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MALLEABLE PARALLEL JOBS 

¢  Dynamic shrink/expand number of processors 
�  Shrink: A parallel application running on nodes of set A is resized 

to run on nodes of set B where B ⊂ A 
�  Expand: A parallel application running on nodes of set A is resized 

to run on nodes of set B, where B ⊃ A 
�  Rescale: Shrink or expand 

¢  Twofold merit  
�  Provider perspective 

¢  Better system utilization, throughput 
¢  Honor job priorities 

�  User perspective: 
¢  Early response time 
¢  Dynamic pricing offered by cloud providers, such as Amazon EC2  

¢  Better value for the money spent based on priorities and deadlines 
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Malleable jobs have tremendous but unrealized potential,  
What do we need to enable malleable HPC jobs? 
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We will focus on Malleable Parallel Runtime 

COMPONENTS OF A MALLEABLE JOBS SYSTEM 
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RELATED WORK 

¢ Prior works focus on job scheduling strategies 
¢ Parallel runtime for malleable HPC jobs open problem 
¢ Existing approaches   

�  Residual processes when shrinking 
¢  Charm++ malleable jobs (Kale et al.) 
¢  Dynamic MPI (Cera et al.) 

�   Too much application specific programmer effort on resize 
¢  Dynamic malleability of iterative MPI applications using PCM 
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Our focus: parallel runtime to render a job malleable 
• No residual processes  
• Little application-specific programming effort 
• Goals: Efficient, Fast, Scalable, Generic, Practical, Low-effort! 



DEFINITIONS AND GOALS 

¢ Shrink: A parallel application running on nodes of set A 
is resized to run on nodes of set B where B ⊂ A 

¢ Expand: A parallel application running on nodes of set 
A is resized to run on nodes of set B, where B ⊃ A 

¢ Rescale: Shrink or expand 

¢ Goals:  
�  Efficient  
�  Fast 
�  Scalable 
�  Generic 
�  Practical 
�  Low-effort 5 
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APPROACH (SHRINK) 
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APPROACH (EXPAND) 



MALLEABLE RTS APPROACH SUMMARY 

¢ Task/object migration 
�  Application-transparent redistribution 

¢ Checkpoint-restart 
�  Clean restart (rebirth)  

¢ Load balancing  
�  Efficient execution after rescale 

¢ Linux shared memory 
�  Fast and persistent checkpoint 

¢  Implementation atop Charm++ 
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COMPONENTS OF A MALLEABLE JOBS SYSTEM 
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ADAPTIVITY IN RESOURCE MANAGER 
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¢ How and when to 
�  Communicate scheduling decisions to parallel application 
�  Detect success or failure of those actions 

¢ Resource manager to RTS communication channel 
(how) 

¢ Split phase execution of scheduling decisions (when) 



EXPERIMENTAL EVALUATION 
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¢ Four HPC mini-applications with Charm++: 
�  Stencil2D: 5-point stencil on a 2D grid using Jacobi relaxation 

�  LeanMD: Mini-app version of NAMD molecular dynamics app 

�  Wave2D: 2D mesh based mini-app for simulating wave propagation 

�  Lulesh: Charm++ version of LULESH hydrodynamics mini-app 

�  All experimental results are done on Stampede 

¢ Evaluate against design goals 

 



RESULTS: ADAPTIVITY 
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LeanMD: Adapting load distribution on rescale, 
showing that our approach is efficient 

Low is better 



RESULTS: SCALABILITY 
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Scales well with increasing number of processors 

Low is better 

Total time Stencil2D: 24K by 24K shrink 



RESULTS: SCALABILITY 
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Low is better 

Scales well with increasing problem size 

640MB per 
process at 96K 

Stencil2D: 256->128 shrink Total time 



RESULTS SUMMARY 

15 

¢ Adapts load distribution well on rescale (Efficient) 
¢  2k->1k in 13s, 1k->2k in 40s (Fast) 
¢ Scales well with core count and problem size (Scalable) 
¢ Little application programmer effort (Low-effort) 

�  4 mini-applications: Stencil2D, LeanMD, Wave2D, Lulesh 
�  15-37 SLOC, For Lulesh, 0.4% of original SLOC 

¢ Can be used in most supercomputers (Practical) 

What are the benefits of malleability? 



APPLICABILITY AND BENEFITS 
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¢ Provider perspective 
�  Improve utilization: malleable jobs + adaptive job scheduling 
�  Stampede interactive mode as cluster for demonstration 

¢ Non-traditional use cases 
�  Clouds: Price-sensitive rescale in spot markets 
�  Proactive fault tolerance 



PROVIDER PERSPECTIVE: CASE STUDY 
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• 5 jobs 
• Stencil2D, 1000 iterations each 
• 4-16 nodes, 16 cores per  node 
• 16 nodes total in cluster 

• Dynamic Equipartitioning for 
malleable jobs 
• FCFS for rigid jobs 

Improved utilization 

Idle nodes 

Job 1 shrinks 
Job 5 expands 

Reduced makespan 

Reduced response time   

Time 

Rigid 

Malleable Cluster State 
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Significant improvement in mean response time and utilization 

PROVIDER PERSPECTIVE: CASE STUDY 

Smaller quadrilaterals  
are better 

Gap (s) between 2 
rescale for same job 
 



BENEFITS: NON-TRADITIONAL USE CASES 
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¢ Clouds spot markets 
�  Price-sensitive rescale over the spot instance pool 

¢  Expand when the spot price falls below a threshold  
¢  Shrink when it exceeds the threshold.  

¢ Proactive fault tolerance 
�  Shrink on failure imminent notice from resource manager 
�  Expand when failed node comes back 



SUMMARY 
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¢ A novel technique to enable malleability in HPC jobs 
¢ Salient features: task migration, load-balancing, 

checkpoint-restart, and Linux shared memory. 
¢ Scheduler-RTS communication and split-phase 

scheduling 
¢ Experimental evaluation: fast, scalable, and effective 

¢ Related and ongoing work: 
�  Malleable jobs with Charm++ integrated into Torque/MOAB 

�  “A Batch System with Efficient Adaptive Scheduling for Malleable and 
Evolving Applications” Suraj Prabhakaran et al. IPDPS’15 

�  Adaptive Computing 
�  Standardize API for malleable and evolving jobs 



BACKUP 
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RESULTS 

22 



USER PERSPECTIVE: PRICE-SENSITIVE RESCALE 
IN SPOT MARKETS  
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¢ Our solution: keep two pools 
�  Static: certain minimum number of reserved instances 
�  Dynamic:  price-sensitive rescale over the spot instance pool 

¢  Expand when the spot price falls below a threshold  
¢  Shrink when it exceeds the threshold.  

Amazon EC2 spot price variation: cc2.8xlarge instance  Jan 7, 2013 

¢ Spot markets 
�  Bidding based 
�  Dynamic price 

¢ Set high bid to avoid termination (e.g. $1.25) 
¢ Pay whatever the spot price or no progress 
¢ Can I control the price I pay, and still make progress? 
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Dynamic shrinking and expansion of HPC jobs can 
enable lower effective price in cloud spot markets 

USER PERSPECTIVE: PRICE-SENSITIVE RESCALE 
IN SPOT MARKETS  

No rescale: $16.65 for 24 hours 

With rescale: freedom to select price threshold Usable hours may be reduced 

Price Calculation 



PROACTIVE FAULT TOLERANCE 
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