[CoolName++]: A Graph Processing Framework

for Charm-+-+

Hassan Eslami, Erin Molloy, August Shi, Prakalp Srivastava
Laxmikant V. Kale

Charm++ Workshop
University of lllinois at Urbana-Champaign

{eslami2,emolloy2,awshi2, psrivas2,kale} @illinois.edu

May 8, 2015

/26

Graphs and networks

A graph is a set of vertices and a set of edges, which describe
relationships between pairs of vertices. Data analysts wish to gain
insights into characteristics of increasingly large networks, such as

m roads
utility grids

internet

protein-protein interaction networks

| |
| |
m social networks
| |
- 1

gene regulatory processes

1X. Zhu, M. Gerstein, and M. Snyder. “Getting connected: analysis and principles of biological networks”. In:
Genes and Development 21 (2007), pp. 1010-24. por: 10.1101/gad.1528707.

http://dx.doi.org/10.1101/gad.1528707

Why large-scale graph processing?

Large social networks?
m 1 billion vertices, 100 billion edges
m 111 PB adjacency matrix
m 2.92 TB adjacency list
m 2.92 TB edge list

Twitter graph from Gephi dataset
(http://www.gephi.org)

2pPaul Burkhardt and Chris Waring. An NSA Big Graph Experiment. Technical Report
NSA-RD-2013-056002v1. May 2000. 3726

Why large-scale graph processing?

Large web graphs®

m 50 billion vertices, 1 trillion edges
m 271 PB adjacency matrix

m 29.5 TB adjacency list

m 29.1 TB edge list

Web graph from the SNAP database
(http://snap.stanford.edu/data)

3Paul Burkhardt and Chris Waring. An NSA Big Graph Experiment. Technical Report
NSA-RD-2013-056002v1. May 2000.

Why large-scale graph processing?

Large brain networks*

m 100 billion vertices, 100 trillion edges

m 2.08 mNy - bytes® (molar bytes) adjacency matrix
m 2.84 PB adjacency list

m 2.84 PB edge list

Human connectome.
Gerhard et al., Frontiers in Neuroinformatics 5(3), 2011 A

4Paul Burkhardt and Chris Waring. An NSA Big Graph Experiment. Technical Report
NSA-RD-2013-056002v1. May 2000.

Challenges of parallel graph processing

Many graph algorithms result in®...
m ...a large volume of fine grain messages.
m .. little computation per vertex.
m ...irregular data access.
|

...load imbalances due to highly connected communities and
high degree vertices.

5A. Lumsdaine et al. “Challenges in parallel graph processing”. In: Parallel Processing Letters 17.1 (2007),
pp. 5-20.

Vertex-centric graph computation

m Introduced in Google's graph processing framework, Pregel®
m Based on the Bulk Synchronous Parallel (BSP) model
m A series of global supersteps are performed, where each active
vertex in the graph
1 processes incoming messages from the previous superstep
2 does some computation
3 sends messages to other vertices
m Algorithm terminates when all vertices are inactive (i.e., they
vote to halt the computation) and there are no messages in
transit.
m Note that supersteps are synchronized via a global barrier

m Costly
m Simple and versatile

6G. Malewicz et al. “Pregel: a system for large-scale graph processing”. In: Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data. SCM, 2010, pp. 135-146.

Our contributions

m Implement and optimize a vertex-centric graph processing
framework on top of Charm++
m Evaluate performance for several graph applications

m Single Source Shortest Path
m Approximate Graph Diameter
m Vertex Betweenness Centrality

m Compare our framework to GraphLab’

7Yucheng Low et al. “Distributed GraphLab: A Framework for Machine Learning and Data Mining in the
Cloud”. In: Proc. VLDB Endow. 5.8 (Apr. 2012), pp. 716-727. 1ssN: 2150-8097. DpoI:
10.14778/2212351.2212354. URL: http://dx.doi.org/10.14778/2212351.2212354.

http://dx.doi.org/10.14778/2212351.2212354
http://dx.doi.org/10.14778/2212351.2212354

CoolName+-+ framework overview

m Vertices are divided amongst parallel objects (Chares), called
Shards.

m Shards handle the receiving and sending of messages between
vertices.

m Main Chare coordinates the flow of computation by initiating
supersteps.

User API

Implementation of graph algorithms requires the formation of a
m vertex class

m compute member function

In addition, users may also define functions for
m graph 1/0
m mapping vertices to Shards

m combining messages being sent to and received by the same
vertex

10/26

Example vertex constructor

Algorithm 1 Constructor for SSSP
1. if vertex is the source vertex then
2. setActive()
3 distance = 0
. else
5. distance = o0
e end if

11/26

Example vertex compute function

Algorithm 2 Compute function for SSSP

min_dist = isSource() ? 0 : oo

. for each of your messages do

if message.getValue() < min_dist then
min_dist = message.getValue()

5. end if

. end for

7. if min_dist < distance then

& distance = min_dist

oo sendMessageToNeighbors(distance + 1)

0. end if

1. voteToHalt()

oWy B

12/26

Implementation - the .ci file

mainchare Main {
entry Main(CkArgMsgs m);
entry [reductiontarget] void start();
entry [reductiontarget] void checkin(int n, int counts[n]);

I

group ShardCommManager {
entry ShardCommManager ();
}

array [1D] Shard {
entry Shard(void);
entry void processMessage(int superstepld, int length,
std :: pair<uint32_t, MessageType> msg[length]);
entry void run(int mcount);

I

Implementation - run() function

void Shard ::run(int messageCount) {
// Start a new superstep
superstep = commManagerProxy.ckLocalBranch()—>getSuperstep ();

if (messageCount = expectedNumberOfMessages) {
startCompute ();

1 else {
// Continue to wait for messages in transit

}

void Shard ::startCompute() {
for (vertex in activeVertices) {
vertex .compute(messages|[vertex]);
}

for (vertex in inactiveVertices with incoming messages) {
vertex.compute(messages[vertex]);

managerProxy . ckLocalBranch()—>done ();

14 /26

Optimizations

Messages between vertices tend to be small but still incur
overhead.

m Shards buffer messages

m User-defined message combine function (send/receive)

15/26

Example message combiner

Algorithm 3 Combine function for SSSP
1 if messagel.getValue() < message2.getValue() then
2 return messagel
3. else

4. return message?
5. end if

16 /26

Applications

We consider three applications for the preliminary evaluation of our

framework.
m Single Source Shortest Path (SSSP)

m Graph Diameter
m Longest shortest path between any two vertices
m We implement the approximate diameter with
Flajolet-Martin(FM) bitmasks®.
m Betweenness Centrality of a Vertex
m Number of shortest paths between every two vertices that pass
through a vertex divided by the total number of shortest paths

between every two vertices
m We implement Brandes' algorithm®.

8p, Flajolet and G. N. Martin. “Probabilistic Counting Algorithms for Data Base Applications”. [n: Journal of

Computer and System Sciences 31.2 (1985), pp. 182-209.
9U. Brandes. “A faster algorithm for betweenness centrality”. In: Journal of Mathematical Sociology 25.2

(2001), pp. 163-177.
17/26

Tuning experiments

We want to tune parameters, specifically
m Number of Shards per PE

m Size of message buffer (i.e., the number of messages in the
buffer)

18/26

Number of Shards per PE

Tuning the number of shards per PE

runtime (s)

0 . .
10° 10! 10° 10°
number of shards per PE

Approximate diameter on a graph of sheet metal forming (0.5M
vertices, 8.5M edges).

All subsequent experiments use one shard per PE.

19/26

Size of message buffer

Tuning message buffer size

Single Source Shortest Path Approximate Diameter Betweenness Centrality
7 1000F
20+
6
=5 = 15r =
)) a
g4 : 2
£ o0 g0 o000, o0 £l £
2 5|
1
9 1 2 3 4 S (Y 1 2 3 4 0 0 1 2 3
10 10 10 10 10 10 10 10 10 10 10 10 10
message buffer size message buffer size message buffer size

Varying message buffer size on a graph of sheet metal forming
(0.5M vertices, 8.5M edges).

In the following experiments, we use a buffer size of 64 for SSSP,
128 for Approximate Diameter, and 32 for Betweenness Centrality.

20/26

Preliminary data for strong scalability

We examine three undirected graphs from the Stanford Large
Network Dataset Collection (SNAP)°.

m “as-skitter”

m Internet topology graph from trace-routes run daily in 2005
m 1.7M vertices and 11M edges

m “roadNet-PA”

m Road network of Pennsylvania
m 1.1M vertices and 1.5M edges

m “com-Youtube”
m Youtube online social network
m 1.1M vertices and 3M edges
We compare our framework to GraphLab!!, a state-of-the-art
graph processing framework originally developed at CMU.

10 jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset Collection.
http://snap.stanford.edu/data. June 2014.

11Yucheng Low et al. “Distributed GraphLab: A Framework for Machine Learning and Data Mining in the
Cloud”. In: Proc. VLDB Endow. 5.8 (Apr. 2012), pp. 716-727. 1ssN: 2150-8097. DoI:
10.14778/2212351.2212354. URL: http://dx.doi.org/10.14778/2212351.2212354.

21/26

http://snap.stanford.edu/data
http://dx.doi.org/10.14778/2212351.2212354
http://dx.doi.org/10.14778/2212351.2212354

Strong scalability of single source shortest path (SSSP)

Single source shortest path
as-skitter roadNet-PA com-youtube

10" E|
) C) 2100 b 1
gty 8 g
2 2 E
H Y 12
e—e CoolName++ e—e CoolName++ e—e CoolName++
e—e GraphLab e—e GraphlLab e—e GraphLab
10! 10? 10
10 10° 10 10° 10 10°
number of cores number of cores number of cores

22/26

Strong scalability of approximate diameter

Approximate diameter

10° as-skitter roadNet-PA com-youtube
10* |
, 10° b 4
10° | 1 10° L]
o) o) o
" v 10° | 1 90l]
£t} - £
E g E
3 T, 13 \
o
10° E| 100
e—e CoolName++ 10° || e—e CoolName++ 4 e—e CoolName++
e—e GraphLab e—e GraphlLab e—e GraphLab
10! 10? 10
10 10° 10 10° 10 10°
number of cores number of cores number of cores

23/26

scalability of betweenness centrality

Betweenness Centrality

as-skitter roadNet-PA com-youtube
70F 3
200 1 200 1 6ol 1
50+ 4
—~ 150 1 = 150 4 -
C) G C)
@ P o 400 1
£ £ £
2 100 1 £ 100 \ 5%]
2 2 2
20 q
50 4 50 4
10f q
0 0 0
10 10° 10 10 10 10
number of cores number of cores number of cores

24 /26

Conclusions

We ...

® ...implemented a scalable vertex-centric framework on
Charm++.

m ...implemented three applications using our framework.

B ...get promising preliminary results in comparison to
Graphlab.

m ...hope to test on larger graphs and a greater number of
compute cores.

25 /26

m Parallel 1/0
m Vectorization of compute function

m Aggregators (e.g., global variables computed across vertices)
m Graph mutability

m Vertex addition/deletion
m Edge addition/deletion
m Edge contraction (message redirection)

26 /26

