PICS - a Performance-analysis-based Introspective

Control System to Steer Parallel Applications

Yanhua Sun, Jonathan Lifflander, Laxmikant V. Kalé

April 29, 2014

Yanhua Sun 1/24

Motivation

Complexity

Modern parallel computer systems are becoming extremely complex due to
complicated network topologies, hierarchical storage systems,
heterogeneous processing units, etc.

Obtaining best performance is challenging

Applications and runtime should be reconfigurable to adapt to various
situations

The goal of the control system is to adjust the configuration automatically
based on application-specific knowledge and runtime observations.

v

AELLTERSTT 2/24

Overview of PICS framework

Control points in the runtime system and applications
Automatic performance analysis to speedup tuning
APIs implemented in Charm++

Results of benchmarks and applications

Yanhua Sun 3/24

Overview of PICS framework

Mini abps Real-world
PP applications
applications T
Application N Application
control points reconfiguration
Controller P Automatic per_formance
analysis
PICS

Performance
instrumentation

Performance
data

Adaptive runtime system

AELLTERSTT

Runtime control Runtime
points reconfiguration
4/24

Expert
knowled

Control Points

Control points

Control points are tunable parameters for application and runtime to
interact with control system. First proposed in Dooley's research.

@ Name, Values : default, min, max
© Movement unit: +1, x2
© Effects, directions

o Degree of parallelism
Grainsize
Priority
Memory usage
GPU load
Message size
Number of messages
other effects

Yanhua Sun 5/24

Application Control Points

@ Application specific control points provided by users

@ Applications should be able to reconfigure to use new values

Control points Effects Use Cases
sub-block size parallelism, grain size Jacobi, Wave, stencil code
parallel threshold parallelism, overhead, grain size state space search
stages in pipeline number of messages, message size pipeline collectives
algorithm selection degree of parallelism, grain size 3D FFT decomposition (slab or pencil)
software cache size memory usage, amount of communication ChaNGa
ratio of GPU CPU load computation, load balance NAMD, ChaNGa

Yanhua Sun 6/24

Runtime System Control Points

@ Traditionally, configurations for the runtime system do not change

@ Configurations for the runtime system itself should be tunable

© Registered by runtime itself
@ Requires no change from applications

© Affect all applications

Yanhua Sun 7/24

Runtime System Control Points

Control points Effects Use Cases
broadcast algorithm selection communication most applications
broadcast/reduction branch factor critical path most applications(NAMD)

compression algorithm

communication, overhead

NAMD, ChaNGa

fault tolerance frequency

overhead, memory usage

most applications

load balancing frequency

overhead, load balance

most applications

tracing data disk write frequency

memory usage, overhead

most applications

number of AMPI virtual threads

grain size

AMPI applications

AELLTERSTT

Observe Program Behaviors

@ Record all events

o Events : begin idle, end idle

e Functions: name, begin execution, end execution

o Communication : message creation, size, source/destination
e Hardware counters

@ Module link, no source code modification

@ Performance summary data

Yanhua Sun 9/24

Automatically Analyze the Performance

Many control points are registered. How to reduce the search space?
Performance Analysis - Identify Program Problems

@ Decomposition
@ Mapping
@ Scheduling

AELLTERSTT 10/24

Decomposition Characteristics

Decomposition
problem?

too much
communication
on one object

Replicate the objects

(I)too big
entry method

Bytes per
message low

Increase
grain size

(2)too big
single object

(3)too much

High cache miss rate -
critical path

(4)too few objects
per PE

Decrease
grain size

AELLTERSTT 11/24

Mapping Characteristics

Mapping problem?

too much , N N
. L. Communication time >>
load imbalance communication .
LogP model time
on one PE

Load
balancer

too much external
communication

Topology aware mapping

AELLTERSTT

Scheduling Characteristics
Qeduling probleD

Critical tasks
are delayed

@ the tasks

AELLUERSTT 13/24

Other Characteristics

Bytes per Reduction
message low broadcast

Long latency

Aggregate
Message

Compress
message

AELLUERSTT 14/24

Correlate Performance with Control Points

@ One box can have multiple children

@ One egg can have multiple parents

AELLTERSTT 15/24

Correlate Performance with Control Points

Traverse the tree using the performance summary results
@ performance results = solutions
@ solution = effect of control points
@ What control points to tune, in which direction!
°

How much?

MaxObjLoad
Avgload

Feed results into the control points database

e grainsize :

AELLUERSTT 16/24

Control System APls

typedef struct ControlPoint_t
{
char name[30];
enum TP_DATATYPE datatype;
double defaultValue;
double currentValue;
double minValue;
double maxValue;
double bestValue;
double moveUnit;

int moveOP ;

int effect;

int effectDirection ;
int strategy;

int entryEP ;

int objectlD ;

}ControlPoint;

AELLUERSTT 17/24

APIs for applications

void registerControlPoint(ControlPoint xtp);

void startStep ();
void endStep ();

void startPhase(int phaseld);
void endPhase ();

double getTunedParameter(const char xname, bool xvalid);

AELLTERSTT 18/24

Experimental Results of Benchmarks and Applications

@ Control points
@ Performance problem
© Bluegene/Q machine, Cray XE6 machine

AELLTERSTT 19/24

Tuning Message Pipeline

@ Control point: number of pipeline messages

16 — \ \ 16
timestep(less work) —x—
timestep(more work) ---x---
14 pipeline(less work) 114
pipeline(more work)
12 12
@
@
g
a 10 10 8
-
@
c
% 8 8 3
2 2
2 a
£ k)
£ s 5 o
<}
€
S
2
4r 44
X
2 b% 5
0 | | | | | | | 0
10 20 30 40 50 60 70 80
step

Figure: Tuning the number of pipeline messages

AELLUERSTT 20/24

Message Compression

@ Control points: compression algorithm for each type message
@ Runtime control points

2000

M=0.1, 12=1.0 —%—

1500

timestep(ms/step)

b
il

500 w L_)&*

I
10 20 30 40 50 60
step

Figure: Steering the compression algorithm for all-to-all benchmark

Yanhua Sun 21/24

Jacobi3d Performance Steering

@ Control Points: sub-block size in each dimension
@ Three control points
@ Cache miss rate, high idle suggest decreasing sub-block size
@ Overhead
4 T T
total time —»—
idle time ---%---
35 runtime och':r:iergg 7
3
a 25 \ /\
2 | N AR
£,
é 1.5
1
0.5
0 e AR XN RN N s s 23 AN KN N e
5 10 15 20 25 30 35 40

step

Figure: Jacobi3d performance steering on 64 cores for problem of
1024*1024*1024

AELLTERSTT 22/24

Communication Bottleneck in ChaNGa

@ Control points: number of mirrors
@ Ratio of maximum communication per object to average

2 : .
tune mirrors with PICS ---x---
no mirrors —*—

<
A
N

1.3 Je
1.2
X
1.1 X Iy
1 T T i i
5 10 15 20 25

steps

Figure: Time cost of calculating gravity for various mirrors and no mirror on 16k

AELLTERSTT

Conclusion

@ Automatic performance tuning is required to improve productivity and
performance

@ Automatic performance analysis helps guide performance steering

@ Steering both runtime system and applications are important

Yanhua Sun 24/24

