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Continuous Dynamic Load Balancing

- Irreqular parallel applications
- Irregular and unpredictable structure
- Nested or recursive parallelism
- Dynamic generation of units of computation
- Available parallelism heavily depends on input data
- Require continuous dynamic load balancing

Optimization and search problems N-Body problems
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Dynamic Load Balancing Model

TaskPool.initialize(initial tasks)
While (t €« TaskPool.get
( e g () )

t.execute
N Y

In execute (), one may call TaskPool.put ()

|dle time in TaskPool.get ()
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How to Eliminate Idle Time”? — Prefetching

Thread 1

Thread 2
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How to Eliminate Idle Time? — Prefetching
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* Unpredictable workload
« Data dependence and limited
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How to Eliminate Idle Time? — Speculation

Thread 1 Thread 2

Arbitration Request
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How to Eliminate Idle Time? — Speculation

Thread 1 Speculation Fail Thread 2
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Work Sharing Algorithm

Manager
Work %esN
Thread 0 Thread 1 Thread 2 Thread 3
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Work Sharing Algorithm
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Speculative Work Sharing Algorithm
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Speculative Work Sharing Algorithm

Some Worker Thread Manager Thread
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Illinois.edu



Speculative Work Sharing Algorithm
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Speculative Work Sharing Algorithm

Some Worker Thread Manager Thread

Arbitration Request for A
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Speculative Work Sharing Algorithm

Some Worker Thread Manager Thread

Arbitration Request for B
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Speculative Work Sharing Algorithm

Some Worker Thread

Manager Thread

Arbitration Request for E
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Speculative Work Sharing Algorithm

Some Worker Thread Manager Thread

Response for A: Success
<

/ Commit
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Speculative Work Sharing Algorithm

Some Worker Thread Manager Thread

Response for B: Success
<
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Speculative Work Sharing Algorithm

Some Worker Thread Manager Thread

Response for G: Fail
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Speculative Work Sharing Algorithm

Some Worker Thread Manager Thread

Work Request
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Unbalanced Tree Search (UTS)

- Counting nodes in randomly generated
tree

- Tree generation is based on separable
cryptographic random number generator

childCount =|f(nodeId)

childId = SHAl(nodeId, childIndex)

- Different types of trees

- Binomial (probability q, # of child m)

- Geometric (depth limit d, branching factor is
geometric distribution with mean b)
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.
Work Sharing in UTS

- A node in tree is a unit of work
- A chunk is a set of nodes, and minimum transferrable unit

- Release interval is the frequency with which a worker
releases a chunk to the manager

If (HasSurplusWork() and

NodesProcessed % release inerval == 0)

ReleaseWork ()
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Experimental Setup and Inputs

- lllinois Campus Cluster
- Cluster of HP ProLiant Servers
- 2 Intel X5650 2.66Ghz 6Core Processors per Node
- High Speed Infiniband Cluster Interconnect

Binomial Geometry
(10° Nodes) (10° Nodes)
Small 0.111 0.102
Medium 2.79 1.64
Large 10.6 4.23
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Tuning of Original Algorithm — Small Input
(on 4 nodes, 12 cores each)

Impact of release interval on execution time (Geometric Tree)
40

35 |

30

25

20

Exec. Time (s)

15 |

10




Tuning of Original Algorithm — Small Input
(on 4 nodes, 12 cores each)

Impact of release interval on execution time (Geometric Tree)
40 - - — ]

35 [

30

20

Exec. Time (s)

15 |

10

illinois.edu



Tuning of Original Algorithm — Small Input
(on 4 nodes, 12 cores each)

Impact of release interval on execution time (Geometric Tree)
40 - - — ]

35 [

30

20

Exec. Time (s)

15 |

10

illinois.edu



Tuning of Original Algorithm — Small Input
(on 4 nodes, 12 cores each)

Impact of release interval on execution time (Geometric Tree)
40 - - —— ]

35 -

30

25

Exec. Time (s)
N
o
I

15 |

10

illinois.edu



Tuning of Original Algorithm — Small Input
on 4 nodes, 12 cores each

Impact of release interval on execution time (Geometric Tree)
40

35 |

30

25

20

Exec. Time (s)

15 |

illinois.edu



Original vs. Speculative Algorithm — Small Input
on 4 nodes, 12 cores each

Impact of release interval on execution time (Geometric Tree) Impact of release interval on execution time (Geometric Tree)
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Tuning of Original Algorithm — Medium Input
(on 4 nodes, 12 cores each)

Impact of release interval on execution time (Geometric Tree)
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Scalability Study — Geometric Tree
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Scalability Study — Binomial Tree
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Conclusion

- Speculation
- Is a light-weight technique in load-balancing algorithms
Is a potential solution to eliminate idle time
Reduces sensitivity of a load-balancing algorithm to parameters
Helps to reduce tuning efforts
Exhibits a higher scalability

- nmn
Dankie Graciasw
"Cn"a 9?60 Merci Takk
KOS_ZonJle . Terima kasih
(Grazie Dzigkujemy  Dékojame
Dakujeme Vielen Dank I?aldles
Kiitose Taname teid ia\:l..\lgq.

Thank You-:

R . Tesekkiir Ederiz
MZ%;JC; Eugclt) g lI(?TE:)(L:’lJﬁ dAgrct
Jgauniv

Bedankt pgkujeme vam
BOMESTEVET

Tack
T

illinois.edu




BACK UP SLIDES
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Design Guidelines

The time it takes to process a speculative task is far less
than the time it takes to get response of an arbitration

A worker may need multiple speculative tasks at a time

Low overhead algorithm to get speculative task

Minimal speculative task transfer (i.e. minimizing speculative task
destroy)

Quality of an speculative task decreases over time
Move actual task a worker has, less speculative task it should carry

Quality of an speculative task increases as it goes deeper
In its owner’s actual queue
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Does Speculation Help Work Stealing?

Base-line algorithm + speculative algorithm guidelines =
speculative work stealing (Algorithm A)

Speculative work stealing + replacing speculative
messages with prefetching = optimized prefetch-based
work stealing (Algorithm B)

“A” has a slight performance benefit over “B” (less than 5
percent overall)
Reason: Even the base-line does not have too much idle time in
UTS
... But, speculative work stealing is helpful in problems
where there is a limited parallelism due to data
dependence

Example: Depth-first traversal E graph
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