Argobots: Lightweight Threading/Tasking
Framework

Cyril Bordage (UIUC) and Huiwel Lu (ANL)

ANL: Pavan Balaji, Pete Beckman, Sangmin Seo, Marc Snir
UIUC: Laxmikant V. Kale, Jonathan Lifflander, Yanhua Sun
UTK: Georges Bosilca, Damien Genet, Thomas Herault
PNNL: Sriram Krishnamoorthy

https://collab.cels.anl.gov/display/ARGOBOTS

Charm++ Workshop 2015

https://collab.cels.anl.gov/display/ARGOBOTS

Motivation: extreme scale computing

* Massive on-node parallelism

- Need for supporting fine-grained
asynchronous work units

- Lightweight threading and tasking methods
* Need for interoperability among multiple
programming models in a single application
- Different runtime strategies
- Domain Specific Language
- Better productivity and performance

* Part of the Argo project

Argobots

* Lightweight Low-level Threading/Tasking
Framework

* Massive parallelism
— Execution Streams guarantee progress
— Work Units execute to completion

 QOffers low-level abstraction of threads and tasks

1

_ Stream
Execution Model

Outline

* Execution model

* Interface

* Evaluation

* Programming models

Execution Model

Semantic

* Execution Stream (ES)
- Responsible for the execution of work units
- Corresponds to one hardware resource
- No preemption between work units

« Work Unit

- Associated with function call and executes to
completion

- Two types
 User Level Thread (ULT): has its own stack
- Can yield and synchronize
 Tasklet: no stack

mERXJr

3

—~_

@0

Pg,

ES,

B
<

@

\,

O
1

PM21

Pyoa ES,

* Pools: set of ready work units
- Private or Shared

Schedulers
- Different strategies
- Stackable

ES

Main
Scheduler

U | ULT

@ Tasklet
e Event

Interface

Basic Operations

* Explicit creation of execution streams
* Creation of ULTs and tasklets (needs the target pool)
* Yield and yield to
* Migration
* Synchronization
- Termination (join)
- Future, mutex, barrier, condition variable...

Main
[C Scheduler
o o o I < : > o e @ Scheduler
P
—— El

PE2

U 9 @ - :] Pool
@ @ o @ U U | uT
@ @ , 9 v @ Tasklet

11 211

Ml1 ES1 Py Pyoa ESZ ESn e Event

Hello world example

int main(int argc, char *argvl[]) /* Task function */
{ void task_hello(void *arg)
int num xstreams = 4; {
ABT xstream xstreams[num xstreams]; , . .
ABT pool pools[num xstreams]; printf("Hello, world\n");
}

/* Initialization */

ABT_init(argc, argv);

ABT_xstream_self (&xstreams[0]);

for (int 1 = 1; i < num xstreams; i++)
ABT_xstream_create(ABT SCHED NULL, &xstreams[il]);

/* Get the first pool associated with each ES */
for (int 1 = 0; 1 < num xstreams; i++)
ABT_xstream_get main_pools(xstreams[i], 1, &pools[il]);

/* Create tasks */
for (int i = 0; i < num xstreams; i++)
ABT_task_create(pools[i], task hello, NULL, NULL);

/* Switch to other work units */
ABT_thread_yield();

/* Finalize */

for (int i = 1; i < num xstreams; i++) {
ABT_xstream_join(xstreams[i]);
ABT_xstream_free(&xstreams[i]);

}

ABT_finalize();

return 0;

Evaluation

Microbenchmarks: create and join

4000 . .

qtrllreaéis — | | | '
3500 MassiveThreads —<— /N -

3000
2500
2000
1500

Execution Time (ns)

1000
500

01
1 2 4 8 16 24 32 36 40 48 56 64 72
Number of Execution Streams

Tests on 2 Intel Xeon E5-2699 (2.3GHz, 36 cores, 72 threads)

Microbenchmarks: yield

10000 - |] | | 1] | | | | I
' gthreads —+—
MassiveThreads —<—
Argobots (yield)
Argobots (yield-to)

1000 |

Execution Time (ns)

100 }

10] | |] | |]]]] |
1 2 4 8 16 24 32 36 40 48 56 64 72

Number of Execution Streams

Tests on 2 Intel Xeon E5-2699 (2.3GHz, 36 cores, 72 threads)

Microbenchmarks: different work units

30 |

| | | |
Named ULT ——
Unnamed ULT —<«—
o5 L Named Tasklet
Unnamed Tasklet

0 /

S 20 b g T o

£ . - _* :

= | _ _

c 15 Y S ... N+ = e e e eeaeaaoan

O /

= |

8 10 _____________ o ___
) - — .
0 | I I I I I I | I I I

1 2 4 8 16 24 32 36 40 48 56 64 72
Number of Execution Streams

Tests on 2 Intel Xeon E5-2699 (2.3GHz, 36 cores, 72 threads)

LeanMD with Argobots: speedup

1000
== Argobots ==é== |deal

100
o
>
©
o
3
N

10

1

1 2 4 8 16 32 64

Number of Execution Streams

Speedup on Intel Xeon Phi

128

240

Programming models

Charm++ with Argobots: integration

Mini-apps and real world applications

Charm++ model

Intelligent runtime

Converse runtime :> Argobots
(threading, messaging, scheduler) (ULTs, Tasks, scheduling, etc.)

Communication libraries (MPI, uGNI, PAMI, Verbs)

Charm++ infrastructure Charm++ with Argobots
Goal: Approach:
1. Test the completeness and 1. Create an Execution Stream for each
performance of Argobots APIs with Charm++ Instance
Charm++ programming model 2. All Charm++ messages are enqueued

2. For Charm++ programs as tasks into the Argobots pool
interoperate with programs written 3'Arg?b°ts schedules the messages in
in other models (MPI, Cilk, etc.) OO

Charm++ with Argobots: preliminary test

timestep(ms/step)

256

128

64

32

16

exlperimental timestep(ms/sltep) —%—
Ideal timestep(ms/step) ---x---

cores

Test of LeanMD

MPIl+Argobots: Data Movement in Distributed
Memory Systems with Lightweight Threads

Process Process

ULT

* Hybrid runtime of MPI and Argobots
— Lightweight and dynamically adapt to
the hardware resources
* Two level of threads provide an explicit
semantic for concurrency

— Execution Stream (ES) provides
concurrent execution

— User Level Thread (ULT) provides fast
context switch LT do st

* Overlap communication with o
computation using ULT

— Helps turn a MPI blocking call to a
nonblocking one

— ULT is lightweight because no lock is
needed between two ULTs in the same
kernel thread

start a
MPI send

Context switch to ULT,,
ULT, communication
in background

Context switch back to

ULT,, ULT,

ULT,

communicate in
background

au1jauily

<

CPU NIC

MPI+Argobots: HPCG App

High Performance Conjugate
Gradient (HPCG)

internal external

BYABVAN _
A L ®x =
v I
/ Fy ':'?f{'\:‘:; 1.

— Solves 4x=b, large and sparse
matrix.

Hiding Global Collective

Communication

— Overlap communication and
computation between iterations

v Ax=y
for k = [1: max_iter]: HPCG
MG(A, 1, 2);
ifk>1:

ult join (thread);
if (normr <= tolerance) break;

ult fork(ult ddot, ¶m, &thread)

— Fork a ULT to do ult ddot and
join in the next iteration

Hiding Neighborhood

Communication

— For each neighbor, fork a ULT to

do halo exchange and a small
part of SpMV (communication)

— Main ULT computes local spmv
(computation)

SpMV(A, x, &y):
for each neighbor: SpMV
ult fork(es, ult spmv, &t[i]);
for 1 in [0: nRows]:
ult yield();
for each j in row 1i:
y[i] += val[j] * x[1dx[j]];
for each neighbor 1:

ult join(t[1]);

MPIl+Argobots: HPCG Preliminary Results

600

500

400

300

HPCG (GFlop/s) = MPI only
® MPI+Argobots
200 ® MPI+Pthreads

100

0 -

#Cores

* On 2,048 cores, HPCG using MPI+Argobots shows
performance improvement of 12.6% over MPI-only version,
or 26.9% over MPI+Pthreads version.

— As core number increases, the benefit of communication
hiding begins to reveal.

Cilk with Argobots: Dynamic Task Splicing

Cilk built on Argobots

— Each Cilk worker (previously pthread) is now an
Argobots Execution Stream

— The Cilk work stealing scheduler runs in a Argobots ULT O 7
4 continuati on -l ;Ecr';:cﬁiﬁﬂ;ati on
Fuse together multiple spawn trees to improve locality O W,

— Distinct spawn trees require their own stack
* Create a new Argobots ULT for each spawn tree root to fuse
* Modify Cilk compiler to generate Argobots ULT function wrapper

— A steal may require stealing from multiple ULTs (or
spawn trees)

Motivation

— Code may be in different libraries, manual fusion not
possible

— Dependencies between phases may inhibit manual
fusion

Implemented simple application

— Matrix Vector Product and Transpose (PolyBench: mtv)
* Two concurrent phases that read entire matrix A
* Cache locality can be improved if they are fused

continuati on continuati on

Fused ULT N

Fused ULT 2
Fused ULT 1
RWS ULT

Argobots ES

Cilk “Worker”

PTGE (Pluggable Task Graph Engine) with
Argobots

* Motivation
— A decent scale application encompasses thousands of tasks

— It is critical to minimize the number of tasks

 PTGE

— Data centric task definition

— Minimize the number of tasks by defining symbolic
dependencies between sets of tasks

« for(i = 0; i < SIZE; i++) task(A[i])
become: task([A[i], i in [0 .. SIZE-1]])

— Integrate with the communication engine to allow for
dynamic creation of incoming data, matched with expected
input for task(s)

* Hierarchical task scheduling
— With the PTGE approach the first stage of scheduling is

creating the task
* Many possible strategies: first data available, all local data
available, I/O prediction cost ...

— Once the task is created, the graph of tasks is decorated
with cost information for the upper level scheduling
— Enable task stealing between hierarchies (both ways)

Conclusion

Conclusion

Argobots is a lightweight threading/task
Infrastructure

Argobots is highly optimized and has good
scalability on many-core processors

Argobots can be easily integrated with different
programming models (MPI, Charm++, Cilk, PTGE)

Ongoing works

- More applications with different programming
models

- Interoperability between different models

Download: https://collab.cels.anl.gov/display/ARGOBOTS

https://collab.cels.anl.gov/display/ARGOBOTS

Thanks!
Questions?

	Slide 1
	Argobots
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Running Charm++ with Argobots
	Slide 18
	Slide 19
	Application: HPCG
	Preliminary Results: HPCG w/ MPI+Argobots
	Dynamic Task Splicing with Cilk + Argobots
	PTGE: Pluggable Task Graph Engine
	Slide 24
	Slide 25
	Slide 26

