
Understanding and Optimizing
Communication Performance

on HPC Networks

Contributors: Nikhil Jain, Abhinav Bhatele, Todd Gamblin,
Xiang Ni, Michael Robson, Bilge Acun, Laxmikant Kale

University of Illinois at Urbana-Champaign

http://charm.cs.illinois.edu/~nikhil/

1

http://charm.cs.illinois.edu/~nikhil/

Communication in HPC

• A necessity, but
can be viewed as
an overhead

• Can consume half
the execution time

2

Ti
m

e
sp

en
t i

n
co

m
m

un
ic

at
io

n
(%

)

0

25

50

75

100

Cores

0 17500 35000 52500 70000

EpiSimdemics

ClothSim

OpenAtom

NAMD
PF3D

MILC

3

Communication in HPC

Complex interplay of several
components : hardware,
configurable network properties,
interaction patterns, algorithms…

As a user, limited control over
environment and interference

As an admin, how to best use the
system while keeping users
happy

3

Torus

Dragonfly

MILC

OpenAtom

Communication in HPC

Complex interplay of several
components : hardware,
configurable network properties,
interaction patterns, algorithms…

As a user, limited control over
environment and interference

As an admin, how to best use the
system while keeping users
happy

Diverse
apps

Many
systems

Topology Aware Mapping
• Profile applications for their communication graphs and map them

• Extremely important for Torus-based systems; ongoing work on
other topologies

4

• Use Case: OpenAtom

Topology Aware Mapping
• Profile applications for their communication graphs and map them

• Extremely important for Torus-based systems; ongoing work on
other topologies

4

0"

2"

4"

6"

8"

10"

256" 512" 1024" 2048"

Ti
m
e%
pe

r%s
te
p%
(s
)%

Number%of%nodes%(each%node%is%64%threads)%

Scaling%for%MOF%on%Vulcan%

Default"

Topo3aware"

1"

10"

100"

1000"

256" 512" 1024"

Ti
m
e%
pe

r%s
te
p%
(s
)%

Number%of%nodes%(each%node%is%64%threads)%

Min+Def" Min+Topo"
BOMD+Def" BOMD+Topo"

5

II. BACKGROUND

Task mapping of an HPC application requires generating
an assignment of MPI task IDs or ranks to the cores and
nodes in the torus network. Traditionally, programmers have
written custom scripts to generate such assignments from
scratch. This process is tedious and error-prone, especially
with many tasks and high-dimensional networks. We de-
veloped Rubik [?], a tool that abstracts several common
mapping operations into a concise syntax. Rubik allows
complex mappings to be generated using only a few lines
of Python code. It supports a wide range of permutation
operations for optimizing latency or bandwidth, and we
only describe a relevant subset here. The full range of
transformations possible with Rubik is covered in [?].

Partitioning: Figure ?? shows a Rubik script that describes
the application’s process grid (a 9 ⇥ 3 ⇥ 8 cuboid) and a
Cartesian network (a 6 ⇥ 6 ⇥ 6 cube) by creating a “box”
for each. Each box is divided into sub-partitions using the
tile function, resulting in eight 9 ⇥ 3 ⇥ 1 planes in the
application and eight 3 ⇥ 3 ⇥ 3 sub-cubes in the network.
Rubik provides many operations like tile for partitioning
boxes, allowing users to group communicating tasks. These
partitioning operations can also be applied hierarchically.

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

Application 3D Torus
Application ranks mapped

to the 3D torus

app = box([9,3,8]) # Create application grid

app.tile([9,3,1]) # Create eight sub-planes

network = box([6,6,6]) # Create network topology

network.tile([3,3,3]) # Create eight sub-cubes

network.map(app) # Map app. planes to proc. cubes

Figure 1: Mapping 2D sub-partitions to 3D shapes in Rubik

Mapping: The map operation assigns tasks from each
sub-partition in the application box to corresponding sub-
partitions in the network box. Partitions can be mapped to
one another if they have the same size, regardless of their

dimensions. This means we can easily map low-dimensional
planes to high-dimensional cuboids, changing the way in
which communicating tasks use the network. Thus, the user
is able to convert high-diameter shapes of the application,
like planes, into compact, high-bandwidth shapes on the
network, like boxes.

Permutation: In addition to partitioning and mapping oper-
ations, Rubik supports permutation operations that reorder
ranks within partitions. The tilt operation takes hyper-
planes in a Cartesian partition and maps them to diagonals.

Tilting is a bandwidth-optimizing operation – if tasks are laid
out initially so that neighbors communicate with one another
(e.g., in a stencil or halo), tilting increases the number of
routes between communicating peers. Successive tilting in
multiple directions adds routes in additional dimensions.
Tilting can be applied at any level of the partition hierarchy
– to specific partitions or to an entire application grid.

III. MAPPING, CONGESTION AND PERFORMANCE

We present a step-by-step methodology to improve appli-
cation performance using task mapping based on our expe-
rience with optimizing production applications on the IBM
Blue Gene/Q architecture. There are three steps involved
in this process: 1) Performance debugging via profiling, 2)
Performance optimization via task mapping, and 3) Perfor-
mance analysis via profiling and visualization. Each of these
steps is broken down further and explained in detail below.

A. Performance debugging

Application scientists are often unaware of the reason(s)
for performance issues with their codes. It is important
to determine if communication between parallel tasks is
a scaling bottleneck. Performance analysis tools such as
mpiP [?], HPCToolkit [?], and IBM’s MPI trace library [?]
can provide a breakdown of the time spent in computation
and in communication. They also output times spent, mes-
sage counts and sizes for different MPI routines invoked in
the code. Some advanced tools can also calculate the number
of network hops traveled by messages between different
pairs of tasks. The first step is to collect performance data
for representative input problems (weak or strong scaling)
on the architecture in question.

Performance data obtained from profiling tools can be
used to determine if communication is a scaling bottleneck.
As a rule of thumb, if an application spends less than 5%
of its time in communication when using a large number
of tasks, there is little room for improving the messaging
performance. If this is not the case, we can attempt to
use topology-aware task mapping to improve performance
and the scaling behavior. As we will see in the application
examples, task mapping can even be used to reduce the time
spent in collective operations over all processes.

B. Performance optimization

There are several tools and libraries that provide utilities
for mapping an application to torus and other networks [?],
[?], [?], [?], [?], [?]. We use Rubik, described in Section ??,
to generate mappings for pF3D and MILC. Since the solu-
tion space for mappings is so large, there are several factors
to consider when trying out different mappings:

• Are there multiple phases in the application with con-
flicting communication patterns?

• Is the goal to optimize point-to-point operations or
collectives or both?

• Is the goal to optimize network latency or bandwidth?

Rubik - Python based tool to create maps

5

II. BACKGROUND

Task mapping of an HPC application requires generating
an assignment of MPI task IDs or ranks to the cores and
nodes in the torus network. Traditionally, programmers have
written custom scripts to generate such assignments from
scratch. This process is tedious and error-prone, especially
with many tasks and high-dimensional networks. We de-
veloped Rubik [?], a tool that abstracts several common
mapping operations into a concise syntax. Rubik allows
complex mappings to be generated using only a few lines
of Python code. It supports a wide range of permutation
operations for optimizing latency or bandwidth, and we
only describe a relevant subset here. The full range of
transformations possible with Rubik is covered in [?].

Partitioning: Figure ?? shows a Rubik script that describes
the application’s process grid (a 9 ⇥ 3 ⇥ 8 cuboid) and a
Cartesian network (a 6 ⇥ 6 ⇥ 6 cube) by creating a “box”
for each. Each box is divided into sub-partitions using the
tile function, resulting in eight 9 ⇥ 3 ⇥ 1 planes in the
application and eight 3 ⇥ 3 ⇥ 3 sub-cubes in the network.
Rubik provides many operations like tile for partitioning
boxes, allowing users to group communicating tasks. These
partitioning operations can also be applied hierarchically.

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

Application 3D Torus
Application ranks mapped

to the 3D torus

app = box([9,3,8]) # Create application grid

app.tile([9,3,1]) # Create eight sub-planes

network = box([6,6,6]) # Create network topology

network.tile([3,3,3]) # Create eight sub-cubes

network.map(app) # Map app. planes to proc. cubes

Figure 1: Mapping 2D sub-partitions to 3D shapes in Rubik

Mapping: The map operation assigns tasks from each
sub-partition in the application box to corresponding sub-
partitions in the network box. Partitions can be mapped to
one another if they have the same size, regardless of their

dimensions. This means we can easily map low-dimensional
planes to high-dimensional cuboids, changing the way in
which communicating tasks use the network. Thus, the user
is able to convert high-diameter shapes of the application,
like planes, into compact, high-bandwidth shapes on the
network, like boxes.

Permutation: In addition to partitioning and mapping oper-
ations, Rubik supports permutation operations that reorder
ranks within partitions. The tilt operation takes hyper-
planes in a Cartesian partition and maps them to diagonals.

Tilting is a bandwidth-optimizing operation – if tasks are laid
out initially so that neighbors communicate with one another
(e.g., in a stencil or halo), tilting increases the number of
routes between communicating peers. Successive tilting in
multiple directions adds routes in additional dimensions.
Tilting can be applied at any level of the partition hierarchy
– to specific partitions or to an entire application grid.

III. MAPPING, CONGESTION AND PERFORMANCE

We present a step-by-step methodology to improve appli-
cation performance using task mapping based on our expe-
rience with optimizing production applications on the IBM
Blue Gene/Q architecture. There are three steps involved
in this process: 1) Performance debugging via profiling, 2)
Performance optimization via task mapping, and 3) Perfor-
mance analysis via profiling and visualization. Each of these
steps is broken down further and explained in detail below.

A. Performance debugging

Application scientists are often unaware of the reason(s)
for performance issues with their codes. It is important
to determine if communication between parallel tasks is
a scaling bottleneck. Performance analysis tools such as
mpiP [?], HPCToolkit [?], and IBM’s MPI trace library [?]
can provide a breakdown of the time spent in computation
and in communication. They also output times spent, mes-
sage counts and sizes for different MPI routines invoked in
the code. Some advanced tools can also calculate the number
of network hops traveled by messages between different
pairs of tasks. The first step is to collect performance data
for representative input problems (weak or strong scaling)
on the architecture in question.

Performance data obtained from profiling tools can be
used to determine if communication is a scaling bottleneck.
As a rule of thumb, if an application spends less than 5%
of its time in communication when using a large number
of tasks, there is little room for improving the messaging
performance. If this is not the case, we can attempt to
use topology-aware task mapping to improve performance
and the scaling behavior. As we will see in the application
examples, task mapping can even be used to reduce the time
spent in collective operations over all processes.

B. Performance optimization

There are several tools and libraries that provide utilities
for mapping an application to torus and other networks [?],
[?], [?], [?], [?], [?]. We use Rubik, described in Section ??,
to generate mappings for pF3D and MILC. Since the solu-
tion space for mappings is so large, there are several factors
to consider when trying out different mappings:

• Are there multiple phases in the application with con-
flicting communication patterns?

• Is the goal to optimize point-to-point operations or
collectives or both?

• Is the goal to optimize network latency or bandwidth?

0

40

80

120

160

Default RR Tile1 Tile2 Tile3 Tile4 Tilt

T
im

e
(s

)

Different mappings

pF3D: Time spent in MPI calls on 4,096 nodes

Recv
Barrier

Send
Alltoall

0

100

200

300

400

500

Default RR Node Tile1 Tile2 Tile3 Tile4

T
im

e
(s

)

Different mappings

MILC: Time spent in MPI calls on 4,096 nodes

Irecv
Isend

Allreduce
Wait

Rubik - Python based tool to create maps

Understanding Networks

6

Understanding Networks
• What determines communication performance?

• How can we predict it?
• Quantification of metrics

6

Understanding Networks
• What determines communication performance?

• How can we predict it?
• Quantification of metrics

• What is the relation between performance and the
entities quantified above?
• Linear, higher polynomial, or indeterminate
• Is statistical data related to performance?

6

Understanding Networks
• What determines communication performance?

• How can we predict it?
• Quantification of metrics

• What is the relation between performance and the
entities quantified above?
• Linear, higher polynomial, or indeterminate
• Is statistical data related to performance?

• Method 1: Supervised Learning
• More on this in Abhinav’s talk

6

Method 2: Packet-level Simulation

7

Method 2: Packet-level Simulation
• Detailed study of what-if scenarios

• Comparison of similar systems

7

Method 2: Packet-level Simulation
• Detailed study of what-if scenarios

• Comparison of similar systems

• BigSim was among the earliest accurate packet-
level HPC network simulator (circa 2004)

• Reviving Emulation and Simulation capabilities
of BigSim

• BigSim + CODES + ROSS = TraceR
• More on this in the Bilge’s talk

7

8

Q1: What is the best combination of routing strategies
and job placement policies for single jobs?

Q3: Should the routing policy be job-specific or
system-wide?

Q2: What is the best combination for parallel job
workloads?

Method 3: Modeling via Damselfly
Intermediate methods sufficient to answer certain types
of questions

Dragonfly Topology

9

Level 1: Dense connectivity among routers to form groups

IBM PERCS CRAY ARIES/XC30

Dragonfly Topology

9

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

Level 2: Dense connectivity among groups as virtual routers

IBM PERCS CRAY ARIES/XC30

What needs to be evaluated?

10

Job Placement Routing Comm Kernel

Random Nodes (RDN) Static Direct (SD) UnStructured

Random Routers (RDR) Static Indirect (SI) 2D Stencil

Random Chassis (RDC) Adaptive Direct (AD) 4D Stencil

Random Group (RDG) Adaptive Indirect (AI) Many-to-many

Round Robin Nodes (RRN) Adaptive Hybrid (AH) Spread

Round Robin Routers (RRR) Job-specific (JS) Parallel Workloads (4)

Total cases ~ 360 for
8.8 million cores with 92,160 routers

Model for link utilization
• Input to the model:

1. Network graph of Dragonfly routers

2. Application communication graph for a communication step

3. Job placement

4. Routing strategy

• Output: The steady-state traffic distribution on all network links,
which is representative of the network throughput

• Implemented as a scalable parallel MPI program executed on Blue
Gene/Q 
— Maximum runtime of 2 hours on 8,192 cores for prediction on
8.8 million cores

11

12

• Initialize two copies of network graph N :  
NAlloc : stores total and per message allocated bandwidth (= 0)  
NRemain : stores bandwidth available for allocation (= capacity)

• Iterative solve for computing representative state
NAlloc 

while a message is allocated additional bandwidth
• for each message m, obtain the list of paths P(m)

12

• Initialize two copies of network graph N :  
NAlloc : stores total and per message allocated bandwidth (= 0)  
NRemain : stores bandwidth available for allocation (= capacity)

Start with 10 GB/s
 per link

S

D

• Iterative solve for computing representative state
NAlloc 

while a message is allocated additional bandwidth
• for each message m, obtain the list of paths P(m)

12

• Initialize two copies of network graph N :  
NAlloc : stores total and per message allocated bandwidth (= 0)  
NRemain : stores bandwidth available for allocation (= capacity)

P1

P2

P3

Start with 10 GB/s
 per link

S

D

• Iterative solve for computing representative state
NAlloc 

while a message is allocated additional bandwidth
• for each message m, obtain the list of paths P(m)
• using P(m) of all messages, find the request

count for each link

12

• Initialize two copies of network graph N :  
NAlloc : stores total and per message allocated bandwidth (= 0)  
NRemain : stores bandwidth available for allocation (= capacity)

P1

P2

P3

Start with 10 GB/s
 per link

S

D

• Iterative solve for computing representative state
NAlloc 

while a message is allocated additional bandwidth
• for each message m, obtain the list of paths P(m)
• using P(m) of all messages, find the request

count for each link

12

• Initialize two copies of network graph N :  
NAlloc : stores total and per message allocated bandwidth (= 0)  
NRemain : stores bandwidth available for allocation (= capacity)

P1

P2

P3
1

2

2

1

3

Start with 10 GB/s
 per link

S

D

• Iterative solve for computing representative state
NAlloc 

while a message is allocated additional bandwidth
• for each message m, obtain the list of paths P(m)
• using P(m) of all messages, find the request

count for each link
• for each path p in P(m), compute its availability

using NRemain

12

• Initialize two copies of network graph N :  
NAlloc : stores total and per message allocated bandwidth (= 0)  
NRemain : stores bandwidth available for allocation (= capacity)

P1

P2

P3
1

2

2

1

3

Start with 10 GB/s
 per link

S

D

• Iterative solve for computing representative state
NAlloc 

while a message is allocated additional bandwidth
• for each message m, obtain the list of paths P(m)
• using P(m) of all messages, find the request

count for each link
• for each path p in P(m), compute its availability

using NRemain

12

• Initialize two copies of network graph N :  
NAlloc : stores total and per message allocated bandwidth (= 0)  
NRemain : stores bandwidth available for allocation (= capacity)

P1

P2

P3
1

2

2

1

3

Start with 10 GB/s
 per link

10 5

3.33

S

D

• Iterative solve for computing representative state
NAlloc 

while a message is allocated additional bandwidth
• for each message m, obtain the list of paths P(m)
• using P(m) of all messages, find the request

count for each link
• for each path p in P(m), compute its availability

using NRemain

• using availability, allocate more bandwidth to the
messages

12

• Initialize two copies of network graph N :  
NAlloc : stores total and per message allocated bandwidth (= 0)  
NRemain : stores bandwidth available for allocation (= capacity)

P1

P2

P3
1

2

2

1

3

Start with 10 GB/s
 per link

10 5

3.33

S

D

• Iterative solve for computing representative state
NAlloc 

while a message is allocated additional bandwidth
• for each message m, obtain the list of paths P(m)
• using P(m) of all messages, find the request

count for each link
• for each path p in P(m), compute its availability

using NRemain

• using availability, allocate more bandwidth to the
messages

• update NAlloc and NRemain to to reflect the new
allocations

12

• Initialize two copies of network graph N :  
NAlloc : stores total and per message allocated bandwidth (= 0)  
NRemain : stores bandwidth available for allocation (= capacity)

P1

P2

P3
1

2

2

1

3

Start with 10 GB/s
 per link

10 5

3.33

S

D

• Iterative solve for computing representative state
NAlloc 

while a message is allocated additional bandwidth
• for each message m, obtain the list of paths P(m)
• using P(m) of all messages, find the request

count for each link
• for each path p in P(m), compute its availability

using NRemain

• using availability, allocate more bandwidth to the
messages

• update NAlloc and NRemain to to reflect the new
allocations

12

• Initialize two copies of network graph N :  
NAlloc : stores total and per message allocated bandwidth (= 0)  
NRemain : stores bandwidth available for allocation (= capacity)

• Use NAlloc to compute the distribution of bytes on the given links

P1

P2

P3
1

2

2

1

3

Start with 10 GB/s
 per link

10 5

3.33

S

D

How to read the plots?

13

1

10

1E2

P1 P2

Li
nk

 U
sa

ge
 (

M
B)

Job placements grouped based on Routing

Example Plot

minimum
1st quartile

average

median
3rd quartile
maximum

minimum and 1st quartile are same

Lowest maximum

How to read the plots?

13

1

10

1E2

P1 P2

Li
nk

 U
sa

ge
 (

M
B)

Job placements grouped based on Routing

Example Plot

minimum
1st quartile

average

median
3rd quartile
maximum

minimum and 1st quartile are same

Lowest maximum Maximum traffic on
any link: indicates
network hotspot

How to read the plots?

13

1

10

1E2

P1 P2

Li
nk

 U
sa

ge
 (

M
B)

Job placements grouped based on Routing

Example Plot

minimum
1st quartile

average

median
3rd quartile
maximum

minimum and 1st quartile are same

Lowest maximum

Average traffic on
all links: indicates

relative merit

Median traffic:
valuable for estimating

distribution by comparing
with the average

How to read the plots?

13

1

10

1E2

P1 P2

Li
nk

 U
sa

ge
 (

M
B)

Job placements grouped based on Routing

Example Plot

minimum
1st quartile

average

median
3rd quartile
maximum

minimum and 1st quartile are same

Lowest maximum

Ideal: distribution with
close values for all data
points, lower the better

How to read the plots?

13

1

10

1E2

P1 P2

Li
nk

 U
sa

ge
 (

M
B)

Job placements grouped based on Routing

Example Plot

minimum
1st quartile

average

median
3rd quartile
maximum

minimum and 1st quartile are same

Lowest maximum

Job placement: blocking reduces
the maximum (up to 90% drop)
and average (up to 92% drop)

Single job: Unstructured Mesh
6-20 partners with 512 KB messages

14

Indirect routing: increases average,
but reduces maximum by 50% in the best case

Single job: Unstructured Mesh
6-20 partners with 512 KB messages

14

Adaptivity: similar distribution as static,
but with lower maximum

AI leads to 50% reduction in maximum traffic;
hybrid does worse than AI

Single job: Unstructured Mesh
6-20 partners with 512 KB messages

14

Job placement: negligible impact!

Single job: Random Neighbors
6-20 partners with 512 KB messages

15

Indirect routing: shifts the graph upwards and
increases all quartiles;

100% increase in maximum and average

Single job: Random Neighbors
6-20 partners with 512 KB messages

15

Single job: Random Neighbors
6-20 partners with 512 KB messages

15

Adaptivity: Minor gains, 10% reduction in maximum
hybrid does better than AI

Parallel Workloads: % Core Distribution

16

Comm
Pattern Workload 1 Workload 2 Workload 3 Workload 4

Unstructured
Mesh 20 10 20 40

2D Stencil 10 10 40 10

4D Stencil 40 20 10 20

Many to many 20 40 10 20

Random
neighbors 10 20 20 10

Workloads

17

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Adaptive Direct Adaptive Indirect Adaptive Hybrid

(a) Workload 1 (All Links)

Median
Average

Lowest maximum

0

1

10

1E2

1E3

1E4

1E5

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Adaptive Direct Adaptive Indirect Adaptive Hybrid

(b) Workload 2 (All Links)

Median
Average

Lowest maximum

• Adaptivity reduces
the maximum traffic
by 35%

• Hybrid with RDN/
RDR shows lowest
data points

Job-specific Routing

18

0

1

10

1E2

1E3

1E4

RDN RDR RDC RDG RRN RRR RDN RDR RDC RDG RRN RRR

Li
nk

 U
sa

ge
 (

M
B)

 Workload 2 Workload 4

Median
Average

Lowest maximum (Workload 2)
Lowest maximum (Workload 4)

Summary

19

Summary
• Fast analytical model enables studies with a large number of scenarios

19

Summary
• Fast analytical model enables studies with a large number of scenarios

• Adaptivity results in significantly lower values for maximum and
average traffic (up to 50% reduction)

19

Summary
• Fast analytical model enables studies with a large number of scenarios

• Adaptivity results in significantly lower values for maximum and
average traffic (up to 50% reduction)

• Q1. What is the best combination for single job runs?

• Depends on the job being run!

• Patterns with communication among near-by MPI ranks benefit by
blocking

• Indirect routing is better when the communication pattern is not
sufficiently spread by the application or job placement

• Hybrid routing provides similar distribution as Adaptive Indirect, but
its data points are shifted depending on the communication pattern

19

Summary

20

Summary
• Q2. What is the best combination for parallel workloads?

• Similar distributions are observed irrespective of the jobs
proportions in the workloads!

• Adaptive Hybrid combines the best of both worlds

• Randomized placement with node/router based blocking is
good

20

Summary
• Q2. What is the best combination for parallel workloads?

• Similar distributions are observed irrespective of the jobs
proportions in the workloads!

• Adaptive Hybrid combines the best of both worlds

• Randomized placement with node/router based blocking is
good

• Q3. Is it beneficial to use job-specific routing?

• Yes, provides similar distribution as the best routing while
reducing the values of the data points such as the
maximum

20

Relevant publications
• Predicting application performance using supervised

learning on communication features. SC 2013.

• Mapping to Irregular Torus Topologies and Other
Techniques for Petascale Biomolecular Simulation. SC 2014.

• Maximizing Network Throughput on the Dragonfly
Interconnect. SC 2014.

• Improving Application Performance via Task Mapping on
IBM Blue Gene/Q. HiPC 2014.

• Identifying the Culprits behind Network Congestion. IPDPS
2015.

21

