SPECULATIVE
LOAD BALANCING

Hassan Eslami
William D. Gropp

Department of Computer Science
University of lllinois at Urbana Champaign

Continuous Dynamic Load Balancing

- Irreqular parallel applications
- Irregular and unpredictable structure
- Nested or recursive parallelism
- Dynamic generation of units of computation
- Available parallelism heavily depends on input data
- Require continuous dynamic load balancing

Optimization and search problems N-Body problems

H
.

C. D. ®
G.

E
L]
/\m

& EALATT D

Hl

illinois.edu

Dynamic Load Balancing Model

TaskPool.initialize(initial tasks)
While (t €« TaskPool.get
(e g ())

t.execute
N Y

In execute (), one may call TaskPool.put ()

|dle time in TaskPool.get ()

I

illinois.edu

How to Eliminate Idle Time”? — Prefetching

Thread 1

Thread 2

illinois.edu

How to Eliminate Idle Time”? — Prefetching

Thread 1 Thread 2

illinois.edu

How to Eliminate Idle Time”? — Prefetching

Thread 1 Thread 2

illinois.edu

How to Eliminate Idle Time”? — Prefetching

Thread 1 Thread 2

illinois.edu

How to Eliminate Idle Time”? — Prefetching

Thread 1 Thread 2

illinois.edu

How to Eliminate Idle Time? — Prefetching

Thread 1 Thread 2

illinois.edu

How to Eliminate Idle Time? — Prefetching

Thread 1 Thread 2

illinois.edu

How to Eliminate Idle Time? — Prefetching

Thread 1 Thread 2

illinois.edu

How to Eliminate Idle Time? — Prefetching

Thread 1 Thread 2

(= ™
* Unpredictable workload
« Data dependence and limited

parallelism

illinois.edu

How to Eliminate Idle

Thread 1

Ime? — Speculation

Thread 2

How to Eliminate Idle

Thread 1

Ime? — Speculation

Thread 2

illinois.edu

How to Eliminate Idle Time? — Speculation

Thread 1 Thread 2

Arbitration Request
>

How to Eliminate Idle Time? — Speculation

Thread 1 Speculation Fail Thread 2
<€

I

illinois.edu

Work Sharing Algorithm

Manager
Work %esN
Thread 0 Thread 1 Thread 2 Thread 3
[W
]

Work Sharing Algorithm

Manager
Work %%N
Thread O Thread 1 Thread 2 Thread 3
[I
]
]
I
Ilinois.ed

I
Work Sharing Algorithm

Manager]
]
]
]
Thread 0 Thread 1 Thread 2 Thread 3
[. [T [1l [
]]]]

illinois.edu

Speculative Work Sharing Algorithm

Manager
Work %%N
Thread O Thread 1 Thread 2 Thread 3
[
I
Ilinois.edu

Speculative Work Sharing Algorithm

Some Worker Thread Manager Thread
___]
Illinois.edu

Speculative Work Sharing Algorithm

Some Worker Thread Manager Thread
___]
Illinois.edu

Speculative Work Sharing Algorithm

Some Worker Thread Manager Thread

Arbitration Request for A

Speculative Work Sharing Algorithm

Some Worker Thread Manager Thread

Arbitration Request for B

Speculative Work Sharing Algorithm

Some Worker Thread

Manager Thread

Arbitration Request for E

>
i A
B
e
D
I -
s][

Ilinois.ed

Speculative Work Sharing Algorithm

Some Worker Thread Manager Thread

Response for A: Success
<

/ Commit
B

c
D
E

Speculative Work Sharing Algorithm

Some Worker Thread Manager Thread

Response for B: Success
<

J Commit
e

- ®
Speculative Work Sharing Algorithm

Some Worker Thread Manager Thread

Response for G: Fail

N
Speculative Work Sharing Algorithm

Some Worker Thread Manager Thread

Work Request

__

. S
Unbalanced Tree Search (UTS)

- Counting nodes in randomly generated
tree

- Tree generation is based on separable
cryptographic random number generator

childCount =|f(nodeId)

childId = SHAl(nodeId, childIndex)

- Different types of trees

- Binomial (probability q, # of child m)

- Geometric (depth limit d, branching factor is
geometric distribution with mean b)

I

illinois.edu

.
Work Sharing in UTS

- A node in tree is a unit of work
- A chunk is a set of nodes, and minimum transferrable unit

- Release interval is the frequency with which a worker
releases a chunk to the manager

If (HasSurplusWork() and

NodesProcessed % release inerval == 0)

ReleaseWork ()

I

illinois.edu

Experimental Setup and Inputs

- lllinois Campus Cluster
- Cluster of HP ProLiant Servers
- 2 Intel X5650 2.66Ghz 6Core Processors per Node
- High Speed Infiniband Cluster Interconnect

Binomial Geometry
(10° Nodes) (10° Nodes)
Small 0.111 0.102
Medium 2.79 1.64
Large 10.6 4.23

I

illinois.edu

Tuning of Original Algorithm — Small Input
(on 4 nodes, 12 cores each)

Impact of release interval on execution time (Geometric Tree)
40

35 |

30

25

20

Exec. Time (s)

15 |

10

Tuning of Original Algorithm — Small Input
(on 4 nodes, 12 cores each)

Impact of release interval on execution time (Geometric Tree)
40 - - —]

35 [

30

20

Exec. Time (s)

15 |

10

illinois.edu

Tuning of Original Algorithm — Small Input
(on 4 nodes, 12 cores each)

Impact of release interval on execution time (Geometric Tree)
40 - - —]

35 [

30

20

Exec. Time (s)

15 |

10

illinois.edu

Tuning of Original Algorithm — Small Input
(on 4 nodes, 12 cores each)

Impact of release interval on execution time (Geometric Tree)
40 - - ——]

35 -

30

25

Exec. Time (s)
N
o
I

15 |

10

illinois.edu

Tuning of Original Algorithm — Small Input
on 4 nodes, 12 cores each

Impact of release interval on execution time (Geometric Tree)
40

35 |

30

25

20

Exec. Time (s)

15 |

illinois.edu

Original vs. Speculative Algorithm — Small Input
on 4 nodes, 12 cores each

Impact of release interval on execution time (Geometric Tree) Impact of release interval on execution time (Geometric Tree)
40 _ 40 : —_—— ——
- 5_\'
35 35 i
30 30 - -
s 51 25 - i
g ,
E 20} 20 JEAEE 18 e
o :
[0
x
w15 15 i
10 | wofF i ey e
5 5 .
0) - . L O 0 - PR . R
1 T0 100 1 10 100
Chunk Size Chunk Size

illinois.edu

Tuning of Original Algorithm — Medium Input
(on 4 nodes, 12 cores each)

Impact of release interval on execution time (Geometric Tree)

50 ' RV RN T
sl I |
0 * Optimal values: (128, 12)
« Some results for large input on 8
_ a5t nodes]
£ Time (s) Time (s)
; 30 - (128, 8) (128, 12) T
g ol Original 50.385 26.681
16 ——
Speculative | 18.902 18.886 3D e
64 ----%---
200\ e e :
- A
s L S s\ 12 |
I 2848 .
4096
10 - -
1 100

illinois.edu

. S
Scalability Study — Geometric Tree

160 -

140

120

100 -

Exec. Time (s)

80

60 r

40 +

20 |

Original —+—
Speculative ------

i e 1000
of MPI Ranks

illinois.edu

.
Scalability Study — Binomial Tree

70 - :

60

40

Exec. Time (s)

30

20

10 + _
Original —+—
Speculative ------

0 . . o |
i o 1000

of MPI Ranks

illinois.edu

Conclusion

- Speculation
- Is a light-weight technique in load-balancing algorithms
Is a potential solution to eliminate idle time
Reduces sensitivity of a load-balancing algorithm to parameters
Helps to reduce tuning efforts
Exhibits a higher scalability

- nmn
Dankie Graciasw
"Cn"a 9?60 Merci Takk
KOS_ZonJle . Terima kasih
(Grazie Dzigkujemy Dékojame
Dakujeme Vielen Dank I?aldles
Kiitose Taname teid ia\:l..\lgq.

Thank You-:

R . Tesekkiir Ederiz
MZ%;JC; Eugclt) g lI(?TE:)(L:’lJﬁ dAgrct
Jgauniv

Bedankt pgkujeme vam
BOMESTEVET

Tack
T

illinois.edu

BACK UP SLIDES

illinois.edu

HH
HH M H
il
rmr '
H "
; i
H
I+ H
H 1
: HHH M
2
4+ |
5 '
H
A MHH
S 4 £
4 - H
N
H 1 H M H

b %_,______,_:, 7___:_ |

uw.. ..m...

Sl G (I __ ___________________

illinois.edu

Design Guidelines

The time it takes to process a speculative task is far less
than the time it takes to get response of an arbitration

A worker may need multiple speculative tasks at a time

Low overhead algorithm to get speculative task

Minimal speculative task transfer (i.e. minimizing speculative task
destroy)

Quality of an speculative task decreases over time
Move actual task a worker has, less speculative task it should carry

Quality of an speculative task increases as it goes deeper
In its owner’s actual queue

I

illinois.edu

Does Speculation Help Work Stealing?

Base-line algorithm + speculative algorithm guidelines =
speculative work stealing (Algorithm A)

Speculative work stealing + replacing speculative
messages with prefetching = optimized prefetch-based
work stealing (Algorithm B)

“A” has a slight performance benefit over “B” (less than 5
percent overall)
Reason: Even the base-line does not have too much idle time in
UTS
... But, speculative work stealing is helpful in problems
where there is a limited parallelism due to data
dependence

Example: Depth-first traversal E graph

illinois.edu

