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Motivation: extreme scale computing

• Massive on-node parallelism
– Need for supporting fine-grained 

asynchronous work units
– Lightweight threading and tasking methods

• Need for interoperability among multiple 
programming models in a single application

– Different runtime strategies
– Domain Specific Language
– Better productivity and performance

• Part of the Argo project
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Argobots

• Lightweight Low-level Threading/Tasking 
Framework

• Massive parallelism
– Execution Streams guarantee progress
– Work Units execute to completion

• Offers low-level abstraction of threads and tasks
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Outline

• Execution model
• Interface
• Evaluation
• Programming models
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Execution Model
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Semantic

• Execution Stream (ES)
– Responsible for the execution of work units
– Corresponds to one hardware resource
– No preemption between work units

• Work Unit
– Associated with function call and executes to 

completion
– Two types

● User Level Thread (ULT): has its own stack
– Can yield and synchronize

● Tasklet: no stack
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Design

• Pools: set of ready work units
– Private or Shared

• Schedulers
– Different strategies
– Stackable
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Interface
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Basic Operations

• Explicit creation of execution streams
• Creation of ULTs and tasklets (needs the target pool)
• Yield and yield to
• Migration
• Synchronization

– Termination (join)
– Future, mutex, barrier, condition variable...
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Hello world example
int main(int argc, char *argv[])
{
  int num_xstreams = 4;
  ABT_xstream xstreams[num_xstreams];
  ABT_pool    pools[num_xstreams];

  /* Initialization */  
  ABT_init(argc, argv);
  ABT_xstream_self(&xstreams[0]);
  for (int i = 1; i < num_xstreams; i++)
    ABT_xstream_create(ABT_SCHED_NULL, &xstreams[i]);

  /* Get the first pool associated with each ES */
  for (int i = 0; i < num_xstreams; i++)
    ABT_xstream_get_main_pools(xstreams[i], 1, &pools[i]);

  /* Create tasks */
  for (int i = 0; i < num_xstreams; i++)
    ABT_task_create(pools[i], task_hello, NULL, NULL);

  /* Switch to other work units */
  ABT_thread_yield();

  /* Finalize */
  for (int i = 1; i < num_xstreams; i++) {
    ABT_xstream_join(xstreams[i]);
    ABT_xstream_free(&xstreams[i]);
  }
  ABT_finalize();
  return 0;
}

/* Task function */

void task_hello(void *arg)

{

  printf("Hello, world!\n");

}
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Evaluation
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Microbenchmarks: create and join

Tests on 2 Intel Xeon E5-2699 (2.3GHz, 36 cores, 72 threads)
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Microbenchmarks: yield

Tests on 2 Intel Xeon E5-2699 (2.3GHz, 36 cores, 72 threads)
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Microbenchmarks: different work units

Tests on 2 Intel Xeon E5-2699 (2.3GHz, 36 cores, 72 threads)
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LeanMD with Argobots: speedup

Speedup on Intel Xeon Phi

1
1

10

100

1000

2 4 8 16 32 64 128 240

Argobots Ideal

Number of Execution Streams

S
pe

ed
up



Argobots  -  Charm++ Workshop 2015 16

Programming models
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Charm++ with Argobots: integration

Goal:
1. Test the completeness and 

performance of Argobots APIs with 
Charm++ programming model

2. For Charm++ programs, 
interoperate with programs written 
in other models (MPI, Cilk, etc.)

Mini-apps and real world applications 

 Charm++ model

Converse runtime
(threading, messaging, scheduler)

Communication libraries (MPI, uGNI, PAMI, Verbs)

Intelligent runtime

Argobots
(ULTs, Tasks, scheduling, etc.)

Charm++ infrastructure Charm++ with Argobots 

Approach:
1. Create an Execution Stream for each 

Charm++ Instance
2. All Charm++ messages are enqueued 

as tasks into the Argobots pool 
3. Argobots schedules the messages in 

pool
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Charm++ with Argobots: preliminary test

Test of LeanMD
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MPI+Argobots: Data Movement in Distributed 
Memory Systems with Lightweight Threads

• Hybrid runtime of MPI and Argobots
– Lightweight and dynamically adapt to 

the hardware resources

• Two level of threads provide an explicit 
semantic for concurrency
– Execution Stream (ES) provides 

concurrent execution
– User Level Thread (ULT) provides fast 

context switch

• Overlap communication with 
computation using ULT
– Helps turn a MPI blocking call to a 

nonblocking one
– ULT is lightweight because no lock is 

needed between two ULTs in the same 
kernel thread
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• High Performance Conjugate 
Gradient (HPCG)
– Solves Ax=b, large and sparse 

matrix.

• Hiding Global Collective 
Communication
– Overlap communication and 

computation between iterations
– Fork a ULT to do ult_ddot and 

join in the next iteration

• Hiding Neighborhood 
Communication
– For each neighbor, fork a ULT to 

do halo exchange and a small 
part of SpMV (communication)

– Main ULT computes local spmv 
(computation)

MPI+Argobots: HPCG App

SpMV(A, x, &y):
    for each neighbor:
        ult_fork(es, ult_spmv, &t[i]);
    for i in [0: nRows]:
        ult_yield();
        for each j in row i:
            y[i] += val[j] * x[idx[j]];
    for each neighbor i:
        ult_join(t[i]);

HPCG

SpMV

for k = [1: max_iter]:
    MG(A, r, z);
    if k > 1:
        ult_join (thread);
        if (normr <= tolerance) break;
    ……
    ult_fork(ult_ddot, &param, &thread)
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• On 2,048 cores, HPCG using MPI+Argobots shows 
performance improvement of 12.6% over MPI-only version, 
or 26.9% over MPI+Pthreads version.
– As core number increases, the benefit of communication 

hiding begins to reveal.

MPI+Argobots: HPCG Preliminary Results
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Cilk with Argobots: Dynamic Task Splicing

• Cilk built on Argobots
– Each Cilk worker (previously pthread) is now an 

Argobots Execution Stream
– The Cilk work stealing scheduler runs in a Argobots ULT

• Fuse together multiple spawn trees to improve locality
– Distinct spawn trees require their own stack

• Create a new Argobots ULT for each spawn tree root to fuse
• Modify Cilk compiler to generate Argobots ULT function wrapper

– A steal may require stealing from multiple ULTs (or 
spawn trees)

• Motivation
– Code may be in different libraries, manual fusion not 

possible
– Dependencies between phases may inhibit manual 

fusion
• Implemented simple application

– Matrix Vector Product and Transpose (PolyBench: mtv)
• Two concurrent phases that read entire matrix A
• Cache locality can be improved if they are fused
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PTGE (Pluggable Task Graph Engine) with 
Argobots
• Motivation

– A decent scale application encompasses thousands of tasks
– It is critical to minimize the number of tasks

• PTGE
– Data centric task definition
– Minimize the number of tasks by defining symbolic 

dependencies between sets of tasks
• for(i = 0; i < SIZE; i++) task(A[i]) 

become: task([A[i], i in [0 .. SIZE-1]])

– Integrate with the communication engine to allow for 
dynamic creation of incoming data, matched with expected 
input for task(s)

• Hierarchical task scheduling
– With the PTGE approach the first stage of scheduling is 

creating the task
• Many possible strategies: first data available, all local data 

available, I/O prediction cost …

– Once the task is created, the graph of tasks is decorated 
with cost information for the upper level scheduling

– Enable task stealing between hierarchies (both ways)
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Conclusion
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Conclusion

• Argobots is a lightweight threading/task 
Infrastructure

• Argobots is highly optimized and has good 
scalability on many-core processors

• Argobots can be easily integrated with different 
programming models (MPI, Charm++, Cilk, PTGE)

• Ongoing works

– More applications with different programming 
models

– Interoperability between different models

Download: https://collab.cels.anl.gov/display/ARGOBOTS

https://collab.cels.anl.gov/display/ARGOBOTS


Argobots  -  Charm++ Workshop 2015 26

Thanks!
Questions?
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