
TOWARDS REALIZING THE POTENTIAL OF
MALLEABLE PARALLEL JOBS

Bilge Acun

acun2@illinois.edu

Department of Computer Science,

University of Illinois at Urbana Champaign, Urbana, IL

1
Abhishek Gupta | Bilge Acun | Osman Sarood | Laxmikant Kale
IEEE International Conference on High Performance Computing (HiPC) 2014

MALLEABLE PARALLEL JOBS

¢  Dynamic shrink/expand number of processors
�  Shrink: A parallel application running on nodes of set A is resized

to run on nodes of set B where B ⊂ A
�  Expand: A parallel application running on nodes of set A is resized

to run on nodes of set B, where B ⊃ A
�  Rescale: Shrink or expand

¢  Twofold merit
�  Provider perspective

¢  Better system utilization, throughput
¢  Honor job priorities

�  User perspective:
¢  Early response time
¢  Dynamic pricing offered by cloud providers, such as Amazon EC2

¢  Better value for the money spent based on priorities and deadlines
2

Malleable jobs have tremendous but unrealized potential,
What do we need to enable malleable HPC jobs?

Scheduling

Policy Engine

Job Queue

New Jobs

Adaptive
 Job Scheduler

Adaptive
Resource Manager

Adaptive/Malleable
Parallel Runtime

System

Node
Scheduler

Launch
Monitor
Shrink
Expand

Cluster

Shrink Ack.
Expand Ack.

Decisions

Cluster
State

Changes

Execution
Engine

Nodes

We will focus on Malleable Parallel Runtime

COMPONENTS OF A MALLEABLE JOBS SYSTEM

3

RELATED WORK

¢ Prior works focus on job scheduling strategies
¢ Parallel runtime for malleable HPC jobs open problem
¢ Existing approaches

�  Residual processes when shrinking
¢  Charm++ malleable jobs (Kale et al.)
¢  Dynamic MPI (Cera et al.)

�  Too much application specific programmer effort on resize
¢  Dynamic malleability of iterative MPI applications using PCM

4

Our focus: parallel runtime to render a job malleable
• No residual processes
• Little application-specific programming effort
• Goals: Efficient, Fast, Scalable, Generic, Practical, Low-effort!

DEFINITIONS AND GOALS

¢ Shrink: A parallel application running on nodes of set A
is resized to run on nodes of set B where B ⊂ A

¢ Expand: A parallel application running on nodes of set
A is resized to run on nodes of set B, where B ⊃ A

¢ Rescale: Shrink or expand

¢ Goals:
�  Efficient
�  Fast
�  Scalable
�  Generic
�  Practical
�  Low-effort 5

Application Processes

Object Evacuation
Load Balancing

Sync. Point, Check for
Shrink/Expand Request

Checkpoint to Linux
shared memory

Rebirth	
 (exec)	

or	
 die	
 (exit)	

Reconnect	
 protocol	

Restore Object
from Checkpoint

Execution Resumes
via stored callback

Launcher
(Charmrun)

CCS
Shrink
Request

ShrinkAck to external client

Time

Tasks/Objects	

6

APPROACH (SHRINK)

Applica1on	
 Processes	

Sync.	
 Point,	
 Check	
 for	

Shrink/Expand	
 Request	

Checkpoint	
 to	
 linux	

shared	
 memory	

Rebirth	
 (exec)	
 or	

launch	
 (ssh, fork)	

Connect	
 protocol	

Restore	
 Object	

from	
 Checkpoint	

ExecuDon	
 Resumes	

via	
 stored	
 callback	

Launcher	
 (Charmrun)	

CCS	
 	

Expand	

Request	
 	

ExpandAck	
 to	

external	
 	
 client	

Time	

Load	
 Balancing	

7

APPROACH (EXPAND)

MALLEABLE RTS APPROACH SUMMARY

¢ Task/object migration
�  Application-transparent redistribution

¢ Checkpoint-restart
�  Clean restart (rebirth)

¢ Load balancing
�  Efficient execution after rescale

¢ Linux shared memory
�  Fast and persistent checkpoint

¢  Implementation atop Charm++

8

Scheduling

Policy Engine

Job Queue

New Jobs

Adaptive
 Job Scheduler

Adaptive
Resource Manager

Adaptive/Malleable
Parallel Runtime

System

Node
Scheduler

Launch
Monitor
Shrink
Expand

Cluster

Shrink Ack.
Expand Ack.

Decisions

Cluster
State

Changes

Execution
Engine

Nodes

COMPONENTS OF A MALLEABLE JOBS SYSTEM

9

ADAPTIVITY IN RESOURCE MANAGER

10

¢ How and when to
�  Communicate scheduling decisions to parallel application
�  Detect success or failure of those actions

¢ Resource manager to RTS communication channel
(how)

¢ Split phase execution of scheduling decisions (when)

EXPERIMENTAL EVALUATION

11

¢ Four HPC mini-applications with Charm++:
�  Stencil2D: 5-point stencil on a 2D grid using Jacobi relaxation

�  LeanMD: Mini-app version of NAMD molecular dynamics app

�  Wave2D: 2D mesh based mini-app for simulating wave propagation

�  Lulesh: Charm++ version of LULESH hydrodynamics mini-app

�  All experimental results are done on Stampede

¢ Evaluate against design goals

RESULTS: ADAPTIVITY

12

LeanMD: Adapting load distribution on rescale,
showing that our approach is efficient

Low is better

RESULTS: SCALABILITY

13

Scales well with increasing number of processors

Low is better

Total time Stencil2D: 24K by 24K shrink

RESULTS: SCALABILITY

14

Low is better

Scales well with increasing problem size

640MB per
process at 96K

Stencil2D: 256->128 shrink Total time

RESULTS SUMMARY

15

¢ Adapts load distribution well on rescale (Efficient)
¢  2k->1k in 13s, 1k->2k in 40s (Fast)
¢ Scales well with core count and problem size (Scalable)
¢ Little application programmer effort (Low-effort)

�  4 mini-applications: Stencil2D, LeanMD, Wave2D, Lulesh
�  15-37 SLOC, For Lulesh, 0.4% of original SLOC

¢ Can be used in most supercomputers (Practical)

What are the benefits of malleability?

APPLICABILITY AND BENEFITS

16

¢ Provider perspective
�  Improve utilization: malleable jobs + adaptive job scheduling
�  Stampede interactive mode as cluster for demonstration

¢ Non-traditional use cases
�  Clouds: Price-sensitive rescale in spot markets
�  Proactive fault tolerance

PROVIDER PERSPECTIVE: CASE STUDY

17

• 5 jobs
• Stencil2D, 1000 iterations each
• 4-16 nodes, 16 cores per node
• 16 nodes total in cluster

• Dynamic Equipartitioning for
malleable jobs
• FCFS for rigid jobs

Improved utilization

Idle nodes

Job 1 shrinks
Job 5 expands

Reduced makespan

Reduced response time

Time

Rigid

Malleable Cluster State

18

Significant improvement in mean response time and utilization

PROVIDER PERSPECTIVE: CASE STUDY

Smaller quadrilaterals
are better

Gap (s) between 2
rescale for same job

BENEFITS: NON-TRADITIONAL USE CASES

19

¢ Clouds spot markets
�  Price-sensitive rescale over the spot instance pool

¢  Expand when the spot price falls below a threshold
¢  Shrink when it exceeds the threshold.

¢ Proactive fault tolerance
�  Shrink on failure imminent notice from resource manager
�  Expand when failed node comes back

SUMMARY

20

¢ A novel technique to enable malleability in HPC jobs
¢ Salient features: task migration, load-balancing,

checkpoint-restart, and Linux shared memory.
¢ Scheduler-RTS communication and split-phase

scheduling
¢ Experimental evaluation: fast, scalable, and effective

¢ Related and ongoing work:
�  Malleable jobs with Charm++ integrated into Torque/MOAB

�  “A Batch System with Efficient Adaptive Scheduling for Malleable and
Evolving Applications” Suraj Prabhakaran et al. IPDPS’15

�  Adaptive Computing
�  Standardize API for malleable and evolving jobs

BACKUP

21

RESULTS

22

USER PERSPECTIVE: PRICE-SENSITIVE RESCALE
IN SPOT MARKETS

23

¢ Our solution: keep two pools
�  Static: certain minimum number of reserved instances
�  Dynamic: price-sensitive rescale over the spot instance pool

¢  Expand when the spot price falls below a threshold
¢  Shrink when it exceeds the threshold.

Amazon EC2 spot price variation: cc2.8xlarge instance Jan 7, 2013

¢ Spot markets
�  Bidding based
�  Dynamic price

¢ Set high bid to avoid termination (e.g. $1.25)
¢ Pay whatever the spot price or no progress
¢ Can I control the price I pay, and still make progress?

24

Dynamic shrinking and expansion of HPC jobs can
enable lower effective price in cloud spot markets

USER PERSPECTIVE: PRICE-SENSITIVE RESCALE
IN SPOT MARKETS

No rescale: $16.65 for 24 hours

With rescale: freedom to select price threshold Usable hours may be reduced

Price Calculation

PROACTIVE FAULT TOLERANCE

25

