ChaNGa

CHArm Nbody GrAvity

Thomas Quinn Graeme Lufkin Joachim Stadel James Wadsley **Greg Stinson** Michael Tremmel Alex Fry Lauren Anderson

Funding: NSF NASA

Laxmikant Kale Filippo Gioachin Pritish Jetley Celso Mendes Amit Sharma Lukasz Wesolowski Gengbin Zheng Edgar Solomonik Harshitha Menon **Orion Lawlor**

Outline

- Overview of computational cosmology
- Prelimary Blue Waters Results
- Specific Challenges for Blue Waters
- ChaNGa and Charm features
- Recent science directions
- Future

Cosmology at 380,000 years

Image courtesy ESA/Planck

Cosmology at 13.6 Gigayears

... is not so simple

Fundamental Problem: Dark Matter and Energy: What is it?

- Not baryons
- Simulations show: not known neutrinos
- Candidates:
 - Sterile Neutrinos
 - Axions
 - Lightest SUSY
 Particle (LSP)

Computational Cosmology

- CMB has fluctuations of 1e-5
- Galaxies are overdense by 1e7
- It happens (mostly) through Gravitational Collapse
- Making testable predictions from a cosmological hypothesis requires
 - Non-linear, dynamic calculation
 - e.g. Computer simulation

Substructure down to 100 pc

Stadel et al, 2009

Computational Challenges

- Large spacial dynamic range: > 100 Mpc to < 1 kpc
 - Hierarchical, adaptive gravity solver is needed
- Large temporal dynamic range: 10 Gyr to < 1 Myr
 - Multiple timestep algorithm is needed
- Gravity is a long range force
 - Hierarchical information needs to go across processor domains

TreePiece: basic data structure

- A "vertical slice" of the tree, all the way to the root.
- Nodes are either:
 - Internal
 - External
 - Boundary (shared)

Overall treewalk structure

Light vs. Matter

Smooth Particle Hydrodynamics

- Making testable predictions needs Gastrophysics
 - High Mach number
 - Large density contrasts
- Gridless, Lagrangian method
- Galilean invariant
- Monte-Carlo Method for solving Navier-Stokes equation.
- Natural extension of particle method for gravity.

Star Formation/Feedback

Stinson et al 2006

The Hubble Ultra Deep Field

High Redshift Galaxies

- Galaxies seen by Hubble 12 Gyr ago.
- How do they relate to the Milky Way?
- What is their formation history?
- 300M core-hours on Bluewaters

Charm Nbody GrAvity solver

- Massively parallel SPH
- SNe feedback creating realistic outflows
- SF linked to shielded gas
- SMBHs
- Optimized SF parameters (kriging)

Menon+ 2014, Governato+ 2014

- · (25 Mpc)^3
- · Forces ~ 350pc
- · SPH ~ 40 pc
- \cdot 100s of galaxies
- \cdot 5 TB dataset

The Vulcan

Luminosity Function

Comparison with Finkelstein+ 2014

L. Anderson+ 2015

Luminosity Function: Faint end slope

Simulations

	First Stage	Near Future
	Vulcan	Enterprise
Timeline	2014	Autumn 2015
Size	(25 Mpc) ³	(25 Mpc) ³
Nparticles	2 billion	25 billion
Duration in z	100-4	100-0
Force Resolution	350 pc	175 pc
Morphologies	5e10 Mtot	5e9 Mtot
Size	5 TB	100 TB
Extra Physics		Black hole feedback H2 regulated star formation

Latency hiding strategies

- Multiple "treepieces"/core (over decomposition)
- Division into multiple work units (all concurrently)
 - Off processor gravity treewalk
 - SPH treewalk
 - Local gravity treewalk
 - Ewald summation
- Method prioritization
 - Data requests get high priority

Overlap of Phases

06/09/15

Gravity Hydrodynamics

Scaling to .5M cores

Optimizations for Large Core Count

- Domain Decomposition
 - Reuse previous domain information
 - Only re-decompose when necessary
 - Optimize sort
 - Quiescence detection for particle migration
- Hierarchical Load Balancing
- Treebuilding and approximate remote node location

Clustered/Multistepping Challenges

- Load/particle imbalance
- Communication imbalance
- Fixed costs:
 - Domain Decomposition
 - Load balancing
 - Tree build

Load Variance

ORB Load Balancing

Load distributions

Intra-node work balancing

	63,180,000	63,380,000	68,580,000	68,780,000	68,980,000	Time In Microseconds 64,180,000	64,380,000	64,580,000	64,780,000	64,980,000	65,180,000
											1
		I I									
a de la composición de		1									1
M in ii	i i	-i									i -
Linner		1									
			1								
- L ouise											-
											1
AL home											
-1											

62,518,000	62,558,000	62,598,000	62,638,000	62,678,000	Time In Microseconds 62,718,000	62,758,000	62,798,000	62,838,000	62,878,000 62,918,000
						1110	·		
							· · · · ·		
									I —
									—
							1		
									I

Multistep speedups

Clusters of Galaxies

- Largest bound objects in the Universe
- Used to study evolution of Dark Energy
- Need 1 kpc resolution in 600 Mpc volume

John Ruan, et al 2013

Dwarf Galaxies and the Milky Way Disk

Purcell et al, Nature 2011

Active Galactic Nuclei and Black Holes

- Supermassive Black Holes seem to be at the centers of most galaxies
- Occasionally they become "active", i.e. energetic.

Black Hole Dynamics

- BHs are not assumed to always be stable at the center of their host galaxies
- Unresolved dynamical friction is applied as a sub-grid model Tremmel+2015
- High DM mass resolution avoids numerical noise Bellovary+ 2010, Tremmel+2015

Black Holes and Feedback

Self Interacting Dark Matter

Planet Formation

Future

- More Physics
 - Radiative transfer
 - Collisional dynamics
 - Common Astrophysics modules
- Better gravity algorithms
 - Fast Multipole Method
 - Heterogeneous machines