets

They are not central

Wavelets are a convenient basis for spanning V -V,
, and understanding its properties

But you don’t actually need to use them

— MADNESS does still compute wavelet coefficients, but
Beylkin’s new code does not

Please remember this ...

— Discontinuous spectral element with multi-resolution
and separated representations for fast computation with
guaranteed precision in many dimensions.



YN :
Reconstructed
/' ‘\
Y-
Tree in reconstructed form. Scaling function (sum)
coefficients at leaf nodes. Interior nodes empty.
O Empty @) Differepce
coefficients
Compressed O Sum @ Sum and difference
coefficients coefficients

Compression algorithm. Starting from leaf nodes, scaling function
(sum) coefficients are passed to parent. Parent “filters” the
childrens' coefficients to produce sum and wavelet (difference)
coefficients at that level, then passes sum coefficients to its parent.
Tree in compressed form. Wavelet (difference)
coefficients at interior nodes, with scaling functions Reconstruction is simply the reverse processes.

coefficients also at root. Leaf nodes empty.
To produce the non-standard form the compression algorithm is

run but scaling function coefficients are retained at the leaf and
interior nodes.



Difference
O Empty O coefficients
O Sum Sum and difference
coefficients coefficients

Addition is (most straightforwardly) performed in the compressed
form. Coefficients are simply added with missing nodes being
treated as if zero.



Differentiation (for simplicity here using central differences and
Dirichlet boundary conditions) is applied in the scaling function
basis. To compute the derivative of the function in the box
corresponding to a leaf node, we require the coefficients from
the neighboring boxes at the same level. If the neighboring leaf
nodes exist, all 1s easy. If it exists at a higher level,we can make
the coefficients using the two-scale relation. But if the neighbor
exists at a finer scale, we must recur down until both neighbors
are at the same level. Hence, phrased as parallel computation

on all leaf nodes , differentiation must search for neighbors in the
tree at the same and higher levels, and may initiate computation
at lower levels. It can also be phrased as a recursive descent of
the tree, which can have advantages in reducing the amount of
probes up the tree for parents of neighbors (esp. in higher
dimensions).



1.0

0.0 [2e-5|1e-2| 0.3 |1e-2|2e-5| 0.0

Convolution with a function is applied in the non-standard form,
thus the first step is to compress into non-standard form. Then

we can independently compute the contribution of each box

(node) to the result at the same level of the tree. Depending upon
dimensionality, accuracy, and the kernel (K), we usually only need to
compute the contributions of a box to itself and its immediate
neighbors. The support (i.e., level of refinement) of the result 1s very
dependent on the kernel. Here we consider convolution with a
Gaussian (Green's function for the heat equation) which is a
smoothing operator. After the computation is complete, we must
sum down the tree to recover the standard form. Hence, phrased as
computation on all the nodes in non-standard form, convolution
requires compression and reconstruction, and during the computation
communicates across the tree at the same level to add results into
neighboring boxes and up the tree to connect new nodes to parents.



MADNESS architecture

[ MADNESS applications - chemistry, physics, nuclear, ... }
MADNESS math and numerics }
4 N

MADNESS parallel runtime

MPI } [ Global Arrays } [ ARMCI } [GPC/GASNET

J

Intel Thread Building Blocks now the target for the intranode runtime
31



Runtime Objectives

e Scalability to 1+M processors ASAP

* Runtime responsible for
e scheduling and placement,
 managing dependencies & hiding latency

« Compatible with existing models (MPI, GA)

* Borrow successful concepts from Cilk,
Charm++, Python, HPCS languages

32



Why a new runtime?

« MADNESS computation 1s irregular & dynamic

— 1000s of dynamically-refined meshes changing
frequently & independently (to guarantee precision)

* Because we wanted to make MADNESS 1tself
easier to write not just the applications using it

— We explored implementations with MPI, Global Arrays,
and Charm++ and all were inadequate

« MADNESS 1s helping drive

— One-sided operatlons in MPI-3, DOE projects 1n fault
tolerance, .



Key runtime elements

Futures for hiding latency and automating
dependency management

Global names and name spaces

Non-process centric computing

— One-sided messaging between objects

— Retain place=process for MPI/GA legacy
compatibility

Dynamic load balancing

— Data redistribution, work stealing,
randomization

34



Futures

 Result of an int f(int arg);
asynchronous ProcessId me, p;

computation
- Cilk, Java, HPCLs Future<int> rO=task(p, £, 0);

C++0x Future<int> rl=task(me, £, r0);

. Hide Iatency due // Work until need result

to communication
or computation

cout < r0 << rl1l << endl;

Process “me” spawns a new task in process “p”
to execute £ (0) with the result eventually returned
°
M d nagement Of as the value of future r0. This is used as the argument

" of a second task whose execution is deferred until
dependenCIeS its argument is assigned. Tasks and futures can
register multiple local or remote callbacks to 35

- V|a Ca”baCkS express complex and dynamic dependencies.



Virtualization of data and tasks

Future;
MPI rank
probe()

set()
get()

Future Compress (tree) :
Future left = Compress(tree.left)
Future right = Compress(tree.right)
return Task (Op, left, right)

Compress (tree)
Wait for all tasks to complete

Benefits: Communication latency & transfer time largely hidden
Much simpler composition than explicit message passing
Positions code to use “intelligent” runtimes with work stealing
Positions code for efficient use of multi-core chips
Locality-aware and/or graph-based scheduling 36



Global Names

class A : public WorldObject<A>

« Objects with global
names with different int £(int)
state in each process . '

- C.f. shared[threads] ProcessID p;

in UPC; co-Array
A a(world);

Future<int> b

* Non-collective a.task(p,&A::£,0);
constructor;
A task is sent to the instance of a in process p.
defe rred deStru CtOr If this has not yet been constructed the message
is stored in a pending queue. Destruction of a

- Eliminates synchronlzatlon global object is deferred until the next user
synchronization point.

37



#define WORLD INSTANTIATE STATIC TEMPLATES
#include <world/world.h>
using namespace madness;
class Foo : public WorldObject<Foo> ({
const int bar;
public:
Foo (World& world, int bar) : WorldObject<Foo>(world), bar (bar)
{process pending() ;}

int get() const {return bar;}

main(int argc, char** argv) ({
MPI: :Init(argc, argv);
madness: :World world (MPI::COMM WORLD) ;

Foo a(world,world.rank()), b(world,world.rank()*10)

for (ProcessID p=0; p<world.size (), p++) {
Future<int> futa = a.send(p, &Foo: :get) ;
Future<int> futb = b.send(p, &Foo: :get) ;
// Could work here until the results are available
MADNESS ASSERT (futa.get() == p);
MADNESS ASSERT (futb.get() == p*10);

}

world.gop. fence() ;

if (world.rank() == 0) print("OK!") ;

MPI: :Finalize() ;

Figure 1: Simple client-server program implemented using WorldObject.




#define WORLD INSTANTIATE STATIC TEMPLATES
#include <world/world.h>

using namespace std;
using namespace madness;

class Array : public WorldObject<Array> {
vector<double> v;
public:
/// Make block distributed array with size elements
Array(World& world, size t size)
: WorldObject<Array>(world), v((size-1)/world.size()+1)

{
process_pending();
s

/// Return the process in which element 1 resides
ProcessID owner(size t 1) const {return i/v.size();};

Future<double> read(size t 1) const {
if (owner(i) == world.rank())
return Future<double>(v[i-world.rank()*v.size()]);
else
return send(owner(i), &Array::read, 1);
s

Void write(size t 1, double value) {
if (owner(i) == world.rank())
v[i-world.rank()*v.size()] = value;

int main(int argc, char** argv) {

initialize(argc, argv);
madness::World world(MPI::COMM_WORLD);

Array a(world, 10000), b(world, 10000);

// Without regard to locality, initialize a and b

for (int i=world.rank(); i<10000; i+=world.size()) {
a.write(i, 10.0*1);
b.write(i, 7.0*1);

h

world.gop.fence();

// All processes verify 100 random values from each array
for (int j=0; j<100; j++) {
size_t 1= world.rand()%10000;
Future<double> vala = a.read(i);
Future<double> valb = b.read(i);
// Could do work here until results are available
MADNESS ASSERT(vala.get() == 10.0*1);
MADNESS ASSERT(valb.get() == 7.0%*1);

}
world.gop.fence();

if (world.rank() == 0) print("OK!");

else finalize();
send(owner(i), &Array::write, 1, value); ;
return None; ) ) ) _ 39
v Complete example program illustrating the implementation and use of a crude,

|5 block-distributed array upon the functionality of Wor1dObject.




Global Namespaces

. Specialize global names ¢iass Index; // Hashable

to containers class Value {

- Hash table, arrays, ... \ .double £(int);
« Replace global pointer

(process+local pointer)

with more powerful

concept

WorldContainer<Index,Value> c;
Index i,j; Value v;
c.insert (i,v);

Future<double> r =
c.task(j, &Value::£f,666) ;

e User deﬁnab|e map from A container is created mapping indices
to values.
keys to “owner” process

A value is inserted into the container.

A task is spawned in the process owning
key § to invoke c[§].f(666) . 40

Namespaces are a large part of the elegance of Python and success of Charm++ (chares+arrays)



Multi-threaded architecture

Application

logical main » Task dequeue
thread

-

Outgoing active messages

Must augment with cache-aware
algorithms and scheduling

RMI Server
(MPI or portals)

Incoming active

mesSages

41



Molecular Electronic Structure

Energy and
gradients

ECPs coming
(Sekino,
Thornton)

Response
properties
(Vasquez, Yokoi,
Sekino)

Still not as
functional as
previous
Python version
of Yanai

Spin density
of solvated
electron




Nuclear physics

J. Pe1, G.I. Fann, Y. Ou,
W. Nazarewicz
UT/ORNL

* DOE UNDEF

* Nucle1r & neutron matter

* ASLDA

* Hartree-Fock Bogliobulov
* Spinors

* Gamov states
Imaginary part of the seventh eigen function
two-well Wood-Saxon potential



Solid-state electronic structure

* Thornton, Eguiluz and

Harrison (UT/ORNL)

— NSF OCI-0904972:
Computational chemistry and
physics beyond the petascale

* Full band structure with
LDA and HF for periodic
systems

* In development: hybrid
functionals, response
theory, post-DFT methods
such as GW and model
many-body Hamiltonians
via Wannier functions

Coulomb potential isosurface in LiF



Time
dependent
electronic

structure

Vence,
Krstic,
Harrison
UT/ORNL

H; molecule

in laser field
fixed nuclei)




Nanoscale photonics
Reuter Northwestern Hill, Harrison ORNL)
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Diffuse domain approximation for interior boundary value problem; long-wavelength Maxwell equations;
Poisson equation; Micron-scale Au tip 2 nm above Si surface with H2 molecule in gap — 107 difference betweer
shortest and longest length scales.



Electron correlation (6D) |~

r2
* All defects in mean-field model are ascribed to /
electron correlation
* Singularities in Hamiltonian imply for a two-electron atom
Y(V1’V2,V12)21+§F12—|—“' dS 7‘12—>O

* Include the inter-electron distance in the wavefunction
— E.g., Hylleraas 1938 wavefunction for He

\I’(rl,rz,rlz):exp(—‘é(r1+r2))(1+ar12+---)

— Potentially very accurate, but not systematically improvable, and (until
recently) not computationally feasible for many-electron systems

Configuration interaction expansion — slowly convergent

¥ (rr. )= e o ()l (1) ]




“Partitiong¢d SVD rdpresentation :
|x—y|=§fu(x)gu(J’)

*
.
*
*
*
*
tym -—
*
*
*
.
*
e
*
*
L3

r = separation rank

el ol _
XY X-y
In 3D, ideally must

y-X |X*Y| be one box removed
from the diagonal

IX‘-‘ ‘TI Diagonal box has
full rank

|X"Y| X-y Boxes touching
diagonal (face, edge,

or corner) have

increasingly low rank

‘0
0“
|5z
X XTY
—-—
B R
*

*
*

S ——

*

*
*
*
*
*

Away from diagonal

y-X |X"*Y| r = O(-log €




The way forward demands a

change 1n paradigm
- by us chemists, the funding agencies, and the
supercomputer centers

* A communal effort recognizing the increased cost
and complexity of code development for modern
theory beyond the petascale

* Coordination between agencies to develop and
deploy new simulation capabilities 1n sustainable
manner

* Re-emphasizing basic and advanced theory and
computational skills in undergraduate and
graduate education 4
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Sustainable Software for Chemistry and Materials
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Senior Personnel
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David McDowell (Georgia Tech) Vijay Pande (Stanford U.)
Manish Parashar (Rutgers U.) Ram Ramanujam (LSU)
Beverly Sanders (U. Florida) Bernhard Schlegel (Wayne State U.)
David Sherrill (Georgia Tech) Lyudmila Slipchenko (Purdue U.)
Masha Sosonkina (lowa State U.) Edward Valeev (Virginia Tech)

Ross Walker (San Diego Supercomputing Center)

NSF SI? and Other Collaborators
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http :// SZlZ.OI‘g John F. Stanton (Senior Kibbitzer) (U. Texas)
Garnet Chan (Princeton U.)

So Hirata (U. lllincis)
Toru Shiozaki (Northwestern U.)




Summary

* We need radical changes in how we compose
scientific S/'W

- Complexity at limits of cost and human ability

- Need extensible tools/languages with support for code
transformation not just translation

e Students need to be prepared for computing and
data 1n 2020+ not as it was 1n 2000 and before

- Pervasive, massive parallelism
- Bandwidth limited computation and analysis
- An intrinsically multidisciplinary activity

q\\\\ Stony Brook University Cp IRCS 51

INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE
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Problem with Differential Form

* Consider application of the Laplacian to a
function with high-frequency numerical noise

V2(f(r)+€eik.r)zv2f(r)_k2Eeik.r

e Consider 30 levels of adaptive refinement
(and don't forget discontinuities, polynomials)

k|~10’ k~10"

* Ie., we just took numerical noise O(10™'°)and
amplified 1t to O(100)



Advantages of Integral Form

* Condition number of inverse Laplacian just as
bad (unbounded spectrum & zero eigenvalues)

— But for the inverse, large eigenvalues correspond to
the smooth and usually interesting bits

v—Z(f(r)_l_Eeik.r)zv—Zf<r)_k—2eeik.r

— So the inverse operator damps out the noise

* A key step i applying MADNESS to any
problem 1s rewriting differential equations in
integral form



Advantages of Integral Form

« E.g, Viu(r)=—4np(r) vs. u(r)ZI G(r,r'p(r')d’r’
— Often soluble without any preconditioning and often
without any iteration (as in this case)
— Can obtain higher accuracy
— In stimple domains builds in correct asymptotics
— Potentially more computationally efficient

* Challenge and solution

— In most bases integral operator 1s dense & slow

— Multiresolution analysis provides fast algorithms
with guaranteed precision



Electrostatics ~ V u(r)=—4np(r)
ulr) = fG(r,r’)p(r’)d3r’+
Sﬁm G(r,r')V'ulr')—u(r')\V'G(r,r')|.dS

1
dlr—r’|

Glr,r') =

Quantum mechanics (—;—V2+ V(r))\y(r):E v(r)
y(r)==2(V?+ 2E] v (r)y(r)

Time evolution Zu(r’t)+ N<u’t):Z_I;

4
u(r,t)=e u(r,0)+ fe(T_t)LN(u,r)dr
0

(r=r')

etvzf(r)=(4nt)_d/2f e_Tf(r’)ddr



Integral Operator Formulation

* Solving the integral equation
— Eliminates the derivative operator and related “issues”
— Converges as fixed point iteration with no preconditioner

~IV4+V| ¥ =E¥
W= 2(-V>-2E| v¥
_ G *(rw)

—k‘r—s‘

f(s) in3D;k’=-2E

(G* f) (r) = jds

471"1’ S‘

Such Green’s Functions (bound state Helmholtz, Poisson) can be rapidly
and accurately applied with a single, sparse matrix vector product.



Separated form for integral operators

T*f=[dsK(r—s)f(s)
* Approach

— Represent the kernel over a finite range as a sum of products
of 1-D operators (often, not always, Gaussian)

nl [’ n,l—1" nl—l n,l —1",
Vi J il kk! ZX Zkk’ _I_O(E)

— Only need compute 1D transition matrices (X,Y,Z)

— SVD the 1-D operators (low rank away from singularity)

— Apply most efficient choice of low/full rank 1-D operator

— Even better algorithms slowly being implemented
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Accurate Quadra ures

2.2 2 2
—xt"—u’l4t
e TN dt

2 2s

8'—;8 S =8

2
VT
2
VT .
Z et O(e (m))
. Trapezmdal quadrature

— Geometric precision for
periodic functions with
sufficient smoothness

* Beylkin & Monzon

— Further reductions

—x?er—ute 4+ s
e " ds

1e3

........

%9—2
10-3

e-05
e-0b
1e-07
1e-08

1e-093
r1e—10
| 1e-11
1e-12
1e—13
1e—-14
1e-1%5
1e—-16
1e—17
1e—18
! 1e-19

1e-20

!
l

{ \

The kernel for x=1e-4,1e-3,1e-2,1e-,1¢€0.
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The curve for x=1e-4 1s the rightmost



Do new science with

O(1) programmers
0(100,000) nodes ,
0(100,000,000) cores
0O(1,000,000,000)
threads & growing

* Increasing intrinsic §
complexity of science

« Complexity kills ... sequential or parallel
— Expressing concurrency at extreme scale
— Managing the memory hierarchy
* Semantic gap (Colella)
— Why are equations O(100) lines but program 1s O(1M)

60

— What’s in the semantic gap — and how to shrink it?



Wish list

Eliminate gulf between theoretical innovation in small
groups and realization on high-end computers

Eliminate the semantic gap so that efficient parallel code
1s no harder than doing the math

Enable performance-portable “code” that can be
automatically migrated to future architectures

Reduce cost at all points 1n the life cycle

Much of this 1s pipe dream — but what can we aspire to?
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Scientific vs. WWW

or mobile software

 Why are we not experiencing similar
exponential growth 1n functionality?

— Level of investment; no. of developers?

— Lack of software interoperability and standards?
— Competition not cooperation between groups?
— Shifting scientific objectives? i

wa | Tmarkd
call make_ghostd

}lljg ali io_result (G
— Are our problems intrinsically g,

114 err = 0.dod

‘7 118 rsdl = 0.d0d
ar er H 118 iterate = 0d
17| "fomp parallel dod
18] 'fompd: reduct ion(+:err)d

18] "fompd: reduct ion(+:rad| )

— Failure to embrace/develop ot e gt
i

higher levels of composition? i o)

w2, w3, wd, wh,wh, w7, wi)d
126) ! fompd: privatelws, uz, we, wz, wor, w2z, uxz, wzx, cnt , adv)d
127] ! bompd: privatelds, rs,

— Different hardware complexity? = oili?

13004



How do we write code for a
machine that does not yet exist?

* Nothing too exotic, e.g., the mix of SIMD and
scalar units, registers, massive multi-threading,
software/hardware managed cache, fast/slow &
local/remote memory that we expect in 2018+

* Answer 1: presently cannot

— but 1t’s imperative that we learn how and deploy the
necessary tools

* Answer 2: don’t even try!

— where possible generate code from high level specs

— provides tremendous agility and freedom to explor%
diverse architectures



Dead code

* Requires human labor

— to migrate to future
architectures, or

7 December 1969

— to exploit additional
concurrency, or

* By these criteria most

extant code 1s dead Bereft of life, he rests'in peace.
“This is an EX parrot

* Sanity check

— How much effort 1s
required to port to hybrid cpu+GPGPU? 64




Doy =

The language of
many-body physics

1C) e 1<> 00
A O fo g-.. O O

Hartree Fock Infinite chain of dressed
electron-hole bubbles
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CCSD Doubles Equation

hbar([a,b,1,j] == b,c]*t[i,
R T A B S 1

sum| fTk,c]*t[k,b]*t[1 ,J a,cl,{k, CI}[
c]*t[] cJ*t[1,k,a,b],{ -sum[

* ,b
bal }J]Csdniﬁi

sum|[fTk,c]*t[k,a]*t[i ,_] c,b],{k,c}]
c]*t[1 c]*t k,b,al,

+sum|t[i,c|*t d*Vabcd c,d}] +sum|t ,cd v[a,b,c,d],{c,d}] +sumt c*vab,l,c c sumtk a,k,l, Ak
+sum[t]1 c] [Eb,?],J (E] {c}] -]s{gm[t}[ *v ]),[ 3] 1] k}][ -sum[t][li d]*t[1,,c b]*g[k]a c[d tk 1: ii}]] sum[][] c]"Jt[],](,b,d]] V]k,a]l,c,d],
{k,c,d} ] -sum(t c*tkb]*v[kam k,c}]+2*sum(t[j.k,b,c|*v[k,a,c,1 {kc sumt kcb *vlk,a,c,1], {k,c

-sum|[t[1, c]*t ]*V[k a,d, cl] k,c.d +2*surn t|k,d]*t ,_] C b]*v[ ,a,d,c ,{k c, } -sum|(t[k,b]*t[1,5,c,d]*v[k,a,d,c ]] {k C d}]
-sum(t[j, k c b] V[k,a, ,cl,{k,c d}] +2*sum(t[i,c]* t[_] k *v[k,a, ,c] ,c,d ] -sum[t[l c]*t k db]*V [k,a,d c] {

-sum(t _,kb cJ*v klil ,C {lli(%}] dsunll([t[ldd*t[kb *\lz(l(iia J,¢], ] —ks%m [t[1.k,c,b] 1 vlk,a,j,c], a1k Fed
-sum[t[1,c]*t[3,d]*t[k,a]*v[k,b,c.d], {k,c,d} ] -sum ,¢,d],{k,c,d}] -sum *t J,C, ,C,
+2*s1[1r[n[t% CH El k[a ci V]k b,c d] ]k c,d ] -sum|t L ]] E,IJ(,C a]*v]kb c,d],]k,c d]] sumt] ]] |£, ,d a] ]k, ] ]k,c,d]]

-sum|[t[i,c # k a]*v[k,
+2*sum(t[k,d]*t[i,j,a,c]*
-sum[t[j.k,c, a]*v]k b i,c],
-2*sum|t [k bJ*t[1,d] *t
+sum(t[k,a]*t[l, A,
-2*sum[tP d] [k,
-2*sum|t[1,c]*t ld]*t ,b al*v| k,
+sum[t[i,c]*t[1, ]*t k,d.a *V[ﬁ(,l, , ],
+4*sum[t[1 k,a,c]*t[j,1,b,d
-2*sum[t[1kab]*t[], ,C,d]*v[ lcd],{ ,
{k,l,c,d% +sum{t[1 ]*
-2*sum(t[1,j,c,b]*t[k,1
k,1,c}] +sumL [1 c * H,k,
2*sum[t[k c]*t[j,Lb, *V[k, ,c,li,

L,
1,

I_l

V[ J,c,d],{k
al*v[k,1 1],}
+sum|t c]*tlkab J* v[k,l,c.i],
-2*sum t[l b]*t[i,k,a,c]*v[k,l,c,j
+sum|t c]*t[l d]*t[ ka,b]*v[k,l,
+sum|t[},d]*t[1, a] t[1, ,c,b *v[k,1

=

o bl

,d,c],
k,1}] +sum(t[k,l,a,b]*v[k,L1,j],{
k,l,c d}] +sum| t Lc|*t

+sum|t[i,c]*t[1, a L]

{k,l,c dj] 2*sum[t

+v[a,b, ,J]

k,l,c,d}] +sum|t[i, ,c,bﬂ t[],l,d,a] Vf

Y

k,d,b]*v
c]*t[l,k,a,b]

7.d b
l_l,) da
l] l']

i ]ébk c}] +2*sum[t[1 k,a c]
. .d,c],{k,c,d}] -sum
ct] -sum[t[l k,a,c]*v
ac 1*v[k,Lc,d {klcd
bil , d v klcd] k,l,cd
[]1, k,a,c]*v cd, k,lLc,
c,d],{k,l,c,d
k,l,c,d} ] +sumft]i,
,l,c,d}]
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d],{k.lc, } +sum t[ ,],C,d
,¢,d} ] 2*sum[t1 ,a,c]*t
kLci]
+sum|t[k,a]*t[j,Lb,c
| +sum[ t[1 c]*tlk

, J*t klab] v[I e,
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{ ] +sumft[l ,b]*t[1,k,c, aﬂ ]k,
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.d.cl,{k,l,c.d
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* b JCL]]’{k’

| -sum[ t .k, c
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2*sum[tE ,c]*t[Ld]
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o

l,b,
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c ,l

k
] 1.4k,
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+sum|t d *t

[k,l,d c
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Vl[k,l, ,C ,

k,l,c d%] +sum|t[i,k,a
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]
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} +sum
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]t[l c]
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[l k c.d],

c}] +sum|t[

[1120] bich kel

01" vik,Le.d], ik,
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J,c,d
k,l,c,d
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The Tensor Contraction Engine:
A Tool for Quantum Chemistry

Oak Ridge National Ohio State University
Laboratory Gerald Baumgartner, Alina
David E. Bernholdt, Bibireata, Daniel Cociorva,

Venkatesh Choppella, Robert Xiaoyang Gao, Sriram
Harrison Krishnamoorthy, Sandhya
Pacific Northwest National Krlg.hnan, Chi-Chung Lam,

Quingda Lu, Russell M.
Laboratory Pitzer, P Sadayappan
So Hirata ’ ’

Alexander Sibiryakov

Louisiana State University

J Ramanujam, University of Waterloo

Marcel Nooijen, Alexander

Auer
http://www.cis.ohio-state.edu/~gb/TCE/
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Tensor Contraction Engine (TCE) /EMSI:;‘”

(Kowalski, PNNL)

systems

Symbolic algebra systems for coding
complicated tensor expressions: Tensor
Contraction Engine (TCE)

Expression®
— 1 1 1
pif = S+ T3 L+ T e — Yo+ dolfue + et
ab ab - b (] " by Liferrab  Loab
Dty i+ P(alb) It — P(ilj) I ta) + St 120+ staclyy

+P(alB)P(il)) 12 3P(alb)IEHlE)
— PGP+ 4820+ P(il])81™ — P(al BT + telEuTe

fitnoj " Unij ij ijno ~ fg
Dy = P(albo)I5ely ~ PGIRL e+ 3P(albe) T + SPGB s oy

+P(ablc)P(ij k)6 I+ P(albc) P(ij/k) 5 Tos — P(ablc) P(il jR) i I1p¢
I+ TP(albo) et — PRV I thone + SticlEv’e

Dt = P(albed)I2fbed— P(/KI I + LP(ablcd) e+ Lp(ij kD) ebeae
+ P(abeld)P(ijkI1) T8+ P(ablcd) P(ijkI 1)/ 15— P(abeld)P(ij KI5 TS
+ P(albed)P(ij/KI) T34 — P(ablcd) P(il k81,29 + P(ablcd) P(ij Ky 3ed
+ 3P(abeld)P(iljKI)as T e+ 40 + 1P (albed) g !
— PGl kDT
D thjkm = P(albede) 1505 — (il jim) I 26 + 1P (abelde) (eI + SP(1jk/Im) e e

.o abcdf e - e 'zjh‘m }’:5(/ nnde
+P(abedle)P(ijklim)t i, I}b,+P(abc.r“de)P(UMlm)rr-jh Tt

+3P(abcdle) P(ijIkIm)125a1,10¢ + P (abl cde) P(ijkl/m) 23 ycde

ijno
+P(abcfa’e)P(ijki.f‘m)rgi‘_,fI%—P(abcd.fe)P(iijm)t‘ﬁfn"lﬁ';
+P(ablcde)P(ijk/Im)t I;id — P(abc/de) P(ijlkIm)teo Iine
+P(albede) P(ij/ klm)td Iprd — P(ablcde) P(il jkim) o I e

1. muef ab 1 . mnef ab
+Zvef ty tmn_ivef tmltnj +

next = NXTASK (nprocs, 1)

DO p3b = noab+l,noabt+nvab

DO p4b = p3b, noabt+nvab

DO hlb = 1, noab

DO h2b = hlb, noab

IF (next.eq.count) THEN

CALL GET HASH BLOCK(d_a,dbl mb(k a),dim
- 1 + (noabtnvab) * (hlb 1 - 1 + (noab+
tnvab) * (p3b_1 - 1)))))

CALL GET HASH BLOCK I(d a,dbl mb(k a),d

Pacific Northwest P76 ), Office of
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Parallel performance
(Karwolski et al., PNNL) )
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Towards future computer
architectures

(Villa,Krishnamoorthy, Kowalski)

The CCSD(T)/Reg-CCSD(T) codes have been rewritten in
order to take advantage of GPGPU accelerators

Preliminary tests show very good scalability of the most
expensive N7 part of the CCSD(T) approach

/ EMSL®

e’»

~&—Timings of the (T) Part of Reg-CCSD(T) Method ~#—Speedup of GPU over CPU of the (T) Part of Reg-

on SPIRO data CCSD(T) Method on URACIL data
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