
Argobots: Lightweight Threading/Tasking
Framework

Cyril Bordage (UIUC) and Huiwei Lu (ANL)

Charm++ Workshop 2015

ANL: Pavan Balaji, Pete Beckman, Sangmin Seo, Marc Snir
UIUC: Laxmikant V. Kale, Jonathan Lifflander, Yanhua Sun

UTK: Georges Bosilca, Damien Genet, Thomas Herault
PNNL: Sriram Krishnamoorthy

https://collab.cels.anl.gov/display/ARGOBOTS

https://collab.cels.anl.gov/display/ARGOBOTS

Argobots - Charm++ Workshop 2015 2

Motivation: extreme scale computing

• Massive on-node parallelism
– Need for supporting fine-grained

asynchronous work units
– Lightweight threading and tasking methods

• Need for interoperability among multiple
programming models in a single application

– Different runtime strategies
– Domain Specific Language
– Better productivity and performance

• Part of the Argo project

Argobots - Charm++ Workshop 2015 3

Argobots

• Lightweight Low-level Threading/Tasking
Framework

• Massive parallelism
– Execution Streams guarantee progress
– Work Units execute to completion

• Offers low-level abstraction of threads and tasks

Work
Unit

Execution
Stream

Execution Model

Argobots - Charm++ Workshop 2015 4

Outline

• Execution model
• Interface
• Evaluation
• Programming models

Argobots - Charm++ Workshop 2015 5

Execution Model

Argobots - Charm++ Workshop 2015 6

Semantic

• Execution Stream (ES)
– Responsible for the execution of work units
– Corresponds to one hardware resource
– No preemption between work units

• Work Unit
– Associated with function call and executes to

completion
– Two types

● User Level Thread (ULT): has its own stack
– Can yield and synchronize

● Tasklet: no stack

Argobots - Charm++ Workshop 2015 7

Design

• Pools: set of ready work units
– Private or Shared

• Schedulers
– Different strategies
– Stackable

Argobots - Charm++ Workshop 2015 8

Interface

Argobots - Charm++ Workshop 2015 9

Basic Operations

• Explicit creation of execution streams
• Creation of ULTs and tasklets (needs the target pool)
• Yield and yield to
• Migration
• Synchronization

– Termination (join)
– Future, mutex, barrier, condition variable...

Argobots - Charm++ Workshop 2015 10

Hello world example
int main(int argc, char *argv[])
{
 int num_xstreams = 4;
 ABT_xstream xstreams[num_xstreams];
 ABT_pool pools[num_xstreams];

 /* Initialization */
 ABT_init(argc, argv);
 ABT_xstream_self(&xstreams[0]);
 for (int i = 1; i < num_xstreams; i++)
 ABT_xstream_create(ABT_SCHED_NULL, &xstreams[i]);

 /* Get the first pool associated with each ES */
 for (int i = 0; i < num_xstreams; i++)
 ABT_xstream_get_main_pools(xstreams[i], 1, &pools[i]);

 /* Create tasks */
 for (int i = 0; i < num_xstreams; i++)
 ABT_task_create(pools[i], task_hello, NULL, NULL);

 /* Switch to other work units */
 ABT_thread_yield();

 /* Finalize */
 for (int i = 1; i < num_xstreams; i++) {
 ABT_xstream_join(xstreams[i]);
 ABT_xstream_free(&xstreams[i]);
 }
 ABT_finalize();
 return 0;
}

/* Task function */

void task_hello(void *arg)

{

 printf("Hello, world!\n");

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Argobots - Charm++ Workshop 2015 11

Evaluation

Argobots - Charm++ Workshop 2015 12

Microbenchmarks: create and join

Tests on 2 Intel Xeon E5-2699 (2.3GHz, 36 cores, 72 threads)

Argobots - Charm++ Workshop 2015 13

Microbenchmarks: yield

Tests on 2 Intel Xeon E5-2699 (2.3GHz, 36 cores, 72 threads)

Argobots - Charm++ Workshop 2015 14

Microbenchmarks: different work units

Tests on 2 Intel Xeon E5-2699 (2.3GHz, 36 cores, 72 threads)

Argobots - Charm++ Workshop 2015 15

LeanMD with Argobots: speedup

Speedup on Intel Xeon Phi

1
1

10

100

1000

2 4 8 16 32 64 128 240

Argobots Ideal

Number of Execution Streams

S
pe

ed
up

Argobots - Charm++ Workshop 2015 16

Programming models

Argobots - Charm++ Workshop 2015 17

Charm++ with Argobots: integration

Goal:
1. Test the completeness and

performance of Argobots APIs with
Charm++ programming model

2. For Charm++ programs,
interoperate with programs written
in other models (MPI, Cilk, etc.)

Mini-apps and real world applications

 Charm++ model

Converse runtime
(threading, messaging, scheduler)

Communication libraries (MPI, uGNI, PAMI, Verbs)

Intelligent runtime

Argobots
(ULTs, Tasks, scheduling, etc.)

Charm++ infrastructure Charm++ with Argobots

Approach:
1. Create an Execution Stream for each

Charm++ Instance
2. All Charm++ messages are enqueued

as tasks into the Argobots pool
3. Argobots schedules the messages in

pool

Argobots - Charm++ Workshop 2015 18

Charm++ with Argobots: preliminary test

Test of LeanMD

Argobots - Charm++ Workshop 2015 19

MPI+Argobots: Data Movement in Distributed
Memory Systems with Lightweight Threads

• Hybrid runtime of MPI and Argobots
– Lightweight and dynamically adapt to

the hardware resources

• Two level of threads provide an explicit
semantic for concurrency
– Execution Stream (ES) provides

concurrent execution
– User Level Thread (ULT) provides fast

context switch

• Overlap communication with
computation using ULT
– Helps turn a MPI blocking call to a

nonblocking one
– ULT is lightweight because no lock is

needed between two ULTs in the same
kernel thread

ULT

ES

ULT

ES

MPIMPI

ULT

ES

ULT

ES

MPIMPI

Process Process

tim
eline

ULT1 do computation,
start a
MPI send
Context switch to ULT2,
ULT1 communication
in background

Context switch back to
ULT1, ULT2
communicate in
background

ULT1

ULT2

CPUCPU NICNIC

Argobots - Charm++ Workshop 2015 20

• High Performance Conjugate
Gradient (HPCG)
– Solves Ax=b, large and sparse

matrix.

• Hiding Global Collective
Communication
– Overlap communication and

computation between iterations
– Fork a ULT to do ult_ddot and

join in the next iteration

• Hiding Neighborhood
Communication
– For each neighbor, fork a ULT to

do halo exchange and a small
part of SpMV (communication)

– Main ULT computes local spmv
(computation)

MPI+Argobots: HPCG App

SpMV(A, x, &y):
 for each neighbor:
 ult_fork(es, ult_spmv, &t[i]);
 for i in [0: nRows]:
 ult_yield();
 for each j in row i:
 y[i] += val[j] * x[idx[j]];
 for each neighbor i:
 ult_join(t[i]);

HPCG

SpMV

for k = [1: max_iter]:
 MG(A, r, z);
 if k > 1:
 ult_join (thread);
 if (normr <= tolerance) break;
 ……
 ult_fork(ult_ddot, ¶m, &thread)

Argobots - Charm++ Workshop 2015 21

• On 2,048 cores, HPCG using MPI+Argobots shows
performance improvement of 12.6% over MPI-only version,
or 26.9% over MPI+Pthreads version.
– As core number increases, the benefit of communication

hiding begins to reveal.

MPI+Argobots: HPCG Preliminary Results

0

100

200

300

400

500

600

MPI only
MPI+Argobots
MPI+Pthreads

#Cores

HPCG (GFlop/s)

Argobots - Charm++ Workshop 2015 22

Cilk with Argobots: Dynamic Task Splicing

• Cilk built on Argobots
– Each Cilk worker (previously pthread) is now an

Argobots Execution Stream
– The Cilk work stealing scheduler runs in a Argobots ULT

• Fuse together multiple spawn trees to improve locality
– Distinct spawn trees require their own stack

• Create a new Argobots ULT for each spawn tree root to fuse
• Modify Cilk compiler to generate Argobots ULT function wrapper

– A steal may require stealing from multiple ULTs (or
spawn trees)

• Motivation
– Code may be in different libraries, manual fusion not

possible
– Dependencies between phases may inhibit manual

fusion
• Implemented simple application

– Matrix Vector Product and Transpose (PolyBench: mtv)
• Two concurrent phases that read entire matrix A
• Cache locality can be improved if they are fused

Cilk “Worker”

Argobots ES

RWS ULT

Fused ULT 1

Fused ULT 2

Fused ULT N

…

Argobots - Charm++ Workshop 2015 23

PTGE (Pluggable Task Graph Engine) with
Argobots
• Motivation

– A decent scale application encompasses thousands of tasks
– It is critical to minimize the number of tasks

• PTGE
– Data centric task definition
– Minimize the number of tasks by defining symbolic

dependencies between sets of tasks
• for(i = 0; i < SIZE; i++) task(A[i])

become: task([A[i], i in [0 .. SIZE-1]])

– Integrate with the communication engine to allow for
dynamic creation of incoming data, matched with expected
input for task(s)

• Hierarchical task scheduling
– With the PTGE approach the first stage of scheduling is

creating the task
• Many possible strategies: first data available, all local data

available, I/O prediction cost …

– Once the task is created, the graph of tasks is decorated
with cost information for the upper level scheduling

– Enable task stealing between hierarchies (both ways)

PO

GE

TR

SYTR TR

PO GE GE

TR TR

SYSY GE

PO

TR

SY

PO

SY SY

Argobots - Charm++ Workshop 2015 24

Conclusion

Argobots - Charm++ Workshop 2015 25

Conclusion

• Argobots is a lightweight threading/task
Infrastructure

• Argobots is highly optimized and has good
scalability on many-core processors

• Argobots can be easily integrated with different
programming models (MPI, Charm++, Cilk, PTGE)

• Ongoing works

– More applications with different programming
models

– Interoperability between different models

Download: https://collab.cels.anl.gov/display/ARGOBOTS

https://collab.cels.anl.gov/display/ARGOBOTS

Argobots - Charm++ Workshop 2015 26

Thanks!
Questions?

	Slide 1
	Argobots
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Running Charm++ with Argobots
	Slide 18
	Slide 19
	Application: HPCG
	Preliminary Results: HPCG w/ MPI+Argobots
	Dynamic Task Splicing with Cilk + Argobots
	PTGE: Pluggable Task Graph Engine
	Slide 24
	Slide 25
	Slide 26

