
A Batch System for Adaptive Parallel
Programs

Suraj Prabhakaran, Marcel Neumann, Felix Wolf – GRS
Abhishek Gupta, Laxmikant V. Kale - UIUC

Suraj Prabhakaran 2

Outline
•  Motivation

•  Objective

•  Torque/Maui Overview

•  Expand/Shrink in the Torque RMS for Charm++

•  Scheduling strategies and results

•  Conclusion

Suraj Prabhakaran 3

Motivation
•  Batch systems support only rigid or moldable jobs (static allocation)

•  Complex scientific simulations getting more adaptive

Suraj Prabhakaran 4

Applications Examples
•  Multiscale analysis

•  Flow solvers (Quadflow – solves compressible navier stokes
equations

•  Grid size may increase, more computations
•  Cannot predict the increase before run

•  Adaptive Mesh Refinement
•  Astrophysics
•  Grid size increases or decreases
•  Cannot predict pattern

•  Secondary simulations for analysis
•  Weather simulations, brain simulations

Suraj Prabhakaran 5

Motivation
•  Batch systems support only rigid or moldable jobs (static allocation)

•  Complex scientific simulations getting more adaptive

•  Evolving – application initiates expand/shrink
•  Grow in data size, computations
•  Need more resources to finish on time

•  Malleable – batch system initiates expand/shrink
•  Can adapt to changing resource availability

Suraj Prabhakaran 6

Dynamic Allocation - Benefits
•  Unpredictably evolving applications can get resources on-the-fly

•  Resources can be released when not needed any more

•  Avoids abrupt termination and restart for such programs

•  Better resource utilization
•  Use idle resources for evolving or malleable jobs

•  Better throughput and response time

•  Fault tolerance

Suraj Prabhakaran 7

Objective - Dynamic Batch System
•  An RMS with dynamic allocation/deallocation facilities

•  Effective scheduling strategy for evolving and mallable jobs

•  Dynamic Torque/Maui batch system
•  Can also be used independently and integrated with other

schedulers/RMS

Suraj Prabhakaran 8

Batch Systems Review
•  SLURM

•  Dynamic feature available
•  Get and release a set of nodes

•  KOALA
•  Effective malleable scheduling strategy

•  OAR
•  Malleable OpenMP and MPI

•  CooRMv2
•  Support unpredictably evolving job
•  Scheduling against rigid jobs weak

Suraj Prabhakaran 9

Objective - Dynamic Batch System
•  An RMS with dynamic allocation/deallocation facilities

•  Effective scheduling strategy for evolving and mallable jobs

•  Dynamic Torque/Maui batch system
•  Can also be used independently and integrated with other

schedulers/RMS

•  Must compliment the programming model running the application
•  Provide generic interfaces for evolving/malleable scenarios

•  This work – integrates support for adaptive charm++ jobs

Overview of Torque/Maui

Suraj Prabhakaran 10

mom mom mom mom maui server

qsub

Mother Superior

JOIN_JOB

Start execution

Submit job

Schedule job

 Send job

Torque/Maui & Charm++
1.  User submits a Charm++ job

qsub –l nodes=x -L min,max jobscript.sh

2.  Mother superior creates nodelist in charm++ format under
$PBS_CNODEFILE

3.  Mother superior appends charmrun line in the jobscript before

execution.
charmrun +px ./app ++nodelist $PBS_CNODEFILE ++server
++server-port portno	

	

4.  Execution starts
	

Suraj Prabhakaran 11

Expand - Malleable

Suraj Prabhakaran 12

Mom
0

Mom
1

Mom
2

Mom
3 Maui Server

Mother
superior

Schedule
Expansion

Send Info

Change
nodefile

App

CCSExpand

App

3
DYN_JOIN_JOB

1 2

4

Message: 114

Expand - Evolving

Suraj Prabhakaran 13

Mom
0

Mom
1

Mom
2

Mom
3 Maui Server

Mother
superior

Schedule
dynamic
request

Queue
dynamic
request

Change
nodefile

App

Send
dynamic
request Reply +

CCSExpand

App

1 6

4
23

5
DYN_JOIN_JOB

•  tm_dynget()

•  Message: 114

Shrink - Malleable

Suraj Prabhakaran 14

Mom
0

Mom
1

Mom
2

Mom
3 Maui Server

Mother
superior Change

nodefile

App App

3

2

5
DYN_DISJOIN_JOB

4

Send
shrink

CCSShrink

App App

Ack

1
6

Ack
7

Ack

Message: 41100

Shrink - Evolving

Suraj Prabhakaran 15

Mom
0

Mom
1

Mom
2

Mom
3 Maui Server

Mother
superior

Inform
dynamic
release

App

Send
shrink

App

1

5

4
DYN_DISJOIN_JOB

2 3

App App

CCSShrink

 Ack

Change
nodefile

6

•  tm_dynfree()

•  Message: 41100

Overhead – Malleable

Suraj Prabhakaran 16

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17
 18

 0 2 4 6 8 10 12 14

T
im

e
 [
m

se
cs

]

Nodes

Expand
Shrink

Overhead - Evolving

Suraj Prabhakaran 17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

T
im

e
 [
se

cs
]

Number of dynamic nodes

Without Workload
With Workload

Scheduling Evolving Jobs

Suraj Prabhakaran 18

1.  Unexpected resource requests from running jobs

2.  Cannot guarantee resources

3.  Availability can be increased

•  Idle resources
•  Separate partition for dynamic requests
•  Prempt backfilled jobs
•  Steal from malleable jobs	

	

4.  Biggest challenge – Fairness
•  Who to serve? Static or dynamic request?
•  Unfair to specific jobs/users
	

Scheduling Evolving Jobs (II)

Suraj Prabhakaran 19

A

B

5

4

3

2

1

0

N
od

es

Time (hrs)
 4 8 0 2 6

Reservation
C

10 12

A

B

5

4

3

2

1

0
N

od
es

Time (hrs)

 4 8 0

A

 2 6

Reservation
C

10 12

Scheduling Evolving Jobs (III)

Suraj Prabhakaran 20

•  Configurable new Maui parameters control static/dynamic scheduling

•  Separate queues of static and dynamic requests
•  Calculate delays caused by dynamic request
•  Satisfy if delay under permissible limit

•  Limits can be set for users, groups, classes, accounts and QOS

Scheduling Evolving Jobs (IV)

Suraj Prabhakaran 21

DFSPOLICY ! !DFSSINGLEANDTARGETDELAY!
DFSINTERVAL ! !06:00:00!
DFSDECAY! ! !0.4!
!
USERCFG[user01] ! !DFSDYNDELAYPERM=1 DFSTARGETDELAYTIME=3600 \!

! ! !DFSSINGLEDELAYTIME=0!
!
USERCFG[user02] ! !DFSDYNDELAYPERM=0!
!
USERCFG[user03] ! !DFSDYNDELAYPERM=1 DFSTARGETDELAYTIME=0 \!

! ! !DFSSINGLEDELAYTIME=00:30:00!
!
USERCFG[user04] ! !DFSDYNDELAYPERM=1 DFSTARGETDELAYTIME=02:00:00 \!

! ! !DFSSINGLEDELAYTIME=00:15:00!
!
GROUPCFG[group05]! !DFSTARGETDELAYTIME=04:00:00!
!
GROUPCFG[group06]! !DFSDYNDELAYPERM=0!

Scheduling Evolving Jobs (V)

Suraj Prabhakaran 22

Config Time
[mins]

Satisfied
Dynamic
Jobs

Util
%

TP
[Jobs/
min]

TP
% Inc

Static 265.78 0 77.45 0.86 -
Dyn-HP 238.78 43 85.02 0.96 11.3
Dyn-600 241.06 27 83.57 0.95 10.2

•  Dynamic ESP benchmark – 230 jobs, 14 types
•  30% (69) evolving jobs, 70% (161) rigid jobs
•  Dynamic jobs finish faster, linear scaling

Scheduling Evolving Jobs (VI)

Suraj Prabhakaran 23

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 10 20 30 40

W
a

iti
n

g
 T

im
e

 [
se

cs
]

Type L job in order of arrival

Static
Dynamic-HP

Dynamic-600

Scheduling Malleable Jobs

Suraj Prabhakaran 24

1.  Most famous – equipartitioning
•  Shrink and start new job
•  When resources available, distribute equally to malleable jobs

2.  Can we do better? Main goal: improve throughput
•  Scheduler prediction with min and max walltimes

3.  Combined scheduling
•  Backfilling malleable jobs – good for evolving jobs

	

What HPC Wants

Suraj Prabhakaran 25

•  Users should not care which batch system and programming model

•  A standard interface required

•  Evolving

Batch_get_resources();!
Batch_release_resources();!

•  Malleable

Batch_query_resources();!

	

Conclusion

Suraj Prabhakaran 26

•  Dynamic resource management most needed at this point of time

•  Parallel programming paradigms and job management systems should
become more tightly coupled

•  This work:

•  Enriching Torque/Maui with dynamic (de)allocation facilities
•  Integrating Charm++ and Torque/Maui batch system for evolving

and malleable scenarios

•  Next steps:
•  Malleable scheduling strategies
•  Towards standardization

