
Hybrid Programming Challenges for
Extreme Scale Software

Vivek Sarkar
E.D. Butcher Chair in Engineering

Professor of Computer Science
Rice University

vsarkar@rice.edu
7) ALL

6) DET
5) DRF-ALL

4) DLF-DRF-ALL

1) DLF-
DRF-DET-SER

3) DRF-DET

2) DLF-
DRF-DET

2

Acknowledgments --- Habanero Extreme Scale Software Group
§  Faculty

§  Vivek Sarkar
§  Senior Research Scientist

§  Michael Burke
§  Research Scientists

§  Zoran Budimlić, Philippe Charles, Vivek Kumar, Jun Shirako, Jisheng Zhao
§  Research Programmer

§  Vincent Cavé
§  Postdoctoral Researchers

§  Akihiro Hayashi
§  PhD Students

§  Kumud Bhandari, Shams Imam, Deepak Majeti, Alina Sbîrlea, Dragoș Sbîrlea, Kamal Sharma,
Rishi Surendran, Sağnak Taşırlar, Nick Vrvilo, Yunming Zhang

§  Undergraduate Students
§  Kyle Kurihara, Bing Xue

§  Supported in part by the National Science Foundation, DoD Advanced Computing
Initiative (ACI) program, and by the X-Stack program funded by U.S. Department of
Energy, Office of Science, Advanced Scientific Computing Research (ASCR)

3

Multicore Processors and Extreme Scale Systems
§  Characteristics of Extreme Scale systems in the next decade

§  Massively multi-core --- 1000+ homogeneous/heterogeneous cores per node
§  Performance driven by parallelism, constrained by energy
§  Subject to frequent faults and failures

§  Many Classes of Extreme Scale Systems

Embedded, 100’s of Watts,
O(103) concurrency

Data Center
> 1 MW,

O(109) concurrency

Departmental,
100’s of KW,

O(106) concurrency Key Challenges
§  Energy Efficiency
§  Concurrency
§  Resiliency

References:
•  DARPA Exascale Software study, V. Sarkar et al, Sep 2009
•  “Software Challenges in Extreme Scale Systems”. V. Sarkar,

W. Harrod, A.E. Snavely. SciDAC Review, January 2010.

Mobile, < 10 Watts,
O(101) concurrency

4

What is “Hybrid Programming”?

Zonkey
Liger

Jaglion
Image source: http://en.wikipedia.org/wiki/Hybrid_(biology)

5

Observation: definition of “Hybrid” depends on your
starting point
§  If your starting point is a bulk-synchronous SPMD

program with one thread per rank, then
“hybridizations” have to be implemented as special-
case extensions, e.g.,
§  Asynchronous data movements across ranks
§  Task parallelism within a rank
§  Accelerator parallelism
§  Task/process cancellation and migration
§  . . .

6

Alternate Approach: Hybrid by Design

§  If your starting point is a general unified execution
model and runtime system for extreme scale
computing, then “hybridizations” are simply
combinations of features, e.g.,
§  Integration of task parallelism and message passing
§  Integration of fork-join and point-to-point synchronization
§  Integration of actors and collectives
§  . . .

7

Programmability Challenge --- Bridging the Expertise
Gap between Domain Experts and Concurrency Experts

Domain Experts

Software
Engineers

Concurrency
Experts

Domain Experts need high level
parallelism-oblivious Problem

Solving Environments

Software Engineers need mid-
level Parallel Programming

Models with safety nets

 Concurrency Experts use low-level
Parallel Programming Models

Focus of Rice
Habanero Project

Concurrent Collection dialects
(CnC-C, CnC-Matlab, CnC-Python, CnC-Java, CnC-Scala)

Habanero Execution Model
in C, C++, Java, Scala

(HC, HJ, HS)

8

Rice Habanero Multicore Software Project:
Enabling Technologies for Extreme Scale

Habanero
Programming

Languages

Habanero Static
Compiler &

Parallel
Intermediate

Representation

Habanero
Runtime
System

Two-level programming model
Declarative Coordination

Language for Domain Experts:
CnC-HC, CnC-Java, CnC-Python,

CnC-Matlab, … +
Task-Parallel Languages for

Parallelism-aware Developers:
Habanero-C, Habanero-Java,

Habanero-Scala

Portable execution model
1) Lightweight asynchronous tasks and
data transfers
§  Creation: async tasks, future tasks,
data-driven tasks
§  Termination: finish, future get, await
§  Data Transfers: asyncPut, asyncGet
2) Locality control for task and data
distribution
§  Computation and Data Distributions:
hierarchical places, global name space
3) Inter-task synchronization operations
§  Mutual exclusion: isolated, actors
§  Collective and point-to-point
operations: phasers, accumulators

http://habanero.rice.edu

Extreme Scale Platforms

Parallel Applications

9

Target Platforms
Habanero programs have been executed on a wide range of
production and experimental systems
§  Multicore SMPs (IBM, Intel)
§  Discrete GPUs (AMD, NVIDIA)
§  Integrated GPUs (AMD, Intel)
§  FPGA (Convey, w/ GPU added)
§  HPC Clusters
§  Hadoop Clusters
§  Experimental processors: IBM Cyclops, Intel SCC
§  . . .

10

Elements of Habanero Execution Model
1) Lightweight asynchronous tasks and data transfers
§  Creation: async tasks, future tasks, data-driven tasks
§  Termination: finish, future get, await
§  Data Transfers: asyncPut, asyncGet
2) Locality control for control and data distribution
§  Computation and Data Distributions: hierarchical places, global

name space
3) Inter-task synchronization operations
§  Mutual exclusion: global/object-based isolation, actors
§  Collective and point-to-point operations: phasers, accumulators
Goal: unified model of parallelism that spans a wide range of
extreme scale platforms

11

Example: Habanero abstraction of a CUDA kernel
invocation

async at(GPU1)

async at(GPU2)

forall(blockIdx)

forallPhased(threadIdx)

12

Properties of Habanero Execution Model
§  Deadlock freedom guarantee for large subset of operations

§  All operations except explicit wait in phasers, accumulators and explicit await
clause in async

§  Data-race freedom guarantee for subset of data accesses
§  Future values, accumulator values
§  Read-write permission regions
§  Isolated accesses, actors

§  Determinacy guarantee for subset of programs
§  Data-race freedom implies determinacy for all programs that do not use mutual

exclusion constructs (isolated, actors)
§  Amenable to efficient asynchronous and portable implementations

§  Locality-aware work-stealing
§  Hierarchical places with support for heterogeneous processors
§  Integration with cluster-level communication runtime systems
§  Scalable synchronization with phasers, accumulators and delegated isolation
§  Compiler optimizations for structured parallelism

13

Semantic Classification of
Habanero Parallel Programs

§  Legend
§  DLF = DeadLock-Free
§  DRF = Data-Race-Free
§  DET = Determinate
§  DRFèDET = DRF implies DET
§  SER = Serializable

§  If a Habanero program only uses
async, finish, and future constructs (no
mutual exclusion), then it is guaranteed
to belong to the DLF + DRF!DET +
SER class
§  Adding phasers yields programs in
the DLF + DRF!DET class
§  Adding async await yields programs in
the DRF!DET class
§  Restricting shared data accesses to
futures, isolated, actors yields programs
in the DRF-ALL class

7) ALL

6) DET
5) DRF-ALL

4) DLF-DRF-ALL

1) DLF-
DRF-DET-SER

3) DRF-DET

2) DLF-
DRF-DET

“Habanero-Java: the New Adventures of Old X10.” Vincent Cave, Jisheng Zhao, Jun Shirako,
Vivek Sarkar PPPJ 2011.

14

Pedagogy using Habanero execution model,
COMP 322: Fundamentals of Parallel Programming
 §  Sophomore-level CS Course at Rice

§  https://wiki.rice.edu/confluence/display/PARPROG/COMP322
§  Approach – mid-level parallel programming model

§  “Simple things should be simple, complex things should be possible”
§  Introduce students to fundamentals of parallel programming

§  Primitive constructs for task creation & termination, collective & point-to-
point synchronization, task and data distribution, and data parallelism

§  Abstract models of parallel computations and computation graphs
§  Parallel algorithms & data structures including lists, trees, graphs, matrices
§  Common parallel programming patterns

§  Use Habanero-Java (HJ) library for Java 8 as pedagogic programming model
to understand fundamentals in two-thirds of course, and then introduce
students to lower-level parallel programming models (Java threads, MPI,
CUDA) using HJ principles

§  Video lectures and demos are available as well

15

1) Primitives for Lightweight Asynchronous Tasks

//A0(Parent)

finish { //Begin finish

 async {

 STMT1; //A1(Child)

 }

 STMT2; //A0

} //End finish

STMT2

async

STMT1

terminate
wait

A1 A0

async S
§  Creates a new child task that executes

statement S
§  Like OpenMP’s task pragma

§  Parent task moves on to statement
following the async

§  async can be a computation or a
communication task

finish S
§  Execute S, but wait until all

(transitively) spawned asyncs in
S‘s scope have terminated
§  Like OpenMP’s taskwait

§  Implicit finish between start and
end of main program

§  Use of finish cannot create a
deadlock cycle

“X10: An Object-oriented approach to non-uniform Clustered Computing”, P.Charles et al. OOPSLA 2005.

16

Parallel Spanning Tree Algorithm using Habanero-Java Library

DFS

compute

compute

compute
compute

1.  class V {!
2.  V [] neighbors; // Input adjacency list!
3.  V parent; // Output spanning tree!
4.  . . .!
5.  boolean tryLabeling(final V n) {!
6.  return isolatedWithReturn(this, () -> {!
7.  if (parent == null) parent = n;!
8.  return parent == n;!
9.  }); !
10.  } // tryLabeling!
11.  void compute() {!
12.  for (int i=0; i<neighbors.length; i++) { !
13.  final V child = neighbors[i]; !
14.  if (child.tryLabeling(this))!
15.   async(()->{child.compute()}); //escaping async!
16.  } !
17.  } // compute!
18.  } // class V!
19.  . . . !
20.  root.parent = root; //Use self−cycle to identify root !
21.   finish(()->{root.compute()});!

Async edge

Finish edge

17

Data-Driven Futures (DDFs) and Data-Driven Tasks
(DDTs) in Habanero-C language

DDF_t* ddfA = DDF_CREATE();!

§  Allocate an instance of a data-driven-future object (container)

async AWAIT(ddfA, ddfB, …) <Stmt>!

§  Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB,
… become available (i.e., after task becomes “enabled”)

DDF_PUT(ddfA, V); !

§  Store object V in ddfA, thereby making ddfA available

§  Single-assignment rule: at most one put is permitted on a given DDF

DDF_GET (ddfA)

§  Return value stored in ddfA

§  No blocking needed --- should only be performed by tasks that contain ddfA
in their AWAIT clause, or when some other synchronization (e.g., finish)
guarantees that DDF_PUT must have been performed.

DDFs and DDTs can be more efficient than OpenMP regions and barriers

18

Smith Waterman example with DDFs (Habanero-C)

finish { // matrix is a 2-D array of DDFs!
 for (i=0,i<H;++i) {!
 for (j=0,j<W;++j) {!
 DDF_t* curr = matrix[i][j];!
 DDF_t* above = matrix[i-1][j];!
 DDF_t* left = matrix[i][j-1];!
 DDF_t* uLeft = matrix[i-1][j-1];!
 async AWAIT (above, left, uLeft){!
 Elem* currElem = !
 init(DDF_GET(above),DDF_GET(left), DDF_GET(uLeft));!
 compute(currElem);!
 DDF_PUT(curr, currElem);!
 }/*async*/ !
 }/*for-j*/!
 }/*for-i*/!
}/*finish*/!

19

2) Locality control for task and data distribution:
Hierarchical Place Trees (HPT) abstraction
§  HPT approach

§  Hierarchical memory + Dynamic parallelism
§  Place denotes affinity group at memory hierarchy level

§  L1 cache, L2 cache, CPU memory, GPU memory, …
§  Leaf places include worker threads

§  e.g., W0, W1, W2, W3
§  Explore multiple HPT configurations

§  For same hardware and application
§  Trade-off between locality and load-balance

“Hierarchical Place Trees: A Portable Abstraction for Task
Parallelism and Data Movement”, Y.Yan et al, LCPC 2009

20

Locality-aware Scheduling using the HPT

§  Workers attached to leaf places
§  Bind to hardware core

§  Each place has a queue
§  async at(<pl>) <stmt>: push task onto

place pl’s queue

§  A worker executes tasks from ancestor places from
bottom-up
§  W0 executes tasks from PL3, PL1, PL0

§  Tasks in a place queue can be executed by all workers
in the place’s subtree
§  Task in PL2 can be executed by workers W2 or W3

PL1 PL2

PL0

PL3

w0

PL4

w1

PL5

w2

PL6

w3

21

Example: Cholesky Performance with HPT (12-core SMP)

9.572&

8.235&

6.945&
6.609& 6.573&

6.851& 7.258&

8.278&

11.595&

6.751&
6.122&

6.329& 6.331& 6.361&
6.865&

7.549&

8.393&

11.789&

6.000&

7.000&

8.000&

9.000&

10.000&

11.000&

12.000&

20& 25& 40& 50& 60& 75& 100& 125& 150&

Ti
m
e
%(
s)
%

Tile%Size%

Cholesky%6000x6000%

Base& HPT&

Reference: Runtime Systems for Extreme Scale Platforms.
Sanjay Chatterjee. Ph.D Thesis, December 2013

22

LULESH with place annotation
(can be selected by programmer, compiler, runtime)
finish {
Index_t i_len = numNode;
Index_t i_blk = HAB_C_BLK_SIZE;
int blk_per_child = (int)(i_len/num_children);
for (Index_t i_out = 0; i_out < i_len; i_out += i_blk) {

 Index_t i_end = ((i_out + i_blk) < i_len)?(i_out + i_blk) : i_len;
 place p = myAffinity(i_out, i_end);
 async at(p) {
 for(Index_t gnode = i_out ; gnode < i_end ; ++gnode) {
 int xDir = 0;
 int yDir = 1;
 int zDir = 2;
 …
 }
 }

}

Reuse takes places across
different loops in different
functions

23

LULESH Results w/ and w/o use of places in HPT

 w/o HPT w/ HPT
LULESH (Problem
Size=45)

21.45 secs 19.08 secs

Timing in seconds on Intel Westmere (2x6cores) for 12 Threads with gcc –O3

Hardware
Perf
Counters

L1DCM L2DCM L3TCM TLBDM

HC/HPT 0.97 1.30 1.50 0.90

Hardware Performance Counter Ratio

DCM: Data Cache Misses, DCA: Data Cache Accesses,
TCM: Total Cache Misses (Inst+Data),TLBDM: TLB Misses
In progress: figuring out why current HPT implementation decreases
cache misses but increases TLB misses

24

§  async at(P) S
§  Creates new activity to execute statement S at place P

§  Explicit data transfer between main memory and device memory when needed
§ Use of copyin/copyout clauses to improve programmability of data transfers

§  Device agent workers
§ Perform asynchronous data copy and task launching for device

Habanero Hierarchical Place Trees for heterogeneous
architectures and accelerators

PL0

PL1 PL2

PL3 PL4 PL5 PL6

PL7 PL8

W0 W1 W2 W3

W4 W5

§  Devices (GPU or FPGA) are represented as memory
module places and agent workers
§  GPU memory configuration are fixed, while FPGA

memory are reconfigurable at runtime

PL

PL

PL

PL

Physical memory

Cache

GPU memory

Reconfigurable FPGA

Implicit data movement
Explicit data movement

Wx CPU computation worker

Wx Device agent worker

25

de
no

is
in

g

re
gi

st
ra

tio
n

se
gm

en
ta

tio
n

an
al

ys
is

re

co
ns

tru
ct

io
n

§  New reconstruction methods
§  decrease radiation exposure (CT)
§  number of samples (MR)

§  3D/4D image analysis pipeline
§  Denoising
§  Registration
§  Segmentation

§  Analysis
§  Real-time quantitative cancer

assessment applications
§  Potential:

§  order-of-magnitude performance
improvement

§  power efficiency improvements
§  real-time clinical applications and

simulations using patient imaging data

Figure credit: NSF Expeditions CDSC project

Medical imaging application
(Center for Domain-Specific Computing)

26

D1

R1

S1

…

D2

R2

S2

S2
S1

R2
R1

Instances of steps D
stolen by CPU or GPU

An instance of step R
stolen by GPU

Steps of type S launched
at a GPU place

CPU1

env

D2
D1

CPU2 GPU FPGA

Steps of type R launched
at a FPGA place

Steps D launched
at a CPU place

Dedicated device queues

CPU only tasks

}  CnC graph representation
extended with tag functions and
affinity annotations:
}  < C > :: (D @CPU=20,GPU=10);
}  < C > :: (R @GPU=5, FPGA=10);
}  < C > :: (S @GPU=12);

}  [IN : k-1] → (D : k) → [IN2 : k+1];
}  [IN2 : 2*k] → (R : k) → [IN3 : k/2];
}  [IN3 : k] → (S : k) → [OUT : IN3[k]];

}  env → [IN : { 0 .. 9 }], < C : { 0 .. 9 } >;
}  [OUT : 1] → env;

Adding Affinity Annotations for Heterogeneous Computing

“Mapping a Data-Flow Programming Model onto Heterogeneous Platforms.” Alina Sbirlea, Yi Zou, Zoran Budimlic,
Jason Cong, Vivek Sarkar. LCTES 2012

27

Intel®
Xeon®
Processor Intel®

Memory
Controller
Hub (MCH)

Intel® I/O
Subsystem Memory Memory

Application
Engine Hub
(AEH)

Application Engines
(AEs)

Direct
Data
Port

“Commodity” Intel Server Convey FPGA-based coprocessor

Standard Intel® x86-64 Server
 x86-64 Linux

Convey coprocessor
 FPGA-based
 Shared cache-coherent memory

Xeon Quad
Core LV5408
40W TDP

Tesla C1060
100GB/s off-chip bandwidth
200W TDP

XC6vlx760 FPGAs
80GB/s off-chip bandwidth
94W Design Power

Convey HC-1ex Testbed

27

28

Static vs Dynamic Scheduling

§  Static Schedule

§  Dynamic Schedule

}  < C > :: (D @CPU=20,GPU=10);
}  < C > :: (R @GPU=5, FPGA=10);
}  < C > :: (S @GPU=12);

29

Experimental results

•  Execution times and active energy with
dynamic work stealing

30

Communication Workers
mediate between

communication runtime and
node runtime

Integrating Inter-node Communication with Intra-node
Task Scheduling

“Integrating Asynchronous Task Parallelism with MPI.” Sanjay Chatterjee, Sagnak Tasirlar, Zoran Budimlic, Vincent
Cave, Milind Chabbi, Max Grossman, Yonghong Yan, Vivek Sarkar. IPDPS 2013.

Example:

finish{

 async S1;

 MPI_Isend(…);

 MPI_Irecv(…, &req);

 async await(req) S2;

 S3;

}

...

31

UTS Performance on T1XXL

•  Jaguar Supercomputer at ORNL
•  18688 nodes with Gemini Interconnect
•  16 core AMD Opteron nodes with 32 GB memory

4" 8" 16" 32" 64" 128" 256" 512" 1024"

2""cores/node" 0.67" 0.67" 0.67" 0.67" 0.67" 0.68" 0.68" 0.69" 0.73"
4"cores/node" 1.00" 1.00" 1.00" 1.00" 1.00" 1.01" 1.03" 1.10" 1.33"
8"cores/node" 1.17" 1.17" 1.17" 1.17" 1.17" 1.20" 1.29" 1.66" 4.50"
16"cores/node" 1.26" 1.26" 1.26" 1.26" 1.33" 1.51" 1.98" 5.76" 22.31"

22.31"

0.40"

4.00"

40.00"

Sp
ee
du

p"
"

(M
PI
"T
im

e"
/"H

CM
PI
"T
im

e)
"

Nodes"

2""cores/node" 4"cores/node"

8"cores/node" 16"cores/node"

32

Failed steals lead to scalability bottleneck in MPI
•  At 256 nodes: MPI suffers 2.35M failed steals while HCMPI suffers 0.82M
•  At 1024 nodes: MPI suffers 94.75M failed steals while HCMPI suffers 8.83M

UTS Scaling on T1XXL

33

APGNS Programming Model

§  Philosophy :
§  In the Habanero Asynchronous Partitioned Global Name Space

(APGNS) programming model, distributed tasks communicate via
distributed data-driven futures, each of which has a globally
unique id/name (guid).

§  Asynchronous one-sided communication model
§  APGNS can be implemented on a wide range of communication

runtimes including MPI and GASNet, regardless of whether or not
a global address space is supported.

34

Multi-Node SmithWaterman
1.  #define DDF_HOME(guid) . . .!

2.  for (i=0;i<H;++i) !
3.  for (j=0;j<W;++j)!
4.  matrix[i][j] = DDF_HANDLE(i*H+j);!

5.  doInitialPuts(matrix);!
6.   finish {!
7.  for (i=0,i<H;++i) {!
8.  for (j=0,j<W;++j) {!
9.  DDF_t* curr = matrix[i][j];!
10.  DDF_t* above = matrix[i-1][j];!
11.  DDF_t* left = matrix[i][j-1];!
12.  DDF_t* uLeft = matrix[i-1][j-1];!
13.  if (isHome(i,j)) {!
14.  async AWAIT (above, left, uLeft){!
15.  Elem* currElem = !
16.  init(DDF_GET(above),!
17.  DDF_GET(left),!
18.   DDF_GET(uLeft));!
19.  compute(currElem);!
20.  DDF_PUT(curr, currElem);!
21.  }/*async*/ !
22.  }/*if*/!
23.  }/*for*/!
24.  }/*for*/!
25. }/*finish*/!

executed running

DDF

DDDF

35

Results for APGNS version of SmithWaterman
(communication runtime uses MPI under the covers)

36

3) Mutual exclusion --- isolated statement
isolated <body>
§  Like a critical section --- two tasks executing isolated statements must

perform the isolated statements in mutual exclusion
è Weak atomicity guarantee: mutual exclusion only applies to

(isolated, isolated) pairs of statement instances, not to
(isolated,non-isolated) pairs

§  Isolated statements may be nested, and may contain async and finish
statements
§  See “Isolation for Nested Task Parallelism” [OOPSLA 2013] for details

§  In case of an exception, all updates performed by <body> before
throwing the exception will be observable after exiting <body>

§  NOTE: mutual exclusion is intended for nondeterministic parallel
programs

37

Object-based isolation in HJ

isolated(<object-list>) <body>!

§  In this case, programmer specifies list of objects for which isolation is
required

§  Mutual exclusion is only guaranteed for instances of isolated statements
that have a non-empty intersection in their object lists
§  Standard isolated is equivalent to isolated(*) by default i.e., isolation

across all objects
§  Implementation can choose to distinguish between read/write accesses

for further parallelism
§  Current Habanero implementation supports object-based isolation,

but does not exploit read/write distinction

38

Isolation by default
§  Challenge: what if every async task could be isolated by

default?
§  Transactional memory approaches still incur too much

overhead, and lack support for nested transactions
§  Delegated Isolation approach:

§  Task dynamically acquires ownership of each object accessed in
isolated block (optimistic parallelism)

§  On conflict, task A transfers all ownerships to conflicting task B and
delegates execution of isolated block to B
§  More complex rules for nested transactions (see OOPSLA ‘13 paper for details)

§  Deadlock-freedom and livelock-freedom guarantees
§  Open question: use of recent hardware TM capabilities

§  “Delegated Isolation”, R. Lublinerman, J. Zhao, Z. Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2011
§  “Isolation for Nested Task Parallelism”, J. Zhao, R. Lublinerman, Z. Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2013.

39

















        



















 

Performance: DMR benchmark on 16-core Xeon SMP
(100,770 initial triangles of which 47,768 are “bad”; average # retriangulations is ~ 130,000)

DSTM2 performance:
962s w/ 1 thread

177s w/ 16 threads

“Delegated Isolation”, R. Lublinerman, J. Zhao, Z. Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2011

40

An actor may:
§  process messages
§  send messages
§  change local state
§  create new actors
§  terminate (and

release enclosing
finish)

Thread State

Procedure

Thread
State

Procedure

Thread
State

Procedure

Interface

Interface

Messages

create

3) Actors: an alternative approach to mutual
exclusion by default

“Integrating Task Parallelism with Actors”. Shams Imam, Vivek Sarkar, OOPSLA 2012.

41

Hello World Example
1.   public class HelloWorld {!
2.   public static void main(final String[] args) {!
3.   finish(()-> {!
4.   EchoActor actor = new EchoActor();!
5.   actor.start(); // don’t forget to start the actor!
6.   actor.send("Hello"); // asynchronous send (returns immediately) !
7.   actor.send("World"); !
8.   actor.send(EchoActor.STOP_MSG);!
9.   });!
10.  }!
11.  private static class EchoActor extends Actor<Object> {!
12.   static final Object STOP_MSG = new Object();!
13.   private int messageCount = 0;!
14.   protected void process(final Object msg) {!
15.   if (STOP_MSG.equals(msg)) {!
16.   println("Message-" + messageCount + ": terminating.”);!
17.   exit(); // never forget to terminate an actor!
18.   } else {  

 messageCount += 1;!

19.   println("Message-" + messageCount + ": " + msg);!
20.  } } } } !

Habanero actor model preserves order of
messages between same sender and receiver

42 4
2

ThreadRing Example

1

1.   finish(() -> {!
2.   int numThreads = 4;!
3.   int numberOfHops = 10;!
4.   ThreadRingActor[] ring =  

 new ThreadRingActor[numThreads];!
5.   for(int i=numThreads-1;i>=0; i--) {!
6.   ring[i] = new ThreadRingActor(i);!
7.   ring[i].start();!
8.   if (i < numThreads - 1) {!
9.   ring[i].nextActor(ring[i + 1]);!
10.   } }!
11.   ring[numThreads-1].nextActor(ring[0]);!
12.   ring[0].send(numberOfHops);!
13.  }); // finish  

!

14.  class ThreadRingActor !
15.   extends Actor<Object> {!
16.   private Actor<Object> nextActor;!
17.   private final int id;!
18.   ... !
19.   public void nextActor( 

 Actor<Object> nextActor) {...}!
20.   void process(Object theMsg) {!
21.   if (theMsg instanceof Integer) {!
22.   Integer n = (Integer) theMsg;!
23.   if (n > 0) {!
24.   println("Thread-" + id + !
25.   " active, remaining = " + n);!
26.   nextActor.send(n - 1);!
27.   } else {!
28.   println("Exiting Thread-"+ id);!
29.   nextActor.send(-1);!
30.   exit();!
31.   }!
32.   } else { !
33.   /* ERROR - handle appropriately */ !
34.  } } }!

3

0

2

43

3) Asynchronous Collectives with Finish Accumulators
 (can be combined with Actors)
1.  final FinishAccumulator ac =
2.  newFinishAccumulator(Operator.SUM, int.class);
3.  finish(ac) nqueens_kernel(new int[0], 0);
4.  System.out.println(“No. of solutions = “ + ac.get())
5.  . . .
6.  void nqueens_kernel(int [] a, int depth) {
7.  if (size == depth) ac.put(1);
8.  else
9.  /* try each possible position for queen at depth */
10.  for (int i = 0; i < size; i++) async {
11.  /* allocate a temporary array and copy array a into it */
12.  int [] b = new int [depth+1];
13.  System.arraycopy(a, 0, b, 0, depth);
14.  b[depth] = i;
15.  if (ok(depth+1,b)) nqueens_kernel(b, depth+1);
16.  } // for-async
17.  } // nqueens_kernel()

44

Role of Runtime Systems
§  Inherent variability and complexity of extreme scale platforms

calls for a runtime system that is abstract, asynchronous, user-
controllable, adaptive, and portable

§  Bridging role between programming systems and system
software brings multiple benefits
§  composability and hybridization by default,
§  improved performance for existing programming models,
§  enablement of new programming models,
§  simplified interfaces for system software,
§  improved use of system services (e.g., deadlock avoidance),
§  and cleaner code!

45

Chapel, X10, DSLs, …
UPC / UPC++, CAF, Charm++

Storage System, …
Operating System

Communication
Systems
(MPI, GASNet, Portals, …)

Public
APIs

. . .

Runtime Framework

Event-driven
Schedulers

Resilience
Mechanisms

Memory
Management

Machine
Abstractions

Runtime Systems --- how to prime the pump?

MPI + OpenMP Programming
Systems

System
Software

46

Motivation for an Open Community Runtime
(OCR)

•  Wide agreement that execution models for extreme scale
systems will differ significantly from past execution
models

•  Shoehorning a new execution model into an old runtime
system is counter-productive

•  Instead, make a fresh start but carry forward reusable
components from current runtime systems as appropriate

è Motivation for Open Community Runtime framework that
…
–  is representative of future execution models
–  can be targeted by multiple high-level programming systems
–  can be mapped on to multiple extreme scale platforms
–  is available as an open-source testbed
–  reduces duplication of infrastructure efforts
– enables us to address revolutionary challenges

collaboratively

47

Example API: Creating an
Event-Driven Task (EDT)

•  u8 ocrEdtCreate(ocrGuid_t * guid, ocrGuid_t
templateGuid, u32 paramc, u64* paramv, u32 depc,
ocrGuid_t *depv, u16 properties, ocrGuid_t affinity,
ocrGuid_t *outputEvent);
– guid [out]: the assigned guid
–  templateGuid: the template the EDT is an instance of
– paramc: nb of u64 parameters
– paramv: pointer to u64 parameters
– depc: nb of guid parameters
– depv: array of guid dependences (if known at creation or NULL)
– properties: can specify if finish-edt here.
– affinity: affinity guid
– outputEvent [out]: edt completion notification

48

OCR Vision

Hero

Programmer

Smart

Compiler

Higher-level

language

Higher-level

library

Open Community Runtime Framework

System Software

Extreme Scale Platforms

R-Stream, ROSE, LLVM CnC, Charm++ HC-lib, Habanero-UPC C, C++, Fortran

Host OCR
open

source
project in

newly
formed

Modelado
community

Modelado Foundation
• A	
 new	
 Open	
 Source	
 Founda0on	
 for	
 Parallel	
 Compu0ng	

• Organiza0on	

•  Establish	
 an	
 open,	
 transparent	
 environment	
 in	
 which	
 solu0ons	
 are	
 not	
 pre-­‐
determined	

•  Provide	
 an	
 organic	
 process	
 for	
 community	
 decision-­‐making,	
 ensuring	
 the	
 best	

solu0on	
 wins	
 (metrics)	

•  Avoid	
 a	
 single	
 player	
 or	
 clique	
 domina0ng	

•  Lower	
 the	
 barrier	
 to	
 par0cipa0on	
 by	
 providing	
 stable,	
 reliable	
 releases	
 of	

candidate	
 solu0ons	
 to	
 a	
 broad	
 audience	

•  hGp://www.modelado.org	

•  Services	

•  Project	
 Team	
 Infrastructure	
 -­‐	
 e.g.	
 source	
 code	
 control,	
 tooling,	
 debuggers,	

collabora0on/communica0on	
 	

•  Release	
 Engineering	
 	

•  Technical	
 Support	
 	

•  IP	
 management	
 	

•  Educa0on,	
 instruc0on	
 and	
 training	

•  Community	
 Development	

50

Conclusions

§  Holistic redesign of software stack is needed to address

concurrency, energy, and resiliency challenges of Extreme
Scale systems

§  Urgent need for execution models that integrate hybrid
dimensions of parallelism and heterogeneity – multicore,
accelerators, multi-node, HPC cluster, data center cluster

§  Well-designed runtime primitives can provide foundation for new
execution models, with synergistic innovation in languages,
compilers, system software and system hardware

§  OCR is a starting point for a strawman community effort --- let’s
work as a community to extend/replace OCR components as
needed!

51

Habanero Team Pictures (http://habanero.rice.edu)

Send email to Vivek Sarkar (vsarkar@rice.edu) if you are interested
in a PhD, postdoc or research scientist position

in the Habanero project, or in visiting or collaborating with us!

