Hybrld Programming Challenges for
Extreme Scale Software

Vivek Sarkar

E.D. Butcher Chair in Engineering
Professor of Computer Science
Rice University
vsarkar@rice.edu

History of Programming Languages O’REILLY

-DRF-ALL

Proce: ocessor2 Processor

= 5[
-
l‘l l‘l l'l

Crossbar Network

. ﬁ)
n

Acknowledgments --- Habanero Extreme Scale Software Group

= Faculty
= Vivek Sarkar
= Senior Research Scientist
= Michael Burke
= Research Scientists
= Zoran Budimli¢, Philippe Charles, Vivek Kumar, Jun Shirako, Jisheng Zhao
= Research Programmer
= Vincent Cavé
= Postdoctoral Researchers
= Akihiro Hayashi
= PhD Students

= Kumud Bhandari, Shams Imam, Deepak Majeti, Alina Sbirlea, Dragos Sbirlea, Kamal Sharma,
Rishi Surendran, Sagnak Tasirlar, Nick Vrvilo, Yunming Zhang

= Undergraduate Students
= Kyle Kurihara, Bing Xue
= Supported in part by the National Science Foundation, DoD Advanced Computing

Initiative (ACI) program, and by the X-Stack program funded by U.S. Department of
Energy, Office of Science, Advanced Scientific Computing Research (ASCR)

Multicore Processors and Extreme Scale Systems

= Characteristics of Extreme Scale systems in the next decade
= Massively multi-core --- 1000+ homogeneous/heterogeneous cores per node
= Performance driven by parallelism, constrained by energy
= Subject to frequent faults and failures

= Many Classes of Extreme Scale Systems

aN>0I>

©

Mobile, < 10 Watts, Embedded, 100’s of Watts, Departmental, Data Center
0(10") concurrency O(10°) concurrency 100’s of KW, > 1MW,
6 0(10°) concurrenc
Key Challenges 0(10°) concurrency (10°) y
= Energy Efficiency References:
= Concurrency » DARPA Exascale Software study, V. Sarkar et al, Sep 2009

. - » “Software Challenges in Extreme Scale Systems”. V. Sarkar,
Resiliency W. Harrod, A.E. Snavely. SciDAC Review, January 2010. ﬁ?

% RICE 3

What is “Hybrid Programming”™?

4 Image source: http://en.wikipedia.org/wiki/Hybrid_(biology)

Observation: definition of “Hybrid” depends on your
starting point

= |f your starting point is a bulk-synchronous SPMD

program with one thread per rank, then
“hybridizations™ have to be implemented as special-
case extensions, e.g.,

= Asynchronous data movements across ranks

= Task parallelism within a rank

= Accelerator parallelism

= Task/process cancellation and migration

S RICE ;

-Energy Monitor

\'J'“ F
o ;g ENGINE

Alternate Approach: Hybrid by Design j;‘:"ﬁ [_% m@

Consumption) Current 55, 0MPG

= |f your starting point is a general unified execution
model and runtime system for extreme scale
computing, then “hybridizations™ are simply
combinations of features, e.g.,

= |ntegration of task parallelism and message passing

= |ntegration of fork-join and point-to-point synchronization

= |ntegration of actors and collectives

S RICE ;

Programmability Challenge --- Bridging the Expertise
Gap between Domain Experts and Concurrency Experts

Domain Experts need high level
parallelism-oblivious Problem

Domai n Expe rts > . Solving Environments

Concurrent Collection dialects
(CnC-C, CnC-Matlab, CnC-Python, CnC-Java, CnC-Scala)

Focus of Rice
> Habanero Project

= Software Engineers need mid-
level Parallel Programming

Software - Models with safety nets
Engineers Habanero Execution Model

o in C, C++, Java, Scala

A 4 (HC, HJ, HS)
Concurrency B Concurrency Experts use low-level

Experts Parallel Programming Models

| b

Rice Habanero Multicore Software Project:
Enabling Technologies for Extreme Scale

- Parallel Applications e

Portable execution model Habanero Two-level programming model
1) Lightweight asynchronous tasks and Programming Declarative Coordination
data transfers Languages Language for Domain Experts:
= Creation: async tasks, future tasks, CnC-HC, CnC-Java, CnC-Python,
data-driven tasks Habanero Static CnC-Matlab, ... +
= Termination: finish, future get, await Compiler & Task-Parallel Languages for
= Data Transfers: asyncPut, asyncGet Parallel Parallelism-aware Developers:
2) Locality control for task and data Intermedla?e Habanero-C, Habanero-Java,

P Representation
distribution Habanero-Scala
= Computation and Data Distributions: Habanero
hierarchical places, global name space Runtime Mainstream

. . . Parallelism-Oblivious

3) Inter-task synchronization operations System (doe) Developers
= Mutual exclusion: isolated, actors
= Collective and point-to-point o v

operations: phasers, accumulators

Extreme Scale Platforms

8 http://habanero.rice.edu

Target Platforms

Habanero programs have been executed on a wide range of
production and experimental systems

= Multicore SMPs (IBM, Intel)

= Discrete GPUs (AMD, NVIDIA)

= |ntegrated GPUs (AMD, Intel)

= FPGA (Convey, w/ GPU added)

= HPC Clusters

= Hadoop Clusters

= Experimental processors: IBM Cyclops, Intel SCC

Elements of Habanero Execution Model

1) Lightweight asynchronous tasks and data transfers

= Creation: async tasks, future tasks, data-driven tasks
= Termination: finish, future get, await

= Data Transfers: asyncPut, asyncGet

2) Locality control for control and data distribution

= Computation and Data Distributions: hierarchical places, global
name space

3) Inter-task synchronization operations
= Mutual exclusion: global/object-based isolation, actors
= Collective and point-to-point operations: phasers, accumulators

Goal: unified model of parallelism that spans a wide range of
extreme scale platforms

2 RICE 10

Example: Habanero abstraction of a CUDA kernel
Invocation

Host Device

async at(GRU1) | cria 1 forall(blockldx)

Kernel Block Block
1 (0, 0) (1,0)

7
Block, 7 Block 1
0,1 a,1) “
7
7 |]

async at((:‘-F'UZl,z(;,'id .

Kernel
2

Block (1, 1)

Properties of Habanero Execution Model

= Deadlock freedom guarantee for large subset of operations
= All operations except explicit wait in phasers, accumulators and explicit await
clause in async
= Data-race freedom guarantee for subset of data accesses
= Future values, accumulator values
= Read-write permission regions
= |solated accesses, actors

= Determinacy guarantee for subset of programs

= Data-race freedom implies determinacy for all programs that do not use mutual
exclusion constructs (isolated, actors)

= Amenable to efficient asynchronous and portable implementations
= | ocality-aware work-stealing
= Hierarchical places with support for heterogeneous processors
= |ntegration with cluster-level communication runtime systems
= Scalable synchronization with phasers, accumulators and delegated isolation
o = Compiler optimizations for structured parallelism ﬁ

&' RICE 12

Semantic Classification of
Habanero Parallel Programs

5) DRF-ALL

4) DLF-DRF-ALL

2) DLF-
DRF-DET

1) DLF-
DRF-DET-SER

=y

“Habanero-Ja: the New Adventures of Old X10.” Vincent Cave, Jisheng Zhao, Jun Shirako, \
% RICE Vivek Sarkar PPPJ 2011. 13 ﬁ%

= | egend
= DLF = DeadlLock-Free
= DRF = Data-Race-Free
= DET = Determinate
= DRF=>DET = DRF implies DET
= SER = Serializable

= |f a Habanero program only uses
async, finish, and future constructs (no
mutual exclusion), then it is guaranteed
to belong to the DLF + DRF=PDET +
SER class

= Adding phasers yields programs in
the DLF + DRF=»DET class

= Adding async await yields programs in
the DRF=»DET class

= Restricting shared data accesses to

futures, isolated, actors yields programs
in the DRF-ALL class

Pedagogy using Habanero execution model,
COMP 322: Fundamentals of Parallel Programming

= Sophomore-level CS Course at Rice
= https://wiki.rice.edu/confluence/display/PARPROG/COMP322

= Approach — mid-level parallel programming model
= “Simple things should be simple, complex things should be possible”
= Introduce students to fundamentals of parallel programming
= Primitive constructs for task creation & termination, collective & point-to-
point synchronization, task and data distribution, and data parallelism
= Abstract models of parallel computations and computation graphs
= Parallel algorithms & data structures including lists, trees, graphs, matrices

= Common parallel programming patterns

= Use Habanero-Java (HJ) library for Java 8 as pedagogic programming model
to understand fundamentals in two-thirds of course, and then introduce
students to lower-level parallel programming models (Java threads, MPI,
CUDA) using HJ principles

v - = \Video lectures and demos are available as well Y
NRICE il

1) Primitives for Lightweight Asynchronous Tasks

async S finish S
= (Creates a new child task that executes = Execute S, but wait until all
statement S (transitively) spawned asyncs in
= Like OpenMP’s task pragma S's scope have terminated
= Parent task moves on to statement " Like OpenMP's taskwat
following the async = |mplicit finish between start and

end of main program

= Use of finish cannot create a
deadlock cycle

= async can be a computation or a
communication task

//A, (Parent) A, A,
finish { //Begin finish-----=-=-=-=-=-=-=-—--- -
async { E./ —async
STMT1 ; A, (Child
\ /7% (Rl STém
STMT2; //A, terminate

oy gRIC}E //End finish __ _ _ _ ___________"Z -
L) “X10: An Object-oriented approach to non-uniform Clustered Computing”, P.Charles et al. OOPSLA 2005.

Parallel Spanning Tree Algorithm using Habanero-Java Library

class V {

V [] neighbors; // Input adjacency list DES

V parent; // Output spanning tree

compute

return isolatedWithReturn(this, () -> {

if (parent == null) parent = n;

compute

1

2

3

4. 5 05 ¢

5. boolean tryLabeling(final V n) {
6

7

8

return parent == n;j;

9. })i
10. } // tryLabeling

i compute

compute
11. void compute() {
12. for (int i=0; i<neighbors.length; i++) { >
13. final V child = neighbors[i]; Async edge
14. if (child.tryLabeling(this)) . >
15. async(()->{child.compute()}); //escaping async Finish edge
16. }

17. } // compute

18. } // class V

19.

20. root.parent = root; //Use self-cycle to identify root
21. finish(()->{root.compute()});

% RICE 16

Data-Driven Futures (DDFs) and Data-Driven Tasks
(DDTs) in Habanero-C language

DDF_t* ddfA = DDF_CREATE();

» Allocate an instance of a data-driven-future object (container)

async AWAIT(ddfA, d4ddfB, ..) <Stmt>

= Create a new data-driven-task to start executing Stmt after all of ddfA, ddfB,
... become available (i.e., after task becomes “enabled”)

DDF_PUT(ddfA, V);

= Store object V in ddfA, thereby making ddfA available

» Single-assignment rule: at most one put is permitted on a given DDF
DDF_GET (ddfA)

» Return value stored in ddfA

= No blocking needed --- should only be performed by tasks that contain ddfA
in their AWAIT clause, or when some other synchronization (e.g., finish)
guarantees that DDF_PUT must have been performed.

DDFs and DDTs can be more efficient than OpenMP regions and barriers 3

% RICE 17

Smith Waterman example with DDFs (Habanero-C)

finish { // matrix is a 2-D array of DDFs
for (i=0,i<H;++i) {

T . O-0-m->0

for (J=0,3<wW;++3J) { YNV NN
DDF t* curr = matrix[i][]]; CO-=0O->0-0
DDF t* above = matrix[i-1][]]; ﬁiéié‘ié
DDF t* left = matrix[i][j-11; YN YN YN
DDF_t* uLeft = matrix[i-1][j-1]; C->0->00>8

async AWAIT (above, left, ulLeft){
Elem* currElem =
init (DDF_GET (above),DDF GET(left), DDF_GET(uLeft));
compute(currElem) ;
DDF_PUT(curr, currElem);
}/*async*/
}/*for-j*/
}/*for-i*/
}/*finish*/

18

2) Locality control for task and data distribution:
Hierarchical Place Trees (HPT) abstraction

= HPT approach

= Hierarchical memory + Dynamic parallelism
= Place denotes affinity group at memory hierarchy level
= L1 cache, L2 cache, CPU memory, GPU memory. vamenors |
= | eaf places include worker threads
= e.g., WO, W1, W2, W3 S (] [o]

= Explore multiple HPT configurations [F=] [re] [ree] [oee]
= For same hardware and application ;e
= Trade-off between locality and load-balance

| L2 Cache ‘ ‘ L2 Cache l

| Place 0 |

Place 0
Wo Iﬂ' IE' W3

pL1 || PL2 | (b)

PL3 P14 PLs PL6 | Place 0 |

“Hierarchical Place Trees: A Portable Abstraction for Task = e
Parallelism and Data Movement”, Y.Yan et al, LCPC 2009 @ PLL PL2

() 3
19 »

Locality-aware Scheduling using the HPT

= Workers attached to leaf places
= Bind to hardware core
= Each place has a queue

= async at(<p/>) <stmt>: push task onto
place pl's queue

PL6 T

w3

= A worker executes tasks from ancestor places from
bottom-up

= W0 executes tasks from PL3, PL1, PLO

= Tasks in a place queue can be executed by all workers
In the place’s subtree

= Task in PL2 can be executed by workers W2 or W3

20 ﬁﬁ'

Example: Cholesky Performance with HPT (12-core SMP)

Cholesky 6000x6000
=-Base -#HPT
12.000
11.789/11.595
11.000
10.000
s
(]
g 9.000
[
8.235
8.000
7.000 6.751 6.609 ' '
6122 6.573 o
: = 6.361
6.000 . — 6329 6331 |
20 25 40 50 60 75 100 125 150
Tile Size

Reference: Runtime Systems for Extreme Scale Platforms.
Sanjay Chatterjee. Ph.D Thesis, December 2013 6

LULESH with place annotation
(can be selected by programmer, compiler, runtime)

finish {

Index_t i_len = numNode;

Index_t i_blk = HAB_C_BLK_SIZE;

int blk_per_child = (int)(i_len/num_children);

for (Index_ti_out = 0; i_out <i_len; i_out +=i_blk) {
Index_ti_end = ((i_out +i_blk) <i_len)?(i_out + i_blk) : i_len;
place p = myAffinity(i_out, i_end);

async at(p) {
for(Index_t ginode =i_out ; gnode <i_end ; ++gnode) {
int xDir = 0;
int yDir = 1;
int zDir = 2;
} Reuse takes places across
} different loops in different
} functions

B RICE - 6

LULESH Results w/ and w/o use of places in HPT

Timing in seconds on Intel Westmere (2x6cores) for 12 Threads with gcc -03

w/o HPT w/ HPT

LULESH (Problem 21.45 secs 19.08 secs
Size=45)

Hardware Performance Counter Ratio

Hardware
Perf L1DCM L2DCM L3TCM TLBDM
Counters

HC/HPT 0.97 1.30 1.50 0.90

DCM: Data Cache Misses, DCA: Data Cache Accesses,
TCM: Total Cache Misses (Inst+Data), TLBDM: TLB Misses

In progress: figuring out why current HPT implementation decreases
cache misses but increases TLB misses

23

Habanero Hierarchical Place Trees for heterogeneous

architectures and accelerators

PLO

D
PL1 PL2 PL7
W4 5

PL3 PL4 PL5 PL6
WO W1 W2 W3

= Devices (GPU or FPGA) are represented as memory
module places and agent workers

= GPU memory configuration are fixed, while FPGA
memory are reconfigurable at runtime

async at(P) S
Creates new activity to execute statement S at place P

PL

EPL

EPL

Physical memory

Cache

GPU memory

Reconfigurable FPGA

- —— Implicit data movement

— EXxplicit data movement

EWX

EWx

CPU computation worker

Device agent worker

= Explicit data transfer between main memory and device memory when needed

=Use of copyin/copyout clauses to improve programmability of data transfers

= Device agent workers

=Perform asynchronous data copy and task launching for device

Medical imaging application
(Center for Domain-Specific Computing)

2
-~
(©)
>
-
-—
n
c
]
O
()
—

= New reconstruction methods
= decrease radiation exposure (CT)
= number of samples (MR)
3D/4D image analysis pipeline
= Denoising
= Registration
= Segmentation
= Analysis

denoising

S
= Real-time quantitative cancer ©
assessment applications =)
= Potential:
= order-of-magnitude performance
improvement

= power efficiency improvements
= real-time clinical applications and

simulations using patient imaging data E

25 Figure credit: NSF Expeditions CDSC project

segmentation

Adding Affinity Annotations for Heterogeneous Computing

—= @) StepeciipeRlaunched | G C graph representation
extended with tag functions and

Steps of type S launched - .

ata GPU place affinity annotations

<C>: (D @CPU=20,GPU=10);
L

Steps D launched
at a CPU place

NS

<C>: (R @GPU=5 FPGA=10);
<C>: (S @GPU=12);

—(s— | Il OIN skeTT (D) N2 ke
W % s1| [R1| -~ [IN2:2%k] - (R:k) [IN3 k2]

& [IN3:k] - (S:k) [OUT:IN3[K]]

Dedicated device queues

An instance of step R

v

stolen by GPU ‘
cPut | fcPu2 \|GPU ([FPGA env ~[IN:{0..9}],<C:{0..9}>;
Instances of steps D [OUT : 1] env;

stolen by CPU or GPU

“Mapping a Data-Flow Programming Model onto Heterogeneous Platforms.” Alina Sbirlea, Yi Zou, Zoran Budimlic,
Jason Cong, Vivek Sarkar. LCTES 2012

Convey HC-1ex Testbed

l,i‘ngmathy_’iJnteJ Server__________. _Convey_ FBGAhasgd coprocessor .
| ' | Direct
Intel® éﬁpil:lceanorg Ax)éollcatlon Engines s
. | Xeon® = (Algl-l\ ! (AES) Port
' | Processor Intel® HI R N ST 2 =
: Memory| XC6vix760 FPGAs
! Controll¢80GB/s off-chip bandwidth

Xeon Quad J

Core LV5408

40W TDP

Convey coprocessor

FPGA-based

Shared cache-coherent memory

Tesla C1060] v

100GB/s off-chip bandwidth ‘

200W TDP .
27

R
/ Standard Intel® x86-64 Server

Intel® I/0 |
Subsystem - 9@9 9@@

o —————————————— - -

Static vs Dynamic Scheduling

= Static Schedule

‘ PU |DD D1 | D2 |D3 | D4 | DS |DE |D7 |DS | DS

<C>: (D @CPU=20,GPU=10);
<C>:(R@GPU=5 FPGA=10);
<C>: (S @GPU=12);

| |Denoise

| IRegistration
[|ISegmentation

FPGA [= " [= [»] =]

| RE | R7 | RS | RS ‘

GPU

1505 Time (s)

= Dynamic Schedule

CPU1[=[=]~]
CPU2[=[=]~]

FPGA == |

ri |
'SQ|SB|S4| R

GPU EEFH &

R7 RE
&) |S1 ‘SS |S7|

50s 100s

150s Time (s)

28

Experimental results

» Execution times and active energy with
dynamic work stealing

Execution of the medical imaging pipeline
Tme(s) yope with CnC and work-stealing runtime

Energy(KJ)
300 276 100

251 W Execution time 90
250 698 Estimated active energy 80
200 i a 193 70
: 49.4 60
150 129 50
36.1 40
100 23 30
50 20
10

0 0

CPU only (4 cores) GPU only CPU+GPU CPU+GPU+FPGA CPU+GPU+FPGA

(3 cores; dynamic) (2 cores; dynamic) (2 cores; static)

Integrating Inter-node Communication with Intra-node
Task Scheduling

X X X X
JnerNode 02 W4 2 QQFT?WUi.Qa“O” Workers
Intra-Node mediate between

communication runtime and

Example: Communication Worker ,
node runtime

——)—)—)—)1_

finish{ 'é‘se””e‘_“’ t, = o —
i ommunication ommunication Tas
async S1; Task Push @Continuation Status
MPI_Isend(..); Type
MPI_Irecv(.., &req); Continuation
async await(req) S2;
S3;
ks
Steal
Continuations
Computation Computation o060 Computation
Worker Worker Worker

“Integrating Asynchronous Task Parallelism with MPI.” Sanjay Chatterjee, Sagnak Tasirlar, Zoran Budimlic, Vincent
Cave, Milind Chabbi, Max Grossman, Yonghong Yan, Vivek Sarkar. IPDPS 2013.

UTS Performance on T1XXL

40.00
2 cores/node & 4 cores/node 22.31
L)
e 8 cores/node 16 cores/node
=
o
o
= % 4.00
o L
8_ ——
@
S E
— | - "l |
=
— Nodes
0.40
4 8 16 32 64 128 256 512 1024

2 cores/node | 0.67 0.67 | 0.67 0.67 0.67 | 0.68 0.68 | 0.69 0.73
4 cores/node 1.00 1.00 1.00 1.00 1.00 1.01 1.03 1.10 1.33
8 cores/node 1.17 1.17 1.17 1.17 1.17 1.20 1.29 1.66 4.50
16 cores/node| 1.26 1.26 1.26 1.26 1.33 1.51 1.98 5.76 | 22.31

» Jaguar Supercomputer at ORNL
» 18688 nodes with Gemini Interconnect
* 16 core AMD Opteron nodes with 32 GB memory

% RICE "

UTS Scaling on T1XXL

Unbalanced Tree Search Performance Scaling
HCMPI =MPI
5000
_ 4500
(S]
& 4000
2 3500

S

e
w
o
o
o

2500
2000
1500
1000

500 " | —

Performance

(Millions of nod

4 8 16 32 64 128 256 512 1024

Compute Nodes
(16 processors per node)

Failed steals lead to scalability bottleneck in MPI
* At 256 nodes: MPI suffers 2.35M failed steals while HCMPI suffers 0.82M
* At 1024 nodes: MPI suffers 94.75M failed steals while HCMPI suffers 8.83M

. 6

APGNS Programming Model

= Philosophy :

* |n the Habanero Asynchronous Partitioned Global Name Space
(APGNS) programming model, distributed tasks communicate via
distributed data-driven futures, each of which has a globally
unique id/name (guid).

= Asynchronous one-sided communication model

= APGNS can be implemented on a wide range of communication
runtimes including MPIl and GASNet, regardless of whether or not
a global address space is supported.

Multi-Node SmithWaterman

1. #define DDF_HOME (guid)

2. for (1i=0;i<H;++1)
3. for (j=0;j<wW;++3)
4. matrix[i][j] = DDF_HANDLE (i*H+7j);

5. doInitialPuts(matrix);
6. finish {
7
8

for (i=0,i<H;++i) {

for (j=0,j<W;++3j) {

9. DDF_t* curr = matrix[i][]];

10. DDF_t* above = matrix[i-1][]];

11. DDF_t* left = matrix[i][]j-11];

12. DDF _t* ulLeft = matrix[i-1][]J-1];

e ——IS 13. if (isHome(i,j)) {

DéDé.éD 14. async AWAIT (above, left, uLeft)/{
‘l/ P ‘l/ P ‘l/ P ‘l/ 15. Elem* currElem =

B DDF IO-0O-0~-0 16. init (DDF_GET (above),

Il DDDF YN VN N 17. DDF_GET (left),
|:|9.9|:|9|:| 18. DDF_GET (uLeft));
AN 20. DoF PUT(curr, eurrElem) s

e 21. }/*async*/
. 22. }/*if*/
[J executed M running 53, y/*for+/

24. }/*forx/
25.}/*finishx*/

% RICE 3

Results for APGNS version of Smith\Waterman
(communication runtime uses MPI under the covers)

5000 SmithWaterman Scaling (1.856M by 1.92M)
=2 Cores
—_ =4 Cores
(7))
‘; 8 Cores
£ =+=12 Cores
-
[oT4]
o
200
20
8 16 32 64 % 128
Nodes
39

3) Mutual exclusion --- isolated statement

Isolated <body>

= Like a critical section --- two tasks executing isolated statements must
perform the isolated statements in mutual exclusion

=>Weak atomicity guarantee: mutual exclusion only applies to
(isolated, isolated) pairs of statement instances, not to
(isolated,non-isolated) pairs

= |solated statements may be nested, and may contain async and finish
statements
= See ‘Isolation for Nested Task Parallelism” [OOPSLA 2013] for details

» |n case of an exception, all updates performed by <body> before
throwing the exception will be observable after exiting <body>

= NOTE: mutual exclusion is intended for nondeterministic parallel
programs

S RICE 5

Object-based isolation in HJ

isolated(<object-list>) <body>

= |n this case, programmer specifies list of objects for which isolation is
required

= Mutual exclusion is only guaranteed for instances of isolated statements
that have a non-empty intersection in their object lists

" Standard isolated is equivalent to isolated(*) by default i.e., isolation
across all objects

* |mplementation can choose to distinguish between read/write accesses
for further parallelism

= Current Habanero implementation supports object-based isolation,
but does not exploit read/write distinction

&' RICE 37

Isolation by default

= Challenge: what if every async task could be isolated by
default?

* Transactional memory approaches still incur too much
overhead, and lack support for nested transactions

= Delegated Isolation approach:

= Task dynamically acquires ownership of each object accessed in
isolated block (optimistic parallelism)

= On conflict, task A transfers all ownerships to conflicting task B and
delegates execution of isolated block to B
= More complex rules for nested transactions (see OOPSLA “13 paper for details)

= Deadlock-freedom and livelock-freedom guarantees
= Open question: use of recent hardware TM capabilities

= “Delegated Isolation”, R. Lublinerman, J. Zhao, Z. Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2011
= “|solation for Nested Task Parallelism”, J. Zhao, R. Lublinerman, Z. Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2013.

Perrormance: DVIR benchmark on 1o0-core Xeon SIVIP
(100,770 initial triangles of which 47,768 are “bad”; average # retriangulations is ~ 130,000)

----- o---- HJ (Global lock)

DSTM2 performance: — a- Chorus
14 -
0 962s w/ 1 thread —x — Java (FGL)
\ —A - - Galois
\
12 1 \ 177s w/ 16 threads —&— HJ (Delegated Isolation)
I 10 -
o
2
C
O_J 8 .
£
6 .
HJ (SEQ)
4 .
2 .
0 T T T T T T T T 1 # threads

A\

“‘Delegated Isolation”, R. Lublinerman, J. Zhao, Z. Budimlic, S. Chaudhuri, V. Sarkar, OOPSLA 2011 VJ

—————— = JJ

3) Actors: an alternative approach to mutual
exclusion by default

An actor may:

" process messages
= send messages

= change local state
= create new actors

= terminate (and

release enclosing
finish)

Messages

“Integrating Task Parallelism with Actors”. Shams Imam, Vivek Sarkar, OOPSLA 2012.

S\RICE

40

Hello World Example

1. public class HelloWorld {

2. public static void main(final String[] args) {

3. finish(()-> {

4. EchoActor actor = new EchoActor();

5. actor.start(); // don't forget to start the actor

6. actor.send("Hello"); // asynchronous send (returns immediately)

7. actor.send("World");

8. actor.send(EchoActor.STOP_MSG) ; Habanero actor model preserves order of

9. }); messages between same sender and receiver
10.}

ll.private static class EchoActor extends Actor<Object> {
12. static final Object STOP_MSG = new Object();
13. private int messageCount = 0;

14. protected void process(final Object msg) {

15. if (STOP_MSG.equals(msg)) {
16. println("Message-" + messageCount + ": terminating.”);
17. exit(); // never forget to terminate an actor
18. } else {

messageCount += 1;
19. println("Message-" + messageCount + ": " + msqg);
20.} } } }

2'RICE 4

ThreadRing Example

1. finish(() -> {
2. int numThreads = 4;
3. int numberOfHops = 10;
4. ThreadRingActor[] ring =

new ThreadRingActor[numThreads];
5. for (int i=numThreads-1;i>=0; i--) {
6. ring[i] = new ThreadRingActor(i);
7. ring[i].start();
8. if (i < numThreads - 1) {
9. ring[i] .nextActor(ring[i + 1]);
10. } }
11. ring[numThreads-1].nextActor(ring[0]);
12. ring[O0].send(numberOfHops) ;
13.}); // finish

l4.class ThreadRingActor

15. extends Actor<Object> {

16. private Actor<Object> nextActor;

17. private final int id;

18. ...

19. public void nextActor(
Actor<Object> nextActor) {...}

20. void process(Object theMsg) {

21. if (theMsg instanceof Integer) {

22, Integer n = (Integer) theMsg;

23. if (n > 0) {
24. println("Thread-" + id +

25. " active, remaining =

26. nextActor.send(n - 1);

27. } else {

28. println("Exiting Thread-"+ id);
29. nextActor.send(-1);

30. exit();

31. }

32. } else {

33. /* ERROR - handle appropriately
34.} } }

42

" + n)

3) Asynchronous Collectives with Finish Accumulators
(can be combined with Actors)

1. final FinishAccumulator ac =

2. newFinishAccumulator(Operator.SuM, int.class);
3. finish(ac) nqueens_kernel(new int[0], 0);

4. System.out.printin(“No. of solutions = “ + ac.get())

5. . . .

6. void nqueens_kernel(int [] a, int depth) {

7. if (size == depth) ac.put(l);

8. else

9. /* try each possible position for queen at depth */

10. for (int i = 0; i < size; i++) async {

11. /* allocate a temporary array and copy array a into it */
12. int [] b = new int [depth+1l];

13. System.arraycopy(a, 0, b, 0, depth);

14. b[depth] = 1;

15. 1f (ok(depth+1l,b)) nqueens_kernel (b, depth+l);

16. } // for-async

17. } // nqueens_kernel()

% RICE "

Role of Runtime Systems

= |nherent variability and complexity of extreme scale platforms
calls for a runtime system that is abstract, asynchronous, user-
controllable, adaptive, and portable

= Bridging role between programming systems and system
software brings multiple benefits

= composability and hybridization by default,

= improved performance for existing programming models,

= enablement of new programming models,

= simplified interfaces for system software,

= improved use of system services (e.g., deadlock avoidance),
= and cleaner code!

N RICE 44 ﬁ

Runtime Systems --- how to prime the pump?

—

Programming

Systems
L System
Software
S\RICE - 6

46

Motivation for an Open Community Runtime
(OCR)

« Wide agreement that execution models for extreme scale
systems will differ significantly from past execution
models

« Shoehorning a new execution model into an old runtime
system is counter-productive

 Instead, make a fresh start but carry forward reusable
components from current runtime systems as appropriate

=>» Motivation for Open Community Runtime framework that

— is representative of future execution models

— can be targeted by multiple high-level programming systems

— can be mapped on to multiple extreme scale platforms

— IS available as an open-source testbed

— reduces duplication of infrastructure efforts OE STt
— enables us to address revolutionarv challenges RIS

Example API: Creating an
Event-Driven Task (EDT)

* u8 ocrEdtCreate(ocrGuid_t * guid, ocrGuid_t
templateGuid, u32 paramc, u64* paramyv, u32 depc,
ocrGuid_t *depv, u16 properties, ocrGuid_t affinity,
ocrGuid_t *outputEvent);

— guid [out]: the assigned guid

— templateGuid: the template the EDT is an instance of

— paramc: nb of u64 parameters

— paramyv: pointer to u64 parameters

— depc: nb of guid parameters

— depv: array of guid dependences (if known at creation or NULL)

— properties: can specify if finish-edt here.

— affinity: affinity guid

— outputEvent [out]: edt completion notification oper
ommunity

cRuntime

47

OCR Vision

C, C++, Fortran R-Stream, ROSE, LLVM CnC, Charm++ HC-lib, Habanero-UPC

open
Extreme Scale Platforms Cﬁmuﬂl?#ﬂgy

48

Modelado Foundation

il
modelado

* A new Open Source Foundation for Parallel Computing
* Organization

Establish an open, transparent environment in which solutions are not pre-
determined

Provide an organic process for community decision-making, ensuring the best
solution wins (metrics)

Avoid a single player or clique dominating

Lower the barrier to participation by providing stable, reliable releases of
candidate solutions to a broad audience

http://www.modelado.org

e Services

Project Team Infrastructure - e.g. source code control, tooling, debuggers,
collaboration/communication

Release Engineering

Technical Support

IP management

Education, instruction and training
Community Development

Conclusions

= Holistic redesign of software stack is needed to address
concurrency, energy, and resiliency challenges of Extreme
Scale systems

= Urgent need for execution models that integrate hybrid
dimensions of parallelism and heterogeneity — multicore,
accelerators, multi-node, HPC cluster, data center cluster

= Well-designed runtime primitives can provide foundation for new
execution models, with synergistic innovation in languages,
compilers, system software and system hardware

= OCR is a starting point for a strawman community effort --- let’s
work as a community to extend/replace OCR components as
needed!

N A

Habanero Team Pictures (http://habanero.rice.edu)

Send email to Vivek Sarkar (vsarkar@rice.edu) if you are interested :
in a PhD, postdoc or research scientist position
in the Habanero project, or in visiting or collaborating with us!

