1)

2)
3)
4)

5)
6)

7)

Introduction
e Object Design
e Execution Model

Hello World
Benefits of Charm++

Charm++ Basics
* Object Collections

Overdecomposition
Migratability

* Checkpointing and Resilience

Structured Dagger

Outline

8)
9)
10)
11)
12)
13)

Application Design
Performance Tuning

Using Dynamic Load Balancing
Interoperability

Debugging

Further Optimization

What is Charm++?

« Charm++ is a generalized approach to writing parallel programs

- An alternative to the likes of MPI, UPC, GA etc.
- But not to sequential languages such as C, C++, and Fortran

e Charm++ builds upon a proven approach: objects

- ldentify the entities being simulated (say atoms, routers, humans, etc)

- Define the computational tasks being performed (e.g. force computation)
 Create C++ classes to encapsulate them

- Use member functions to interact

- What about processors? Do you really want to worry about them?

Stuff you already know

Benefits of Object-based code

- Objects encapsulate data
- Methods represent functionality relevant to that data
- Method invocations can modify / update state of the object / data

- Computation can be expressed in terms of objects interacting via method
invocations

- Methods are natural units of sequential computation on object data
- Thoughtful design yields focused methods with single purpose
- Naturally expresses an object’s response to inputs (signals / data)

* Nothing new
- |t is not about language syntax. It is about program structure

Globally-Visible Objects: Chares

J P
L Parallel Address Space N,

LFJ © £ ©
© © o A

I”

- Certain “special” object instances are:
- first-class citizens in the parallel address space,
« with unique location-independent names

- Under the hood, the runtime handles locality and provides the mechanisms to
promote objects to the parallel space

Globally-Visible Methods: Entry Methods

Parallel Address Space

G\ F.m4() e Q\ E.m1() @
\// _) 30 \/ .- G.m2()

B.m2()

@ @ H.m2() @ @

- How can objects communicate across address spaces?
- Just like a sequential object-oriented language, an object’s reference is used to invoke a method
+ In the parallel space, this is a handle that is location transparent
- A method invocation becomes an act of communication

Method-Driven Asynchronous Communication

kernelA() ——

B.m1() returns

Instance A —{ idle waiting for B

B.m1()

Instance B execute m1()

- What happens if an object waits for a return value from a method invocation?
- Performance

- Latency

- Reasoning about correctness

Design Principle: Do not wait for remote completion

Instance A kernelA() idle

B.m1() A.m2() response

Instance B execute m1()

- Hence, method invocations should be asynchronous
« No return values

- Computations are driven by the incoming data

- Initiated by the sender or method caller

For example, a reduction

reduction

synchronous

reduction compute > compute

idle time
avoided
below

reduction

asynchronous

reduction compute compute

Methods: Natural Units of Sequential Computati

on

B.m1()
- Methods still have the same B may observe
sequential semantics ‘ m1génz()
- Atomicity: methods of the same m2() m1()
B.m2()

object do not execute in parallel
- Methods cannot be interrupted or

preempted Cm20

- Methods interact and update C may observe
state of an object in the same way @ m20) m3(

- Method sequencing is what w30 m20)
changes from sequential B.m1() Cm3

computation

Foundational Ideas

-Overdecomposition

- Migratability

- Asynchrony — message-driven execution

10

Overdecomposition

- Decompose the work units & data units into many more pieces (chares) than
execution units

« Cores/Nodes/..
* Not so hard: we do decomposition anyway

11

Migratability

 Allow chares to be migratable at runtime
- i.e. the programmer or runtime can move them

- Consequences for the app-developer

- Communication must be addressed to logical units with global names,
not to physical processors

- But this is a good thing

- Consequences for RTS
- Must keep track of where each chare is
* Naming and location management

12

The Asynchronous Execution Model

- Several chares live on a single PE
« For now, think of it as a core (or just “processor”)
 As a result,

- Method invocations directed at chares on that processor will have to be stored in a pool,
« And a user-level scheduler will select one invocation from the queue and runs it to completion
- A PE is the entity that has one scheduler instance associated with it

- Execution is triggered by availability of a “message” (a method invocation)

- When an entry method executes,
- it may generate messages for other chares
-« the RTS deposits them in the message Q on the target processor

13

The Execution Model

NN IEEEE

14

Empowering the RTS

Adaptive Runtime System \

Introspectlon Adaptivity J

Asynchrony Overdecomp051t10n \ Ml gratablhty

- The Adaptive RTS can:
- Dynamically balance loads
« Optimize communication:
« Spread over time, async collectives
- Automatic latency tolerance
- Prefetch data with almost perfect predictability

18

1)

2)
3)
4)

5)
6)

Introduction
* Object Design
e Execution Model

Hello World
Benefits of Charm++
Charm++ Basics

* Object Collections
Overdecomposition
Migratability

* Checkpointing and Resilience

Outline

7)
8)
9)
10)
11)
12)
13)

Structured Dagger
Application Design
Performance Tuning

Using Dynamic Load Balancing
Interoperability

Debugging

Further Optimization

19

Charm++ File Structure

« C++ objects (including Charm++ objects)
 Defined in regular .h and .C files

« Chare objects, entry methods (asynchronous methods)
 Defined in .ci file

« Implemented in the .C file

C++ Charm++
.h .cpp .h .cpp .ci
header source header source interface
file file file file file

Class Files Chare Class Files

20

Compiling a Charm++ Program

#include “xxx.decl.h”
#include other header files

h

header file

#include “xxx.h”
#include other header files

charmc
(C++ Compiler)

.Cor.cpp

source file

#include "xxx.def.h”

21

Generated Classes

« CProxy_YourClassName
« The type of the proxy handle returned by the constructor
 For use in method invocations

- CBase_YourClassName
« YourClassName should inherit from this

22

Hello World Example

* hello.ci file * hello.cpp file
mainmodule hello { #include <stdio.h>
mainchare MyMain { #include "hello.decl.h"
entry MyMain(CkArgMsg* m); class MyMain : public CBase_MyMain {
i public:
i MyMain(CkArgMsg* m) {
CkPrintf("Hello World!\n®);
CKkExit();
}s
}s
#include "hello.def.h"

23

Charm Interface: Modules

« Charm++ programs are organized as a collection of modules
« Each module defines one or more chares

- The module that contains the mainchare, is declared as the mainmodule
- Each module, when compiled, generates two files:

MyModule.decl.h and MyModule.def.h
- .cifile
module MyModule {
// ... chare definitions ...

s

24

Charm Interface: Chares

- Chares are parallel objects that are managed by the RTS
- Each chare has a set of entry methods, which are asynchronous methods that may be invoked remotely

- The following code, when compiled, generates a C++ class CBase_MyChare that encapsulates the RTS
object

- This generated class is extended and implemented in the .C file

- .cifile

chare MyChare {
// ... entry method declarations

}s5

- .Cfile

class MyChare : public Cbase MyChare {
// ... entry method definitions ...

}s

25

Charm Interface: Entry Methods

« Entry methods are C++ methods that can be remotely and asynchronously invoked by another
chare

- .cifile

entry MyChare(); /* constructor entry method */
entry void foo();

entry void bar(int param);

- .Cfile

MyChare: :MyChare() { /*... constructor code ...*/ }
MyChare::foo() { /*... code to execute ...*/ }

MyChare: :bar(int param) { /*... code to execute ...*/ }

26

Charm Interface: mainchare

« Execution begins with the mainchare’s constructor
- The mainchare’s constructor takes a pointer to system-defined class CKArgMsg
- CKArgMsg contains argv and argc

- The mainchare will typically create some additional chares

27

Creating a Chare

- A chare declared as chare MyChare {...}; can beinstantiated by the following
call:

CProxy_MyChare: :ckNew(... constructor
arguments ...);

« To communicate with this class in the future, a proxy to it must be retained

CProxy_MyChare proxy =
CProxy MyChare: :ckNew(argl);

28

Chare Proxies

- A chare’s own proxy can be obtained through a special variable thi1sProxy
 Chare proxies can also be passed so chares can learn about others

- In this snippet, MyChare learns about a chare instance main, and then invokes a
method on it:

- .ci file

entry void foobar2(CProxy Main main);

. .Cfile

MyChare: :foobar2(CProxy Main main) {
main.foo();

¥

29

Charm Termination

- There is a special system call CKEx1t () thatterminates
the parallel execution on all processors (but it is called on
one processor) and performs the requisite cleanup

- The traditional ex1t () is insufficient because it only

terminates one process, not the entire parallel job (and will
cause a hang)

-CkEx1t() should be called when you can safely

terminate the application (you may want to synchronize
before calling this)

30

Chare Creation Example: .ci file

mainmodule MyModule {
mainchare Main {
entry Main(CkArgMsg* m);

J)

chare Simple {
entry Simple(int x, double y);
}s
}s

31

Chare Creation Example: .C file

#include "MyModule.decl.h"
class Main : public CBase_Main {
public:

Main(CkArgMsg* m) {
CkPrintf("Hello World!\n");
double pi = 3.1415;

CProxy_ Simple::ckNew(12, pi);
¥
}s
class Simple : public CBase Simple {
public:

Simple(int x, double y) {
CkPrintf("From chare on %d Area of a circle of radius %d is %g\n“, CkMyPe(), Xx,y*x*x);
CKExit();

¥

}s5
#include "MyModule.def.h"

32

Asynchronous Methods

- Entry methods are invoked by performing a C++ method call on a chare’s proxy

CProxy_MyChare proxy =
CProxy_MyChare: :ckNew(/* ... constructor arguments ...*/);

proxy.foo();
proxy.bar(5);

- The foo and bar methods will then be executed with the arguments, wherever the created
chare, MyChare, happens to live

- The policy is one-at-a-time scheduling (that is, one entry method on one chare executes on a
processor at a time)

33

Asynchronous Methods

- Method invocation is not ordered (between chares, entry methods on one chare, etc.)!
- For example, if a chare executes this code:

CProxy_MyChare proxy = CProxy_MyChare::ckNew();
proxy.foo();

proxy.bar(5);

- These prints may occur in any order

MyChare: :foo() A
CkPrintf(" foo executes\n");

}
MyChare: :bar(int param) {
CkPrintf(" bar executes\n");

¥

34

Asynchronous Methods

- For example, if a chare invokes the same entry method twice:

proxy.bar(7);
proxy.bar(5);

- These may be delivered in any order

MyChare: :bar(int param) {
CkPrintf(“bar executes with %d\n”);
}

* Qutput:

bar executes with 5
bar executes with 7

OR

bar executes with 7
bar executes with 5

35

Asynchronous Example: .ci file

mainmodule MyModule {
mainchare Main {
entry Main(CkArgMsg *m);
}s
chare Simple {
entry Simple(double y);
entry void findArea(int radius, bool done);
15
}s

36

Does this program execute correctly?

struct Main : public CBase _Main {
Main(CkArgMsg* m) {
CProxy Simple sim = CProxy_Simple::ckNew(3.1415);
for (int 1 = 1; 1 < 10; i++) sim.findArea(i, false);
sim.findArea(10, true);
¥
¥
struct Simple : public CBase_Simple {
double y;
Simple(double pi) { y = pi; }
void findArea(int r, bool done) {
CkPrintf("Area of a circle of radius %d is %f\n" ,r, y*rir);
if (done) CKExit();

I

37

Data types and entry methods

« You can pass basic C++ types to entry methods (int, char, bool)
« C++ STL data structures can be passed
- Arrays of basic data types can also be passed like this:

- .ci file:

entry void foobar(int length, int data[length]);

- .Cfile

MyChare: :foobar(int length, int* data) {
// ... foobar code ...

38

ReadOnly Variables

- Global Constants
« |Initialized in MainChare

readonly int foo;
readonly CProxy_Main mainProxy;

.C file: at global scope

int foo;
CProxy_Main mainProxy;

. C file: inside mainchare’s constructor

foo=2;

mainProxy=thisProxy;

39

Collections of Objects: Concepts

 Objects can be grouped into indexed collections

- Basic examples
« Matrix block
« Chunk of unstructured mesh
« Portion of distributed data structure
« Volume of simulation space

- Advanced Examples
« Abstract portions of computation
« Interactions among basic objects or underlying entities

40

Collections of Objects

Structured: 1D, 2D, ..., 6D
-Unstructured: Anything hashable
*Dense

*Sparse

-Static - all created at once
-Dynamic - elements come and go

41

Declaring a Chare Array

- .ci file:

array [1D] foo {
entry foo(); // constructor
// ... entry methods ...

}s

array [2D] bar {
entry bar(); // constructor
// ... entry methods ...

s

- .Cfile:

struct foo

foo() { }
foo(CkMigrateMessage*x) { }
// ... entry methods ...

}s

struct bar : public CBase bar {

bar() { }
bar (CkMigrateMessage*) { }

s

: public CBase foo {

42

Constructing a Chare Array

« Constructed much like a regular chare
« The size of each dimension is passed to the constructor
- Dimensional parameters are placed after other constructor arguments

CProxy_foo: :ckNew(..,10);
CProxy bar::ckNew(..,5, 5);

- The proxy may be retained:

CProxy_foo myFoo = CProxy foo::ckNew(.., 10);

- The proxy represents the entire array, and may be indexed to obtain a proxy to an individual
element in the array

myFoo[4].invokeEntry();

43

thisindex

- 1d: thisIndex returnsthe index of the current chare array element

- 2d: thisIndex.x and thisIndex.y return the indices of the current chare array element
.ci file:

array [1D] foo {
entry foo();

}
.C file:
struct foo : public CBase foo {
foo() A
CkPrintf(" array index = %d",thisIndex);
}
}s

44

Chare Array: Hello Example

mainmodule arr {
mainchare MyMain {
entry MyMain(CkArgMsgx);
¥
array [1D] hello {
entry hello(int);
entry void printHello();

¥

45

Chare Array: Hello Example

#include "arr.decl.h"
struct MyMain : CBase MyMain {
MyMain(CkArgMsg* msg) {
int arraySize = atoi(msg->argv[1l]);
CProxy_hello p = CProxy hello::ckNew(arraySize, arraySize);
p[@].printHello();

}
}s
struct hello : CBase_hello {
hello(int n) : arraySize(n) { }
void printHello() {
CkPrintf("PE[%d]: hello from p[%d]\n", CkMyPe(), thisIndex);
if (thisIndex == arraySize - 1) CkExit();
else thisProxy[thisIndex + 1].printHello();
}

int arraySize;
}s

#include "arr.def.h"

46

Hello World Array Projections Timeline View

- Add “-tracemode projections” to link line to enable tracing
- Run Projections tool to load trace log files and visualize performance

FlEe RAnyges >Jdve 10 mdyge Lolors irdaadany view cxperunerindl redwures

1/ -/
T M|] -
I — N | N/
—— I —e | N | N
— - ———————————— | N .
—— i i | I |
— . (el

hello::printHello(void)

Idle Time
I - -

Begin Time: 174,106

era e ot I - - - o o e o)
| Total Time: 7.843ms | nd Time: : 76,57

Jotal Time: 0.376ms (0.375ms)

]
2
1
]
]
]
&
14, 7)
]
]
)
]
]
]

- arrayHello on BG/Q 16 Nodes, mode c16, 1024 elements
(4 per process)

Collections of Objects: Runtime Service

« System knows how to ‘find” objects efficiently:
(collection, index) = processor

- Applications can specify a mapping or use simple runtime-provided options (e.g.
blocked, round-robin)

« Distribution can be static or dynamic!

-« Key abstraction: application logic doesn’t change, even though performance might

48

Collections of Objects: Runtime Service

- Can develop and test logic in objects separately from their distribution
- Separation in time: make it work, then make it fast

- Division of labor: domain specialist writes object code, computationalist writes
mapping

- Portability: different mappings for different systems, scales, or configurations

- Shared progress: improved mapping techniques can benefit existing code

49

Collective Communication Operations

- Point-to-point operations involve only two objects

- Collective operations that involve a collection of objects

- Broadcast: calls a method in each object of the array

- Reduction: collects a contribution from each object of the array
- A spanning tree is used to send/receive data

50

Broadcast

- A message to each object in a collection

- The chare array proxy object is used to perform a broadcast
- It looks like a function call to the proxy object

« From the main chare:

CProxy Hello helloArray = CProxy_Hello::ckNew(helloArraySize);
helloArray.foo();

« From a chare array element that is a member of the same array:

thisProxy.foo();

- From any chare that has a proxy p to the chare array

p.foo();

51

Reduction

- Combines a set of values: sum, max, concat

-« Usually reduces the set of values to a single value

- Combination of values requires an operator

- The operator must be commutative and associative

- Each object calls contribute in a reduction

52

Reduction: Example

mainmodule reduction {
mainchare Main {
entry Main(CkArgMsg* msg);
entry [reductiontarget] void done(int value);
¥
array [1D] Elem {
entry Elem(CProxy Main mProxy);

i

53

Reduction: Example

#include "reduction.decl.h"
const int numElements = 49;
class Main : public CBase Main {
public:
Main(CkArgMsg* msg) {
CProxy Elem::ckNew(thisProxy, numElements);
}
void done(int value) {
CkPrintf("value: %d\n“,value);
CKExit();

}
¥
class Elem : public CBase Elem {
/] .
¥

#include "reduction.def.h"

class Elem : public CBase Elem {
public:
Elem(CProxy_Main mProxy) {
int val = thisIndex;
CkCallback cb(CkReductionTarget(Main, done), mProxy);
contribute(sizeof(int), &val, CkReduction::sum_int,
cb);
}
}s

54

1)

2)
3)
4)

5)
6)

7)

Introduction
e Object Design
e Execution Model

Hello World
Benefits of Charm++

Charm++ Basics
* Object Collections

Overdecomposition
Migratability
* Checkpointing and Resilience

Structured Dagger

Outline

8)
9)
10)
11)
12)
13)

Application Design
Performance Tuning

Using Dynamic Load Balancing
Interoperability

Debugging

Further Optimizations

55

Task Parallelism with Objects

- Divide-and-conquer
Each object recursively creates n objects that divide the problem into subproblems
Each object t then waits for all n objects to finish and then may ‘combine’ the responses

At some point the recursion stops (at the bottom of the tree), and some sequential kernel is
executed

Then the result is propagated upward in the tree recursively

Examples: fibonacci, quicksort, . . .

56

Fibonacci Example

- Each F1b object is a task that performs one of two actions:

- Creates two new F1b objects to compute fib(n — 1) and fib(n — 2) and then waits for the response,
adding up the two responses when they arrive

» After both arrive, sends a response message with the result to the parent object
« Or prints the value and exits if it is the root

« If n=1 or n=0 (passed down from the parent) it sends a response message with n back to the
parent object

57

Fibonacci Execution

58

Object-based Overdecomposition

« Charm++ philosophy:

* Let the programmer decompose their work and data into coarse-grained entities

- |t is important to understand what we mean by coarse-grained entities
You don’t write sequential programs that some system will auto-decompose

You don’t write programs when there is one object for each float

You consciously choose a grainsize, BUT choose it independent of the number of processors, or
parameterize it, so you can tune later

59

Amdahl's Law and Grainsize

* Original “law”:
- If a program has K% sequential section, then speedup is limited to 100

* If the rest of the program is parallelized completely K

« Grainsize corollary:

- If any individual piece of work is > K time units, and the sequential program takes T
Tseq

K

eq’

» Speedup is limited to
 So:

- Examine performance data via histograms to find the sizes of remappable work units

- If some are too big, change the decomposition method to make smaller units

60

Quick Example: Crack Propagation

Bas;
ALt

- Decomposition into 16 chunks (left) and 128 chunks, 8 for each PE (right). The middle area contains
cohesive elements. Both decompositions obtained using METIS.

 Pictures: S. Breitenfeld, and P. Geubelle

61

Overdecomposition and Grainsize

« Common misconception: overdecomposition must be expensive

- (Working) Definition: the amount of computation per potentially parallel event (task
creation, enqueue/dequeue, messaging, locking, etc)

62

Grainsize and Overhead

- What is the ideal grainsize?
- Should it depend on the number of processors?

v
T1=T(1+§) T(1+v
8
I, = max- g,
T P
1
T, =max{g,—}
p 8

v: overhead per message,
T,: completion time of processor p
g: grainsize (computation per message)

63

Time

Grainsize and Scalability

1 processor

f

p processors

Grainsize

64

Grainsize Study for Jacobi3D

Jacobi3D running on JYC using 64 cores on 2 nodes

timestep(sec)

| 2048x2048x2048 (total problem size) ——

4K

16K

64K 512K oM 8M 32M 128M
number of points per chare

65

Grainsize Study for Stencil Computation

- Blue Waters (JYC), 2 nodes, 32 cores each

time step(sec) using different number of chares (64 cores)

—
2048x2048x2048 (50%mem)

2048x2048x1024 —+—
Ar D048X1 024X 1024 ~---nn I
1024x1024x1024 -+~ %--
512x1024x1024 &

timestep(sec)

L 1 L 1 L 1 L 1 L 1 L 1 L
1 4 16 64 256 1024 4096 16384
number of chares per core

Typically, having tens of chares per code is adequate (although
reasoning should be based on computation per message)

66

number of objects

1000

800 -
700
600 -

400
300 -
200

Grainsize and Load Balancing

How Much Balance Is Possible?

Grainsize distribution

100 I N I A O

13 5 7 9 1113151719 21 23 25 27 29 31 33 35 37 39 41 43
grainsize in milliseconds

Solution:

Split compute objects that
may have too much work,
using a heuristic based on
number of interacting
atoms

67

Grainsize For Extreme Scaling

« Strong Scaling is limited by expressed parallelism
« Minimum iteration time limited by lengthiest computation
* Largest grains set lower bound

- 1-away generalized to k-away provides fine granularity control

ke

68

NAMD: 2-AwayX Example

\‘ g Force

QP P Evaluation

el 4 \ i ‘"Ill“"

69

Rules of thumb for grainsize

- Make it as small as possible, as long as it amortizes the overhead

- More specifically, ensure:
- Average grainsize is greater than kv (say 10v)

. . T
- No single grain should be allowed to be too large
* Must be smaller than , but actually we can express it as: p

« Must be smaller than kmv (say 100v)
 Important corollary:

« You can be at close to optimal grainsize without having to think about p, the number of processors

- kv<g<mkv (10v< g < 100v)

70

Grainsize for Fibonacci Example

- Set a sequential threshold in the computational tree
- Past this threshold (i.e. when n < threshold), instead of constructing two new chares, compute the

fibonacci sequentially
?A sequential fib(3)

sequentlal f|b sequential fib(2

- Setting the grainsize limit at 4 (which is too small, but good for illustration)
- The internal nodes of the tree do very little work, but
- The coarser grains now amortize the cost of the fine-grained chares

71

1)

2)
3)
4)

5)
6)

7)

Introduction
e Object Design
e Execution Model

Hello World
Benefits of Charm++

Charm++ Basics
* Object Collections

Overdecomposition
Migratability
* Checkpointing and Resilience

Structured Dagger

Outline

8)
9)
10)
11)
12)
13)

Application Design
Performance Tuning

Using Dynamic Load Balancing
Interoperability

Debugging

Further Optimizations

72

Object Serialization Using PUP:
The Pack/UnPack Framework

73

The PUP Process

74

PUP Usage Sequence

(User Constructor) (

[p-isUnpacking())

(Pup Constructor

- Migration out:
- ckAboutToMigrate
* Sizing
 Packing
 Destructor

> [}b{ Destructor)

L(User Methods)—)
K(p.isSizing())—/
“— p.sPacking()

« Migration in:
- Migration constructor

« UnPacking
- cklustMigrated

Writing a PUP routine

76

Writing a PUP routine

class MyChare
public CBase MyChare {
int heapArraySize;
float *heapArray;
MyClass *pointer;

s

void pup(PUP::er &p) {
p | heapArraySize;
if (p.isUnpacking()) {
heapArray =
new float[heapArraySize];

}

p(heapArray, heapArraySize);
bool isNull = !pointer;

p | isNull;

if (!isNull) {
if(p.isUnpacking())
pointer = new MyClass();
p | *pointer;
}
}

77

PUP: Pitfalls

- |f variables are added to an object, update the PUP routine

- If the object allocates data on the heap, copy it recursively, not just the pointer
- Remember to allocate memory while unpacking

- Sizing, Packing, and Unpacking must scan the variables in the same order

- Test PUP routines with +balancer RotatelB

78

Fault Tolerance in Charm++/AMPI

« Four Approaches:
- Disk-based checkpoint/restart
« In-memory double checkpoint/restart
- Experimental: Proactive object evacuation
- Experimental: Message-logging for scalable fault tolerance

« Common Features:
- Easy checkpoint
« Migrate-to-disk leverages object-migration capabilities
- Based on dynamic runtime capabilities
« Can be used in concert with load-balancing schemes

79

Checkpointing to the file system : Split Execution

- The common form of checkpointing
« The job runs for 5 hours, then will continue at the next allocation another day!

 The existing Charm++ infrastructure for chare migration helps
- Just “migrate” chares to disk

 The call to checkpoint the application is made in the main chare at a synchronization
point

CkCallback cb(CkIndex Hello::SayHi(),helloProxy);
CkStartCheckpoint("log",cb);

> ./charmrun hello +p4 +restart log

80

Code to Use Load Balancing

- Write PUP method to serialize the state of a chare
- Insert 1T (myLBStep) AtSync() ; call at natural barrier

- Implement ResumeFromSync () to resume execution
 Typically, ResumeFromSync contribute to a reduction

81

Using the Load Balancer

* link a LB module
- -module <strategy>
« RefinelB, NeighborlLB, GreedyCommLB, others
 EveryLB will include all load balancing strategies

- compile time option (specify default balancer)
- -balancer RefineLB

* runtime option
- +balancer RefinelLB

82

1)

2)
3)
4)

5)
6)

7)

Introduction
e Object Design
e Execution Model

Hello World
Benefits of Charm++

Charm++ Basics
* Object Collections

Overdecomposition
Migratability
* Checkpointing and Resilience

Structured Dagger

Outline

8)
9)
10)
11)
12)
13)

Application Design
Performance Tuning

Using Dynamic Load Balancing
Interoperability

Debugging

Further Optimization

83

Chares are reactive

- The way we described Charm++ so far, a chare is a reactive entity:
- If it gets this method invocation, it does this action,
- If it gets that method invocation then it does that action
- But what does it do?

- In typical programs, chares have a life-cycle

- How to express the life-cycle of a chare in code?
- Only when it exists
* i.e. some chars may be truly reactive, and the programmer does not know the life cycle
- But when it exists, its form is:

« Computations depend on remote method invocations, and completion of other local computations
« A DAG (Directed Acyclic Graph)!

84

Fibonacci Example

mainmodule fib {
mainchare Main {
entry Main(CkArgMsg* m);
}s

chare Fib {
entry Fib(int n, bool isRoot, CProxy Fib parent);
entry void respond(int value);
}s
}s

85

Fibonacci Example

class Main :
public:
Main(CkArgMsg*m) {
CProxy Fib::ckNew(atoi(m- >argv[1l]), true,
CProxy Fib());

}

public CBase Main {

}s
class Fib : public CBase Fib {
public:
CProxy_Fib parent;
bool isRoot;
int result, count;
Fib(int n, bool isRoot_, CProxy_Fib parent_)
: parent(parent_), isRoot(isRoot),
result(0), count(2) {
if (n < 2) respond(n);
else {
CProxy_ Fib::ckNew(n -1, false, thisProxy);
CProxy Fib::ckNew(n -2, false, thisProxy);
}
}

void respond(int val);

};

void Fib::respond(int val) {

result += val;
if (-- count ==
if (isRoot) {

[n<2){

CkPrintf(“Fibonacci number is:

CkExit();

} else {
parent.respond(result);
delete this;

%d\n", result);

86

Consider Fibonacci Chare

- The Fibonacci chare gets created

- If 1t’s not a leaf,
> It fires two chares

»>When both children return results (by calling respond):
* [t can compute my result and send it up, or print it

»>But in our example, this logic 1s hidden in the flags and counters . . .
* This is simple for this simple example, but . . .

»Let’s look at how this would look with a little notational support

87

Structured Dagger

The when construct

- The when construct

»Declare the actions to perform when a message is received

»In sequence, it acts like a blocking receive

entry void someMethod() {
when entryMethodl(parameters) { /*
when entryMethod2(parameters) { /*

I

88

Structured Dagger

The serial construct

- The serial construct
> A sequencial block of C++ code in the .c1 file
»The keyword serial means that the code block will be executed without interruption/preemption, like
an entry method

>Syntax serial <optionalString> { /* C++ code */ }
> The <optionalString> is used for identifying the serial for performance analysis

> Serial blocks can access all members of the class they belong to

- Examples (.c1 file):

entry void methodl(parameters) { entry void method2(parameters) {
serial {

thisProxy.invokeMethod(10);
callSomeFunction();
) }
}; ik

serial "setValue" {
value = 10;

89

Structured Dagger

Sequence

entry void someMethod() {
serial { /* blockl */}
when entryMethodl(parameters) serial { /* block2 */}
when entryMethod2(parameters) serial { /* block3 */}

e

- Sequence
»Sequentially execute /* blockl */

»>Wait for entryMethodl to arrive, if it has not, return control back to the Charm++ scheduler,
otherwise, execute /* block2 */

»>Wait for entryMethod?2 to arrive, if it has not, return control back to the Charm++ scheduler,
otherwise, execute /* block3 */

90

Structured Dagger

The when construct

- Execute /* further code */ when myMethod arrives

when myMethod(int paraml, int param2)
{ /* further code }

- Execute /* further code */ when myMethodl and myMethod?2 arrive

when myMethodl(int paraml, int param2),
myMethod2(bool param3)
{ /* further code */ }

- Which is almost the same as this:

when myMethodl(int paraml, int param2) {
when myMethod2(bool param3)
{ /* further code */ }

91

Structured Dagger

Boilerplate

- Structured Dagger can be used 1 any entry method (except for a constructor)

»>Can be used in a mainchare , chare , or array

- For any class that has Structured Dagger in 1t you must insert:

> The Structured Dagger macro: [ClassName]_SDAG_CODE

92

Structured Dagger

Declaration Syntax

The .ci file:

[mainchare, chare,array] MyFoo {
entry void method(/* parameters */){
// ... structured dagger code here ...
}s
/7 ...
}

The .cpp file:

class MyFoo : public CBase MyFoo {

MyFoo SDAG Code /* insert SDAG macro */
public:

MyFoo() { }
}s

93

Fibonacci with Structured Dagger

chare Fib {
entry Fib(int n, bool isRoot, CProxy Fib parent);
entry void calc(int n) {
if (n < THRESHOLD) serial { respond(seqFib(n)); }
else {
serial {
CProxy Fib::ckNew(n -1, false, thisProxy);
CProxy_ Fib::ckNew(n -2, false, thisProxy);
}
when response(int val)
when response(int val2)
serial { respond(val + val2); }

}
s

entry void response(int);

};

94

Fibonacci with Structured Dagger

#include " fib.decl.h"
#define THRESHOLD 10
class Main : public CBase_Main {

public:
Main(CkArgMsg*m) { CProxy_Fib::ckNew(atoi(m- >argv[1]), true, CProxy Fib()); }
}s5
class Fib : public CBase Fib {
public:

Fib_SDAG_CODE
CProxy_Fib parent; bool isRoot;
Fib(int n, bool isRoot_, CProxy Fib parent_):parent(parent_), isRoot(isRoot_)
{ calc(n); }
int seqFib(int n) { return (n < 2) ? n : seqFib(n -1) + seqFib(n -2); }
void respond(int val) {
if (!isRoot) {
parent.response(val);
thisProxy.ckDestroy();
} else {
CkPrintf(" Fibonacci number is: %d\n", val);
CKExit();
}
}
}s
#include " fib.def.h"

95

Structured Dagger

The when construct

- What 1s the sequence?

when myMethodl(int paraml, int param2) {
when myMethod2(bool param3),
myMethod3(int size, int arr[size]) /* sdag blockl */
when myMethod4(bool paramd) /* sdag block2 */

¥

« Sequence:
>Wait for myMethodl , upon arrival execute body of myMethodl
> Wait for myMethod2 and myMethod3 , upon arrival of both, execute /* sdag blockl */
> Wait for myMethod4 , upon arrival execute /* sdag block2 */

- Question: if myMethod4 arrives first what will happen?

96

Structured Dagger

The when construct

- The when clause can wait on a certain reference number

- If a reference number is specified for a when , the first parameter for the when must be the
reference number

- Semantic: the when will “block™ until a message arrives with that reference number

when method1[100](int ref, bool paraml)
/* sdag block */

serial {
proxy.method1(200, false); /* will not be delivered to the when */
proxy.method1(100, true); /* will be delivered to the when */

97

Structured Dagger

The 1 f-then-else construct

- The 1f-then-else construct:

»Same as the typical C if-then-else semantics and syntax

if (thisIndex.x == 10) {
when methodl[block](int ref, bool someVal) /* code blockl */
} else {

when method2(int payload) serial {
// ... some C++ code

}
}

98

Structured Dagger

The for construct

- The for construct:

»Defines a sequenced for loop (like a sequential C for loop)
»Once the body for the ith iteration completes, the i + 1 iteration is started

for (iter = 0; iter < maxIter; ++iter) {
when recvlLeft[iter](int num, int len, double data[len])
serial { computeKernel(LEFT, data); }
when recvRight[iter](int num, int len, double data[len])
serial { computeKernel(RIGHT, data); }

}

- 1ter must be defined in the class as a member

class Foo : public CBase Foo {
public: int iter;

s

99

Structured Dagger

The while construct

- The while construct:
»Defines a sequenced while loop (like a sequential C while loop)

while (i < numNeighbors) {
when recvData(int len, double data[len]) {
serial { /* do something */}
when methodl() /* blockl */
when method2() /* block2 */
}
serial { i++; }

¥

100

Structured Dagger

Theoverlap construct

By default, Structured Dagger defines a sequence that 1s followed sequentially
overlap allows multiple independent clauses to execute in any order

Any constructs in the body of an overlap can happen in any order

An overlap finishes in sequence when all the statements in it are executed
Syntax: overlap { /* sdag constructs */ }

V.V VY V V

What are the possible execution sequences?

serial { }

overlap {
serial { }
when entryMethod1[100](int ref_num, bool paraml)
when entryMethod2(char myChar)

}

serial { }

101

lllustration of a long “overlap”

Computation0

 Overlap can be used to get back some of the
asynchrony within a chare

»But it 1s constrained

»Makes for more disciplined programming,
* with fewer race conditions

102

Structured Dagger

The forall construct

- The forall construct:
»Has “do-all” semantics: iterations may execute an any order

»Syntax:
forall [<ident>] (<min> : <max>, <stride>) <body>

»The range from <min> to <max> is inclusive

forall [block] (© : numBlocks-1, 1) {
when methodl[block](int ref, bool someVal) /* code blockl */

}

- Assume block is declared in the class as public: 1nt block;

103

Stencil Codes

- [terative applications where array elements are updated according to some fixed
pattern.

 Used 1in computational simulations, solving partial differential equations, Jacobi
kernel, GaussSeidel method, image processing applications etc.

« Can be 2D or 3D

104

5-point Stencil

£10,0) Overall Grid X— Overlapped Image 2D Chare Array of Tiles

L) y

105

N

%
%

5-point Stencil

o

NS

%
®,
“

N

%
®,
%

106

start

5-point Stencil

Broadcast to Tile::startStep() ,
. exit
(if global-maximum-value-change > error-tolerance) Main Chare

reductionCallback()

North Ghost

contribute to reduction

=
-
9
2
b
S
g
Q
=
bS]
—
“v
S
©
S
o
aa]

Main Chare

Main()

107

Jacobi: .ci1 file

mainmodule jacobi2d {
mainchare Main {
entry Main(CkArgMsg *m);
entry void done(int iterations);
¥
array [2D] Jacobi {
entry Jacobi(CProxy Main);
entry void updateGhosts(int ref, int dir, int w, double ghl[w]);
entry [reductiontarget] void checkConverged(bool result);
entry void run() {
// ... main Lloop (next slide) ...
¥
}s
}s

108

Jacobi: .ci1 file

while (!converged) {

};

serial {
copyToBoundaries();
int x = thisIndex.x, y = thisIndex.y;
int bdX = blockDimX, bdY = blockDimY;
thisProxy(wrapX(x-1),y).updateGhosts(iter, RIGHT, bdY, rightGhost);
thisProxy(wrapX(x+1),y).updateGhosts(iter, LEFT, bdY, leftGhost);
thisProxy(x,wrapY(y-1)).updateGhosts(iter, TOP, bdX, topGhost);
thisProxy(x,wrapY(y+1)).updateGhosts(iter, BOTTOM, bdX, bottomGhost);
freeBoundaries();
s
for (remoteCount = ©; remoteCount < 4; remoteCount++)
when updateGhosts[iter](int ref, int dir, int w, double buf[w]) serial {
updateBoundary(dir, w, buf);
}
serial {
double error = computeKernel();
int conv = error < DELTA;
CkCallback cb(CkReductionTarget(Jacobi, checkConverged), thisProxy);
contribute(sizeof(int), &conv, CkReduction::logical and, cb);
}
when checkConverged(bool result)
if (result) serial { mainProxy.done(iter); converged = true; }
serial { ++iter; }

109

Jacobi: .c1 file (with asynchronous reductions)

entry void run() {
while (!converged) {
serial {
copyToBoundaries();
int x = thisIndex.x, y = thisIndex.y;
int bdX = blockDimX, bdY = blockDimY;

thisProxy(wrapX(x-1),y) .updateGhosts(iter, RIGHT, bdY, rightGhost);
thisProxy(wrapX(x+1),y).updateGhosts(iter, LEFT, bdY, leftGhost);
thisProxy(x,wrapY(y-1)).updateGhosts(iter, TOP, bdX, topGhost);

thisProxy(x,wrapY(y+1)).updateGhosts(iter, BOTTOM, bdX, bottomGhost);
freeBoundaries();
}
for (remoteCount = ©; remoteCount < 4; remoteCount++)
when updateGhosts[iter](int ref, int dir, int w, double buf[w]) serial {
updateBoundary(dir, w, buf);
}

serial {

double error = computeKernel();
int conv = error < DELTA;
if (iter % 5 == 1)

contribute(sizeof(int), &conv, CkReduction::logical and,

CkCallback(CkReductionTarget(Jacobi, checkConverged), thisProxy));

¥
if (++iter % 5 == 0)

when checkConverged(bool result)

if (result) serial { mainProxy.done(iter); converged = true; }

};

110

Example

» Consider the following problem:

> A large number of key-value pairs are distributed on several (hundred) processors (or chares)

» Each chare needs to get some subset of these values before they can proceed to the next phase of the
computation

> The set of keys needed are not known in advance: they are determined based on the input data

111

Structured dagger version

entry void retrieveValues {
for (i = 0; i < n; i++) serial {
keys[i] = // compute 1'th key;
keyValueProxy[keys[i] / B].requestValue(keys[i], thisProxy, 1i);
}

for (i = 0; i < n; i++)
when response(int i, ValueType value)
serial { values[i] = value; }
}s

// next phase of computation that uses the keys and values.

KeyValueClass: :requestValue(int key, CProxy Client c, int ref) {
ValueType v = localTable[key];
c.response(ref, v);

112

1)

2)
3)
4)

5)
6)

7)

Introduction
e Object Design
e Execution Model

Hello World
Benefits of Charm++

Charm++ Basics
* Object Collections

Overdecomposition
Migratability
* Checkpointing and Resilience

Structured Dagger

Outline

8)
9)
10)
11)
12)
13)

Application Design

Performance Tuning

Using Dynamic Load Balancing
Interoperability

Debugging

Further Optimization

113

~ e
4

R
g
" h

- Ground-breaking Nature article on the structure of the HIV capsid

114

Molecular Dynamics in NAMD

- Collection of charged atoms, with bonds
- Newtonian mechanics
- Relatively small amount of atoms (100K — 10M)

 Calculate forces on each atom
- Bonds
- Non-bonded: electrostatic and van der Waals

» Short-distance: every timestep
* Long-distance: using PME (3D FFT)
* Multiple Time Stepping : PME every 4 timesteps

- Calculate velocities and advance positions

- Challenge: femtosecond time-step, millions needed!
Collaboration with K. Schulten, R. Skeel, and coworkers

115

Object Based Parallelization for MD

Force Decomposition + Spatial Decomposition

*® & &
e
& b Do

i O =

- Now, we have many objects to load
balance:

- Each diamond can be assigned to any
proc.

« Number of diamonds (3D): 14*Number of
Patches

 2-away variation:
- Half-size cubes

« Communicate only with neighbors
* 5x 5 x5 interactions

 3-away interactions:
e 7X7x7

116

NAMD Parallelization Using Charm++

III

The computation is decomposed into “natural” objects of the application, which are

assigned to processors by Charm++ RTS

Patch Integration

M N N EXLRXN N N N

m \?int to Point

S PME

" Bonded {" Non-bonded] .’ '\\". ‘//' :’
=

‘ Computes ‘ ’ Computes

-

5. N
Reductions
ﬁint to Point

N N N EEEEEN N N N

Patch Integration

117

NAMD Projections

Time Profile Graph

Apo-Al, on BlueGene/L, 1024 procs

Charm++’s “Projections” Analysis tool

Time intervals on x axis, activity added across
processors on Y axis

[graph type |

() Line Graph @ Bar Graph) Area Graph [v] Stacked
x-scale ry-scale
[<< |X-Axis Scale: [1.0 | > H Reset \ ” << |Y-Axis Scale: [1.0 I >> Reset
| Select Entry Points ” Select New Range H Save Entry Colors H Load Entry Colors
>
Time

118

Percentage Utilization

Time Profile of ApoAl on Power7 PERCS

92,000 atom system, on 500+ nodes (16k cores)

Time Profile
°° 2ms total
753 A snapshot of optimization in progress.. Not the final result

15 7

10

S 1

o o,
19.482s 19.4822s 19.4824s 19.48286s 19.4828s 19.483s 19.4832s 19.4834s 19.48386s 19.4838s 19.484s
Time (0.002ms resolution)

Overlapped steps, as a result of asynchrony

119

Timeline of ApoAl on Power7 PERCS

230us

o Y
[0 10
o

120

ChaNGa: Parallel Gravity

Collaborative project (NSF)
with Tom Quinn, Univ. of Washington

Evolution of Universe and Galaxy Formation
Gravity, gas dynamics

Barnes-Hut tree codes
Oct tree is natural decomposition

Geometry has better aspect ratios, so you open up fewer
nodes

But is not used because it leads to bad load balance
Assumption: one-to-one map between sub-trees and PEs
Binary trees are considered better load balanced

With Charm++: Use Oct-Tree, and let Charm++ map
subtrees to processors

ChaNGa: Control Flow

TreePiece

Callback
(immediate if data
present locally)

Traversals

Request remote
node

T
L\

Send request message
to owner TreePiece if
data not present locally

122

Cloth Simulation: Disney Research

Collaboration between Rasmus and my student Xiang Ni

Asynchronous Contact Mechanics (ACM)

Collision detection ‘ Rollbacks with Penalty ~A | nternal
Forces Collision \ force
window

Penalty force
Broad Detection Fine-grained S that prevents

) : collisions

Charm++ Library App-level code Detection
No Collisions—~.Yes

; Wd penalty forces

Proceed to the and rollback
next window

v

Charm++ provides dynamic load
balancing and overlap

“Twister”

Cloth Simulation: Disney Research

Time(s)

Te+06

Te+05

Te+04

Te+03

1 1 L1 1 1 1 1
3 5 8 12 24 48 96 192 768

Number of Processors

—

Charm++ Time (Brickland) —@—
Charm++ Time (Edison) —&—
TBB Time (Brickland) —&—

OpenAtom: MD with quantum effects

« Much more fine-grained:

- Each electronic state is modeled with a
large array

* Collaboration with:
- G. Martyna (IBM) Semiconductor Surfaces

« M. Tuckerman (NYU)

« Using Charm++ virtualization, we
can efficiently scale small (32
molecule) systems to thousands of “
processors

Nanowires

125

OpenAtom: Decomposition and Computation Flow

________ > Reduction

—_——— Multicast

: . i Transpose
~ I

ol -
\\\ : : : : ’/,
SIS - | P el || -
AR] 3 8 I 1 P "
D - : < 7
U NN e : - RhoR
N :
~ Y
N n
S>T OQOoo .
oooo
0oog \
A\
AN N Gspace RealSpace
\ N
\ N
IX Non-Local
ooo
ooo
oog
Lambda _»H00O : : ~. RhoGHart Density
2 e Y ~S
i B - o~
\ S D R : 2 g \" ~<
o 7 N
" Transpose Pl
X - W\ -
‘ooog -~ W\ e //
oooo4 A\ - -
0000 \ PR
oooo s~ ~" Multicast
\\ 7
\\\‘—’ 7

126

Structured AMR miniApp

127

Structured AMR: State Machine

Required depth

Initial state >@ Coarsen

~.-—.
~
~

Decision d+2 / NXooa---

Received message —> Refine
Local error condition -------- > Coarsen,
Stay
Termination detection ———=>

128

Structured AMR: Performance

Advection Benchmark

Testbed: IBM BG/Q Mira First order method in 3d-space
Cray XK/6 Titan

~— INo Load Balancing g
== Distributed Load Balaneing
128f - - Ideal 5

Steps per second

48 4006 8192 16384 32768 65536 131072
Number of Cores 129

1)

2)
3)
4)

5)
6)

7)

Introduction
e Object Design
e Execution Model

Hello World
Benefits of Charm++

Charm++ Basics
* Object Collections

Overdecomposition
Migratability

* Checkpointing and Resilience

Structured Dagger

Outline

8)
9)
10)
11)
12)
13)

Application Design
Performance Tuning

Using Dynamic Load Balancing
Interoperability

Debugging

Further Optimization

130

Performance Analysis Using Projections

 Instrumentation and measurement
« Link program with -tracemode projections OR summary
 Trace data is generated automatically during run
« User events can be easily inserted as needed

 Projections: visualization and analysis
« Scalable tool to analyze up to 300,000 log files
« Arich set of tool features: time profile, time lines, usage profile, histogram, extrema tool
- Detect performance problems: load imbalance, grain size, communication bottleneck, etc

131

Using Projections

- Aggregated performance viewing tools
« Time profile
« Histogram
« Communication over time

 Processor level granularity tools

« Overview

« Timeline

- Derived/processed data tools
- Extrema analysis: identifies outliers
« Noise miner: highlights probable interference

132

Problem Identification

- Load imbalance
« Time profile: lower CPU usage
« Extrema analysis tool:
* Least idle processors
 Load the over-loaded processors in Timeline
» Histogram: grain size issues

133

Using Projections

- Example Demonstration
 Trying to identify the next performance obstacle for NAMD
* Running on 8192 processors, with 1 million atom simulation
 Jaguar Cray XK6
» Test scenario: with PME every step

134

Time Profile

Time Profile

100 7

50 7

Percentage Utilization

0 —
10.695% 10.7025s 10.71s
Time {0.015ms resolution)

135

Utilization Percentage

Extrema Tool for Least Idle Processors

Extrema: Least Idle Time (20 Extrema PEs)

100

wn
o

o
l

Aug 112 2513 5320 209
Notable PEs (Cluster Representatives and Extrema)

136

PEO
(6 3
PE 1345
(87, 84)
PE 1385
(86, 83)
PE 203
(85, 82)
PE 825
(34, 81)
PE 2632
(84, 20)
PE 1927
(67, 58)
PE 579
(62, 56)
PE 6957
(53, 48)
PE 603
(61, S6)
PE 2623
(58, 50
PE 2706
(67, 64)
PE 2607
(53, 44)
PE 7003
(61, 55)
PE 4157
(77.72)
PE 2714
(61, 58)

Timeline with Message Back Tracing

Tirne In Microseconds
10,635,000 10, 696 000 10,697,000 10,632,000 10,633,000 10,700,000 10,701,000 10, 702 000 10,703,000 10,704,000 10,705,000 10,706,000 10,707,000 10,702,000 10,703,000 10,710,000
! Il } Il } Il | } Il } | } | |

L Y A R T R | TR TR T
rmﬁ-hﬂ-—“m !

e n ne ey TR o e e i e B e e N ———
S TP [.m D ———
) ————— (O A, el [) 1 ——_—
W ST p—— e |y ————_——
/e —— - g i | - v:/-j | p———
Wiﬂm ::ru il t%t gt e e A
/1 i [ﬁ“ﬂt ;: ,l gl o | ————

g [y it

O W pepee—— o 11 1|
| iy 1 o s
o, oo o | e
L —————— ||) pe———

137

Messages Received Externally

Communication over Time for all Processors

2K 7
1.5K 7
1000

500 7

0 -
10.695s

10.6965s

Received External Messages Over Time

10.698s

10.6995s

L 1yl . SGesst ,,
Y i B e e B
vty o 5 Mem fne '

Lo N PP

10.701s 10.7025s 10.704s 10.7055s 10.707s 10.7085s 10.71s
Time (0.015ms resolution)

138

1)

2)
3)
4)

5)
6)

7)

Introduction
e Object Design
e Execution Model

Hello World
Benefits of Charm++

Charm++ Basics
* Object Collections

Overdecomposition
Migratability

* Checkpointing and Resilience

Structured Dagger

Outline

8) Application Design

9) Performance Tuning

10) Using Dynamic Load Balancing
11) Interoperability

12) Debugging

13) Further Optimization

139

Measurement Based Load Balancing

* Principle of persistence: In many CSE applications, computational loads and
communication patterns tend to persist, even in dynamic computations

- Therefore, recent past is a good predictor of near future
- Charm++ provides a suite of load-balancers
- Periodic measurement and migration of objects

140

Typical Load Balancing Steps

Regular
Timesteps

Time

Code to Use Load Balancing

* Write PUP method to serialize the
state of a chare

* [nsert
1f(myLBStep) AtSync(Q);
and call at a natural barrier

- Implement

ResumeFromSync ()
to resume execution

- Typical ResumeFromSync contribute
to a reduction

* link a LB module
- -module <strategy>

- RefinelB, NeighborLB,
GreedyCommLB, others

- EveryLB will include all load balancing
strategies
- compile time option (specify
default balancer)
- -pbalancer RefinelLB
- runtime option
- +balancer RefinelLB

142

while (!converged) {

serial {
int x = thisIndex.x, y = thisIndex.y, z = thisIndex.z;
copyToBoundaries();
thisProxy(wrapX(x - 1), y, z).updateGhosts(i, RIGHT, dimY, dimZ, right);
/* ...similar calls to send the 6 boundaries... */

thisProxy(x, y, wrapZ(z + 1)).updateGhosts(i, FRONT, dimX, dimY, front);
}
for (remoteCount = 0; remoteCount < 6; remoteCount++) {
when updateGhosts[i](int i, int d, int w, int h, double b[w*h])
serial { updateBoundary(d, w, h, b); }

} Example: Stencil

serial {
int ¢ = computeKernel() < DELTA;
CkCallback cb(CkReductionTarget(Jacobi, checkConverged), thisProxy);
if (i % 5 == 1) contribute(sizeof(int), &c, CkReduction::logical and, cb);

if (++1 % 5 == 0) {
when checkConverged(bool result) serial {
if (result) { mainProxy.done(); converged = true; }

143

while (!converged) {

serial {
int x = thisIndex.x, y = thisIndex.y, z = thisIndex.z;
copyToBoundaries();
thisProxy(wrapX(x - 1), y, z).updateGhosts(i, RIGHT, dimY, dimZ, right);
/* ...similar calls to send the 6 boundaries... */

thisProxy(x, y, wrapZ(z + 1)).updateGhosts(i, FRONT, dimX, dimY, front);
}
for (remoteCount = 0; remoteCount < 6; remoteCount++) {
when updateGhosts[i](int i, int d, int w, int h, double b[w*h])
serial { updateBoundary(d, w, h, b); }

} Example: Stencil

serial {
int ¢ = computeKernel() < DELTA;
CkCallback cb(CkReductionTarget(Jacobi, checkConverged), thisProxy);
if (i % 5 == 1) contribute(sizeof(int), &c, CkReduction::logical and, cb);

¥

~if (i % 1lbPeriod == @) { serial { AtSync(); } when ResumeFromSync() {} }
if (++1 % 5 == 0) {
when checkConverged(bool result) serial {
if (result) { mainProxy.done(); converged = true; }

144

Golden Rule of Load Balancing

Fallacy: objective of load balancing is to minimize variance in load across processors

Example:

« 50,000 tasks of equal size, 500 processors:
* A: All processors get 99, except last 5 gets 100 + 99 = 199
* OR, B: All processors have 101, except last 5 get 1

Identical variance, but situation A is much worse!

Golden Rule: It is ok if a few processors idle, but avoid having processors that are
overloaded with work

Finish time = max(Time on processor i)
excepting data dependence and communication overhead issues
The speed of any group is the speed of slowest member of that group.

145

Crack Propagation

o e

Decomposition into 16 chunks (left) and 128 chunks, 8 for each PE (right). The middle area contains
cohesive elements. Both decompositions obtained using Metis. Pictures: S. Breitenfeld and P. Geubelle
As computation progresses, crack propagates, and new elements are added, leading to more complex
computations in some chunks

146

Number of lterations Per second

Load Balancing Crack Propagation

milements

50 Added 3. Chunks

45 - }A Migrated
.-/—HM"

40 -
35 A
30 A
25
20 A
15 -
10 -
5 A
0+ T T T T T T T T T T T T T T T T

T T
~ (o] () © ~ (€] ~ O ~ O ~ (o) O (€]
~ AN o ™ <t <t O O (o] O N~ 0

Iteration Number

2. Load
Balancer
Invoked

~ b A ~ ~
~ (@ M~ 0 D

147

MetaBalancer - When and how to load balance?

- Difficult to find the optimum load balancing period
- Depends on the application characteristics
- Depends on the machine the application is run on

- Monitors the application continuously and predicts behavior.
- Decides when to invoke which load balancer.
« Command line argument - +MetalB

148

Fractography with No Load Balancing

Utilization Graph (Summary)

- Large variation in processor utilization
- Low utilization leading to resource wastage

149

Metabalancer Utilization Graph for Fractography

1)

2)
3)
4)

5)
6)

7)

Introduction
e Object Design
e Execution Model

Hello World
Benefits of Charm++

Charm++ Basics
* Object Collections

Overdecomposition
Migratability

* Checkpointing and Resilience

Structured Dagger

Outline

Application Design
Performance Tuning

Using Dynamic Load Balancing
Interoperability

Debugging

Further Optimization

Adaptive MPI

« MPIl implemented on top of Charm++

« Each MPI process implemented as a user-level thread embedded in a chare

- Overdecompose to obtain communication-computation overlap between threads
 Supports migration, load balancing, fault tolerance and other Charm++ functionality
- Use cases - Rocstar, BRAMS, NPB, Lulesh, XPACC, etc

* Build with AMPI as target and compile using ampi* compilers

./build AMPI net-linux-x86 64 --with-production --enable-tracing -j8

ampiCC myAMPIlpgm.C -o myAMPIlpgm

152

Charm++ - MPI Interoperability

« Any library written in Charm++ can be called from MPI
« Charm++ resides in the same memory space as the MPI program

- Control transfer between MPI and Charm++ analogous to the control transfer
between a program and an external library being used by the program

153

P(N-1) P(N)

NN] NN
T I EENNNNNNN\\

NN I OW |
QNN]] SO &

) PE

(c) Combined Sharing

Vs “

O (

M o |) 3 |] | B2
£ —_
S Ol | I I] 2
(@) a

> 2 :

.k|U B U OUUCCCNRNNNNNNNES
_

(q0)

.

Q)

Op NN i NN\ — =
£ —

L NN NN\ i | N i [

Q 2 :
o s

._m N i o NN o [
T

— OO i NN\
_

-

Time

27 MPI Control
L—_' Charm++ Control

154

Example Code Flow

MPI Init(argc,argv); // initialize MPI
// Do MPI related work here

// Create comm to be used by Charm++
MPI Comm _split(MPI_COMM WORLD, myRank % 2, myRank, newComm);
CharmLibInit(newComm,argc,argv) // Initialize Charm++ over my communicator

if (myRank % 2)

StartHello(); // invoke Charm++ Library on one set
else

// do MPI workR on other set

kNeighbor(); // Invoke Charm++ Library on both sets individually
CharmLibExit(); // Destroy Charm++

155

Enabling Interoperability

- Add interface functions that can be called from MPI, and triggers Charm++ RTS

void StartHello(int elems)
if (CkMyPe() == 0) {
CProxy MainHello mainhello =
CProxy MainHello: :ckNew(elems);

}
StartCharmScheduler();

}

« Use CkExit to return the control back to MPI
* Include mpi-interoperate.h in MPl and Charm++ code

156

1)

2)
3)
4)

5)
6)

7)

Introduction
e Object Design
e Execution Model

Hello World
Benefits of Charm++

Charm++ Basics
* Object Collections

Overdecomposition
Migratability

* Checkpointing and Resilience

Structured Dagger

Outline

8) Application Design

9) Performance Tuning

10) Using Dynamic Load Balancing
11) Interoperability

12) Debugging

13) Further Optimization

157

Debugging Parallel Applications

- It can be very difficult
 The typical “printf” strategy may be insufficient
- Using gdb

 Very easy with Charm++!

« Just run the application with the ++debug command line parameter and a gdb window for each PE
will open through X (and can be forwarded)

* Not very scalable
- We have developed a scalable tool for debugging Charm++ applications
« It’s interactive
- Allows you to change message order to find bugs!
« “What-if” scenarios can be explored using provisional message delivery
- Memory can be tracked to find memory leaks

158

B charm Parallel Debugger

File Action

CharmDebug

Set Break Points

] User 2m
o (g Mmain
¢ EHello

Hello(CkAhigrater

en ry \ Hellotvord)

v SayHi@nt hiNo)

methods T

o I HelloChare
o [Secondarray

4 i

View Entities on PE

Control Buttons

Program Output

Step l Continye

Freeze

Start GDB

Messages in Queue

Cntities

Hello:SayHidnt hiNo)

HelloChare=SayHi(int hiNa)

Detalls

Sender processor: 0

Blze: 16
User date data= hiNo= 2/,

Desunation: HellozSayHIGnt hiNo) aype 16)

Frozen processer O

processor
subsets

159

Additional features

- Quiescence detection

- Map objects for explicit initial placement of chare array elements
* Messages

» Groups

* Node-Groups

- Entry Method Attributes

- Threaded Methods, futures, sync methods...

« Sections

« Writing your own dynamic load balancers

160

Quiesence Detection

- What if determining global termination of an application is difficult?
- Mechanism to detect completion - Quiesence!
- From any chare, invoke
CkStartQD(CkCallback(Ckindex Main::finished(), mainProxy));
* Runs in background, waits for all outstanding messages to be consumed.
- Invokes the callback when quiesence is detected.

161

Controlling Placement: Map Objects

 In some applications, load patterns don’t change much as computation progresses
* You, the programmer, may want to control which chare lives on which processors

« This is also true when load may evolve over time, but you want to control initial placement of
chares

- The feature in Charm++ for this purpose is called Map Objects

162

Messages

- Avoids extra copy

- Can be custom packed

- Reusable

« Useful for transfer of complex data structures

- |t provides explicit control for the application over allocation, reuse, and scope
- Encapsulates variable size quantities

- Execution order of messages in the queue can be prioritized

163

Groups

- Like a chare-array with one chare per PE
- Encapsulate processor local data

- May access the local member as a regular C++ object
* In .cifile,

group ExampleGroup {

}s

// Interface specifications as for normal chares
// For 1instance, the constructor ...

entry ExampleGroup(parametersl);

// ... and an entry method

entry void someEntryMethod(parameters2);

« No difference in .h and .C file definitions

164

Node Groups

A chare-array with one chare per node
* In non-smp mode groups and node groups are same

- No difference in .h and .C
 Creation and usage same as others
- An entry method on a node-group member may be executed on any PE of the node

 Concurrent execution of two entry methods of a node-group member may happen
- Use [exclusive] forentry methods which are unsuitable for reentrance safety

165

Customizing Entry Method Attributes

threaded executed using separate thread
- each thread has a stack, and may be suspended, for sync methods or futures
- to set stacks size use +stacksize < size in bytes >

Sync - returns a value
1n11ne entry method invoked immediately if destination chare on same PE

+ blocking call

reductiontarget target of an array reduction
- Takes parameter marshaled arguments

notrace not traced for projections

166

Customizing Entry Methods

expedited entry method skips the priority-based message queue in Charm++
runtime

nokeep message belongs to Charm
exc lusive mutual exclusion on execution of entry methods on node-groups
python can be called from python scripts

167

Sections

* |t is often convenient to define subcollections of elements within a chare array
- Example: rows or columns of a 2D chare array

« One may wish to perform collective operations on the subcollection
(e.g. broadcast, reduction)

- Sections are the standard subcollection construct in Charm++

CProxySection_Hello proxy =
CProxySection Hello::ckNew(helloArrayID, 06, 9, 1, 0, 19, 2, 0, 29, 2);

168

Threaded methods

- Any method that calls a sync method must be able to suspend:
- Needs to be declared as a threaded method
« A threaded method of a chare C
* Can suspend, without blocking the processor
» Other chares can then be executed
» Even other methods of chare C can be executed

- Low level thread operations for advanced users:
- CthThread CthSelf()
- CthAwaken(CthThread t)
. CthYield()
- CthSuspend()

169

SynC methods

« Synchronous as opposed to asynchronous
« They return a value - always a message type
« Other than that, just like any other entry method:

In the interface file:

entry [sync] MsgData *f(double A[2*m], int m);

In the C++ file:

MsgData *f(double X[], int size) {
m = new MsgData(..);

return m;

}

170

Customized Load Balancers

- Statistics collected by Charm

struct LDStats { // load balancing database
ProcStats *procs; // statistics of PEs
int count;
int n_objs;
int n_migrateobjs;
LDObjData *objData; // info regarding chares
int n_comm;
LDCommData *commData; // communication information
int *from_proc, *to_proc; // residence of chares

¥

« Use LDStats, ProcArray and ObjGraph for processor load and communication statistics
« work is the function invoked by Charm RTS to perform load balancing

171

Conclusion

e Charm++ is a production-ready parallel programming system
« Program mostly in C++

« Very powerful runtime system
« Dynamic load balancing
- Automatic overlap of computation and communication

- Fault tolerance built in

- Topics we did not cover:
- Many different types of load balancers
Threaded methods in detail
Futures
Accelerator support
Topology aware communication strategies

- More information on http://charm.cs.illinois.edu/

172

