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Motivation 
•  Batch systems support only rigid or moldable jobs (static allocation) 

•  Complex scientific simulations getting more adaptive 
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Applications Examples 
•  Multiscale analysis 

•  Flow solvers (Quadflow – solves compressible navier stokes 
equations 

•  Grid size may increase, more computations 
•  Cannot predict the increase before run 
 

•  Adaptive Mesh Refinement 
•  Astrophysics 
•  Grid size increases or decreases 
•  Cannot predict pattern 
 

•  Secondary simulations for analysis 
•  Weather simulations, brain simulations 
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Motivation 
•  Batch systems support only rigid or moldable jobs (static allocation) 

•  Complex scientific simulations getting more adaptive 

•  Evolving – application initiates expand/shrink 
•  Grow in data size, computations 
•  Need more resources to finish on time 

•  Malleable – batch system initiates expand/shrink 
•  Can adapt to changing resource availability 
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Dynamic Allocation - Benefits 
•  Unpredictably evolving applications can get resources on-the-fly 

•  Resources can be released when not needed any more 

•  Avoids abrupt termination and restart for such programs 

•  Better resource utilization 
•  Use idle resources for evolving or malleable jobs 

•  Better throughput and response time 

•  Fault tolerance 
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Objective - Dynamic Batch System 
•  An RMS with dynamic allocation/deallocation facilities 
 
•  Effective scheduling strategy for evolving and mallable jobs 

•  Dynamic Torque/Maui batch system 
•  Can also be used independently and integrated with other 

schedulers/RMS 
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Batch Systems Review 
•  SLURM 

•  Dynamic feature available 
•  Get and release a set of nodes 

•  KOALA 
•  Effective malleable scheduling strategy 

•  OAR 
•  Malleable OpenMP and MPI 

•  CooRMv2 
•  Support unpredictably evolving job 
•  Scheduling against rigid jobs weak 
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Objective - Dynamic Batch System 
•  An RMS with dynamic allocation/deallocation facilities 

•  Effective scheduling strategy for evolving and mallable jobs 

•  Dynamic Torque/Maui batch system 
•  Can also be used independently and integrated with other 

schedulers/RMS 
 
•  Must compliment the programming model running the application 
•  Provide generic interfaces for evolving/malleable scenarios 

•  This work – integrates support for adaptive charm++ jobs 
 



Overview of Torque/Maui 
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Torque/Maui & Charm++ 
1.  User submits a Charm++ job 

qsub –l nodes=x -L min,max jobscript.sh 
 

2.  Mother superior creates nodelist in charm++ format under 
$PBS_CNODEFILE 

 
3.  Mother superior appends charmrun line in the jobscript before 

execution. 
charmrun +px ./app ++nodelist $PBS_CNODEFILE ++server           
++server-port portno	


	



4.  Execution starts 
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Expand - Malleable 
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Expand - Evolving 

Suraj Prabhakaran 13 

Mom 
0 

Mom 
1 

Mom 
2 

Mom 
3 Maui Server 

Mother  
superior 

Schedule 
dynamic 
request 

Queue 
dynamic 
request 

Change 
nodefile 

App 

Send 
dynamic 
request Reply + 

CCSExpand 

App 

1 6

4
23

5
DYN_JOIN_JOB 

•  tm_dynget() 

•  Message: 114 



Shrink - Malleable 
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Shrink - Evolving 
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Overhead – Malleable 
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Overhead - Evolving 
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Scheduling Evolving Jobs 
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1.  Unexpected resource requests from running jobs 
 

2.  Cannot guarantee resources 
 
3.  Availability can be increased 

•  Idle resources 
•  Separate partition for dynamic requests 
•  Prempt backfilled jobs 
•  Steal from malleable jobs	


	



4.  Biggest challenge – Fairness 
•  Who to serve? Static or dynamic request? 
•  Unfair to specific jobs/users 
	





Scheduling Evolving Jobs (II) 
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Scheduling Evolving Jobs (III) 
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•  Configurable new Maui parameters control static/dynamic scheduling  

•  Separate queues of static and dynamic requests 
•  Calculate delays caused by dynamic request 
•  Satisfy if delay under permissible limit 

•  Limits can be set for users, groups, classes, accounts and QOS 



Scheduling Evolving Jobs (IV) 
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DFSPOLICY ! !DFSSINGLEANDTARGETDELAY!
DFSINTERVAL ! !06:00:00!
DFSDECAY! ! !0.4!
!
USERCFG[user01] ! !DFSDYNDELAYPERM=1 DFSTARGETDELAYTIME=3600 \!

! ! !DFSSINGLEDELAYTIME=0!
!
USERCFG[user02] ! !DFSDYNDELAYPERM=0!
!
USERCFG[user03] ! !DFSDYNDELAYPERM=1  DFSTARGETDELAYTIME=0 \!

! ! !DFSSINGLEDELAYTIME=00:30:00!
!
USERCFG[user04] ! !DFSDYNDELAYPERM=1 DFSTARGETDELAYTIME=02:00:00 \!

! ! !DFSSINGLEDELAYTIME=00:15:00!
!
GROUPCFG[group05]! !DFSTARGETDELAYTIME=04:00:00!
!
GROUPCFG[group06]! !DFSDYNDELAYPERM=0!

  



Scheduling Evolving Jobs (V) 
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Config Time 
[mins] 

Satisfied
Dynamic 
Jobs 

Util 
% 

TP 
[Jobs/
min] 

TP  
% Inc 

Static 265.78 0 77.45 0.86 - 
Dyn-HP 238.78 43 85.02 0.96 11.3 
Dyn-600 241.06 27 83.57 0.95 10.2 

•  Dynamic ESP benchmark – 230 jobs, 14 types 
•  30% (69) evolving jobs, 70% (161) rigid jobs 
•  Dynamic jobs finish faster, linear scaling 
 
 
 



Scheduling Evolving Jobs (VI) 
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Scheduling Malleable Jobs 
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1.  Most famous – equipartitioning 
•  Shrink and start new job 
•  When resources available, distribute equally to malleable jobs 
 

2.  Can we do better? Main goal: improve throughput 
•  Scheduler prediction with min and max walltimes 

3.  Combined scheduling 
•  Backfilling malleable jobs – good for evolving jobs 

	





What HPC Wants 
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•  Users should not care which batch system and programming model 

•  A standard interface required 

•  Evolving  
 
Batch_get_resources();!
Batch_release_resources();!
 

•  Malleable 
 
Batch_query_resources();!
 
	





Conclusion 
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•  Dynamic resource management most needed at this point of time 

•  Parallel programming paradigms and job management systems should 
become more tightly coupled 

 
•  This work: 

•  Enriching Torque/Maui with dynamic (de)allocation facilities 
•  Integrating Charm++ and Torque/Maui batch system for evolving 

and malleable scenarios 

•  Next steps: 
•  Malleable scheduling strategies 
•  Towards standardization 


