
Understanding and Optimizing 
Communication Performance 

on HPC Networks

Contributors: Nikhil Jain, Abhinav Bhatele, Todd Gamblin, 
Xiang Ni, Michael Robson, Bilge Acun, Laxmikant Kale 

  
University of Illinois at Urbana-Champaign 

http://charm.cs.illinois.edu/~nikhil/

1

http://charm.cs.illinois.edu/~nikhil/


Communication in HPC

• A necessity, but 
can be viewed as 
an overhead 

• Can consume half 
the execution time
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Communication in HPC

Complex interplay of several 
components : hardware, 
configurable network properties, 
interaction patterns, algorithms… 

As a user, limited control over 
environment and interference 

As an admin, how to best use the 
system while keeping users 
happy
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Communication in HPC

Complex interplay of several 
components : hardware, 
configurable network properties, 
interaction patterns, algorithms… 

As a user, limited control over 
environment and interference 

As an admin, how to best use the 
system while keeping users 
happy

Diverse 
apps 

Many 
systems



Topology Aware Mapping
• Profile applications for their communication graphs and map them 

• Extremely important for Torus-based systems; ongoing work on 
other topologies 
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• Use Case: OpenAtom 

Topology Aware Mapping
• Profile applications for their communication graphs and map them 

• Extremely important for Torus-based systems; ongoing work on 
other topologies 
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II. BACKGROUND

Task mapping of an HPC application requires generating
an assignment of MPI task IDs or ranks to the cores and
nodes in the torus network. Traditionally, programmers have
written custom scripts to generate such assignments from
scratch. This process is tedious and error-prone, especially
with many tasks and high-dimensional networks. We de-
veloped Rubik [?], a tool that abstracts several common
mapping operations into a concise syntax. Rubik allows
complex mappings to be generated using only a few lines
of Python code. It supports a wide range of permutation
operations for optimizing latency or bandwidth, and we
only describe a relevant subset here. The full range of
transformations possible with Rubik is covered in [?].

Partitioning: Figure ?? shows a Rubik script that describes
the application’s process grid (a 9 ⇥ 3 ⇥ 8 cuboid) and a
Cartesian network (a 6 ⇥ 6 ⇥ 6 cube) by creating a “box”
for each. Each box is divided into sub-partitions using the
tile function, resulting in eight 9 ⇥ 3 ⇥ 1 planes in the
application and eight 3 ⇥ 3 ⇥ 3 sub-cubes in the network.
Rubik provides many operations like tile for partitioning
boxes, allowing users to group communicating tasks. These
partitioning operations can also be applied hierarchically.

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

map()

=

app network

network with mapped
application ranks

216 216

27 27 27 27 27 27 27 2727 27 27 27 27 27 27 27

Application 3D Torus
Application ranks mapped 

to the 3D torus

app = box([9,3,8]) # Create application grid

app.tile([9,3,1]) # Create eight sub-planes

network = box([6,6,6]) # Create network topology

network.tile([3,3,3]) # Create eight sub-cubes

network.map(app) # Map app. planes to proc. cubes

Figure 1: Mapping 2D sub-partitions to 3D shapes in Rubik

Mapping: The map operation assigns tasks from each
sub-partition in the application box to corresponding sub-
partitions in the network box. Partitions can be mapped to
one another if they have the same size, regardless of their

dimensions. This means we can easily map low-dimensional
planes to high-dimensional cuboids, changing the way in
which communicating tasks use the network. Thus, the user
is able to convert high-diameter shapes of the application,
like planes, into compact, high-bandwidth shapes on the
network, like boxes.

Permutation: In addition to partitioning and mapping oper-
ations, Rubik supports permutation operations that reorder
ranks within partitions. The tilt operation takes hyper-
planes in a Cartesian partition and maps them to diagonals.

Tilting is a bandwidth-optimizing operation – if tasks are laid
out initially so that neighbors communicate with one another
(e.g., in a stencil or halo), tilting increases the number of
routes between communicating peers. Successive tilting in
multiple directions adds routes in additional dimensions.
Tilting can be applied at any level of the partition hierarchy
– to specific partitions or to an entire application grid.

III. MAPPING, CONGESTION AND PERFORMANCE

We present a step-by-step methodology to improve appli-
cation performance using task mapping based on our expe-
rience with optimizing production applications on the IBM
Blue Gene/Q architecture. There are three steps involved
in this process: 1) Performance debugging via profiling, 2)
Performance optimization via task mapping, and 3) Perfor-
mance analysis via profiling and visualization. Each of these
steps is broken down further and explained in detail below.

A. Performance debugging

Application scientists are often unaware of the reason(s)
for performance issues with their codes. It is important
to determine if communication between parallel tasks is
a scaling bottleneck. Performance analysis tools such as
mpiP [?], HPCToolkit [?], and IBM’s MPI trace library [?]
can provide a breakdown of the time spent in computation
and in communication. They also output times spent, mes-
sage counts and sizes for different MPI routines invoked in
the code. Some advanced tools can also calculate the number
of network hops traveled by messages between different
pairs of tasks. The first step is to collect performance data
for representative input problems (weak or strong scaling)
on the architecture in question.

Performance data obtained from profiling tools can be
used to determine if communication is a scaling bottleneck.
As a rule of thumb, if an application spends less than 5%
of its time in communication when using a large number
of tasks, there is little room for improving the messaging
performance. If this is not the case, we can attempt to
use topology-aware task mapping to improve performance
and the scaling behavior. As we will see in the application
examples, task mapping can even be used to reduce the time
spent in collective operations over all processes.

B. Performance optimization

There are several tools and libraries that provide utilities
for mapping an application to torus and other networks [?],
[?], [?], [?], [?], [?]. We use Rubik, described in Section ??,
to generate mappings for pF3D and MILC. Since the solu-
tion space for mappings is so large, there are several factors
to consider when trying out different mappings:

• Are there multiple phases in the application with con-
flicting communication patterns?

• Is the goal to optimize point-to-point operations or
collectives or both?

• Is the goal to optimize network latency or bandwidth?

Rubik - Python based tool to create maps
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of tasks, there is little room for improving the messaging
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examples, task mapping can even be used to reduce the time
spent in collective operations over all processes.

B. Performance optimization

There are several tools and libraries that provide utilities
for mapping an application to torus and other networks [?],
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Understanding Networks
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Understanding Networks
• What determines communication performance? 

• How can we predict it? 
• Quantification of metrics
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• How can we predict it? 
• Quantification of metrics

• What is the relation between performance and the 
entities quantified above? 
• Linear, higher polynomial, or indeterminate 
• Is statistical data related to performance?
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Understanding Networks
• What determines communication performance? 

• How can we predict it? 
• Quantification of metrics

• What is the relation between performance and the 
entities quantified above? 
• Linear, higher polynomial, or indeterminate 
• Is statistical data related to performance?

• Method 1: Supervised Learning 
• More on this in Abhinav’s talk

6



Method 2: Packet-level Simulation
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Method 2: Packet-level Simulation
• Detailed study of what-if scenarios

• Comparison of similar systems
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Method 2: Packet-level Simulation
• Detailed study of what-if scenarios

• Comparison of similar systems

• BigSim was among the earliest accurate packet-
level HPC network simulator (circa 2004)

• Reviving Emulation and Simulation capabilities 
of BigSim

• BigSim + CODES + ROSS = TraceR 
• More on this in the Bilge’s talk

7
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Q1: What is the best combination of routing strategies 
and job placement policies for single jobs?

Q3: Should the routing policy be job-specific or 
system-wide?

Q2: What is the best combination for parallel job 
workloads?

Method 3: Modeling via Damselfly
Intermediate methods sufficient to answer certain types 
of questions



Dragonfly Topology
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Level 1: Dense connectivity among routers to form groups

IBM PERCS CRAY ARIES/XC30



Dragonfly Topology
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What needs to be evaluated?
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Job Placement Routing Comm Kernel

Random Nodes (RDN) Static Direct (SD) UnStructured

Random Routers (RDR) Static Indirect (SI) 2D Stencil

Random Chassis (RDC) Adaptive Direct (AD) 4D Stencil

Random Group (RDG) Adaptive Indirect (AI) Many-to-many

Round Robin Nodes (RRN) Adaptive Hybrid (AH) Spread

Round Robin Routers (RRR) Job-specific (JS) Parallel Workloads (4)

Total cases ~ 360 for 
8.8 million cores with 92,160 routers 



Model for link utilization
• Input to the model: 

1. Network graph of Dragonfly routers 

2. Application communication graph for a communication step 

3. Job placement 

4. Routing strategy 

• Output: The steady-state traffic distribution on all network links, 
which is representative of the network throughput 

• Implemented as a scalable parallel MPI program executed on Blue 
Gene/Q 
— Maximum runtime of 2 hours on 8,192 cores for prediction on 
8.8 million cores

11
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• Initialize two copies of network graph N :  
NAlloc : stores total and per message allocated bandwidth ( = 0)  
NRemain : stores bandwidth available for allocation (= capacity)



• Iterative solve for computing representative state 
NAlloc 

while a message is allocated additional bandwidth
• for each message m, obtain the list of paths P(m)
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while a message is allocated additional bandwidth
• for each message m, obtain the list of paths P(m)
• using P(m) of all messages, find the request 

count for each link
• for each path p in P(m), compute its availability 
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• using availability, allocate more bandwidth to the 
messages

12

• Initialize two copies of network graph N :  
NAlloc : stores total and per message allocated bandwidth ( = 0)  
NRemain : stores bandwidth available for allocation (= capacity)

P1

P2

P3
1

2

2

1

3

Start with 10 GB/s
 per link

10 5

3.33

S

D



• Iterative solve for computing representative state 
NAlloc 

while a message is allocated additional bandwidth
• for each message m, obtain the list of paths P(m)
• using P(m) of all messages, find the request 
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allocations  
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• Initialize two copies of network graph N :  
NAlloc : stores total and per message allocated bandwidth ( = 0)  
NRemain : stores bandwidth available for allocation (= capacity)
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How to read the plots?

13

1

10

1E2

P1 P2

Li
nk

 U
sa

ge
 (

M
B)

Job placements grouped based on Routing

Example Plot

minimum
1st quartile

average

median
3rd quartile
maximum

minimum and 1st quartile are same

Lowest maximum



How to read the plots?

13

1

10

1E2

P1 P2

Li
nk

 U
sa

ge
 (

M
B)

Job placements grouped based on Routing

Example Plot

minimum
1st quartile

average

median
3rd quartile
maximum

minimum and 1st quartile are same

Lowest maximum Maximum traffic on 
any link: indicates 
network hotspot
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Median traffic:
valuable for estimating 

distribution by comparing 
with the average 
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Ideal: distribution with
close values for all data
points, lower the better

How to read the plots?
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Job placement: blocking reduces  
the maximum (up to 90% drop)  
and average (up to 92% drop)

Single job: Unstructured Mesh
6-20 partners with 512 KB messages
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Indirect routing: increases average,  
but reduces maximum by 50% in the best case 

Single job: Unstructured Mesh
6-20 partners with 512 KB messages

14



Adaptivity: similar distribution as static,  
but with lower maximum 

AI leads to 50% reduction in maximum traffic; 
hybrid does worse than AI 

Single job: Unstructured Mesh
6-20 partners with 512 KB messages
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Job placement: negligible impact!

Single job: Random Neighbors
6-20 partners with 512 KB messages

15



Indirect routing: shifts the graph upwards and  
increases all quartiles; 

100% increase in maximum and average

Single job: Random Neighbors
6-20 partners with 512 KB messages

15



Single job: Random Neighbors
6-20 partners with 512 KB messages

15

Adaptivity: Minor gains, 10% reduction in maximum 
hybrid does better than AI



Parallel Workloads: % Core Distribution
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Comm
Pattern Workload 1 Workload 2 Workload 3 Workload 4

Unstructured 
Mesh 20 10 20 40

2D Stencil 10 10 40 10

4D Stencil 40 20 10 20

Many to many 20 40 10 20

Random 
neighbors 10 20 20 10



Workloads
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• Adaptivity reduces  
the maximum traffic 
by 35% 

• Hybrid with RDN/
RDR shows lowest 
data points



Job-specific Routing
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Summary
• Fast analytical model enables studies with a large number of scenarios

• Adaptivity results in significantly lower values for maximum and 
average traffic (up to 50% reduction)

• Q1. What is the best combination for single job runs? 

• Depends on the job being run! 

• Patterns with communication among near-by MPI ranks benefit by 
blocking 

• Indirect routing is better when the communication pattern is not 
sufficiently spread by the application or job placement 

• Hybrid routing provides similar distribution as Adaptive Indirect, but 
its data points are shifted depending on the communication pattern
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• Q2. What is the best combination for parallel workloads? 

• Similar distributions are observed irrespective of the jobs 
proportions in the workloads! 

• Adaptive Hybrid combines the best of both worlds 

• Randomized placement with node/router based blocking is 
good
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Summary
• Q2. What is the best combination for parallel workloads? 

• Similar distributions are observed irrespective of the jobs 
proportions in the workloads! 

• Adaptive Hybrid combines the best of both worlds 

• Randomized placement with node/router based blocking is 
good

• Q3. Is it beneficial to use job-specific routing? 

• Yes, provides similar distribution as the best routing while 
reducing the values of the data points such as the 
maximum
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