Directive-Based Parallel
Programming at Scale?

Barbara Chapman
Stony Brook University
Brookhaven National Laboratory

Charm++ Workshop, April 19 2016

/=\HPC

CQ / TOOLS
4 igcs lNSTITU_T]_E»FORADVANCED
COMPUTATIONAL SCIENCE

http://www.cs.uh.edu/~hpctools

Agenda

* Directives: A little (pre)history
* Evolving the standard

* Today’s challenges

* Where to next?

Symmetric Multiprocessors

1980s saw attempts to build
parallel computers with
shared memory

— Alliant
— Sequent
— Encore, ...

Programmed using Fortran
— Vendor extensions, mainly
to parallelize loops

Attempt to develop standard
API

— PCF features for loop
parallelism in Fortran code

— Fortran standards
subcommittee formed

CWNE RO W el B I & DA RN B DS R PN A

. 2)

BBN Butterfly

Every CPU able to access memory
associated with other CPUs

IHCS INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Bigpenalty fornon-local access

15 times slower than local memory access

PCF Example

PARALLEL SECTIONS
SECTION
PARALLEL DO I=i, N
A(l) = B(1) * C(1)
END DO
SECTION
PARALLEL DO J = i, M
D(J) = F(J) / E(J)
END DO
END PARALLEL SECTIONS

°
Iﬂ' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

A New Kind of Architecture, Late ‘80s

°
(Q IH‘ S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

CM-5 TOP500 #1 June 1993

‘ g > °
IH‘ S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

sing The Compute Power

1978

1991

°
(Q IH‘ S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

High Performance Fortran (HPF)

* Directives extend Fortran for distributed memory
parallel programming

— First definition early 1993, revision 1997
— Japanese created additional features in JA-HPF

* Main features are directives for data mapping and
parallel loops

— Work performed where the data is stored
— Some library routines

* Broad participation in standards effort

‘ Ei) °
Iﬂ' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

H PF Example Parallel Do

Forall
Independent

IHPF$ DISTRIBUTE W (BLOCK)
IHPF$ INDEPENDENT, NEW (X), REDUCTION (SUM)

DOI=1,N
X = W()* (I - 0.5)
SUM = SUM + F (X))

END DO

What Happened to HPF?

Compilers slow to arrive, and supported different
styles of HPF programming

— Based upon Fortran 90, also slow to mature

Considered suitable for structured (regular) grids
only

MPI flexible and established by the time HPF
compilers matured

— Codified experience with early comms libraries

Japanese vendors continued to add features and
provide compilers after others gave up

HPF User Experience

* HPF application development was hard
— Required global modifications
— incremental development not possible
e Users had little insight into execution behavior

— Creation of good HPF code required insight into
compilation process

— But this was rare
— Performance degradation could be severe

* Benefits of directive approach neither experienced
nor understood by many

* Not surprisingly, few tools available (HPF version of
Totalview was created)

MP| Becomes Widely Used

User distributes the
data and computation
explicitly to system
processing nodes.

Message Passing Library

‘ g) °
\ IH‘ S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Example simulation for a packaged Refrigerator

Return of Shared Memory

 SMPs on desktop, late 1990s (HP, Sun, Intel, IBM, ...
— Mainstream market, general-purpose applications
— Mostly 2 — 4 cache coherent CPUs
— A few bigger systems e.g. Sun’s 6400 (144 CPUS)

e Large-scale distributed shared memory (DSMs) sun Fire 6800

. Memory is distributed, but globally addressed Ve 2* &Y

— E.g. HP Exemplar, SGI Origin and Altix series
— Looks like shared memory system to user

— Hardware supports cache coherency

— Origin: non-local data twice as slow

OpenMP Example

ISOMP PARALLEL DO PRIVATE (X), SHARED (W)
ISOMP& REDUCTION (+: SUM)
DOI=1,N
X = W(I) * (I - 0.5)
SUM = SUM + F (X))
END DO
ISOMP END PARALLEL

Agenda

* Evolving the standard

‘ g) °
IH' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Cart3D OpenMP Scaling, ca. 2005

4.7 M cell mesh Space Shuttle Launch Vehicle example

I T T T

256 [- — 4 512
B MPI timing
-] OpenMP timing >
128 - @
° A-A MPI speedup S
g #-% OpenMP speedup 1 256
. OB
k)
3 3
<Ein cart3ap 1283
2 Altix 3700BX2 o
o 16 (7]
g - 64
o u
g °
X
| [|l:|: i
2
32 64 128 256 474
Number of CPUs

= OpenMP version uses same domain decomposition strategy as MPI for data
locality, avoiding false sharing and fine-grained remote data access

penMP version slightly outperforms MPI version on SGI Altix 3700BX2, both
y ¢ gl

INSTITUTE FOR ADV/

nearscaling.

Data Mapping and Affinity
Proposed OpenMP Extensions, 1999

* SGI page-based data distribution extensions
— Allocates pages to memory across system nodes
— Preserves illusion of true shared memory

 HPF-style data mappings
— Didn’t do well on page-based system

— SGI, Compag

“first-touch” default mapping
works pretty well (if
developer is aware of it)

‘ gi) °
Iﬂ' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

ISSGI DISTRIBUTE array (CYCLIC (1))
ISOMP PARALLEL DO PRIVATE (i, active)
ISOMP& SHARED (level)
ISSGI+ AFFINITY (i) = DATA (array (i))
DOi=1, max
IF(array (i) >=1)then
active =
CALL solve (active, level, ...)
END IF
END DO

Omni Compiler: Cluster-enabled
OpenMP, 2002

* OpenMP for a cluster (distributed memory system)

— message passing library (MPI, PVM) provides high performance, but
difficult and cumbersome.

e Use software distributed shared memory system SCASH as
underlying runtime system on cluster
— Page-based DSM

— Related Work: OpenMP compiler for TreadMarks by Rice (later clOMP)

13 7
¢ shmem memory model

¢ OpenMP * All variables declared statically in
o All variables are global scope are private.
shared as defaults. ¢ The shared address space must be
+ No explicit shared ‘ allocated by a library function at
memory allocation runtime.)
¢ Example: SCASH, Unix “shmem”
system call

5 Omni OpenMP Compiler

°
Iﬂ' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

OpenMP 3.0 Introduces Tasks, 2008

« Tasks explicitly created and processed

o Each encountering
thread packages a
new instance of a
task (code and
data)

o Some thread in the
team executes the
task

#pragma omp parallel
{
#pragma omp single

{

p = listhead ;

while (p) {
#pragma omp task

process (p)
p=next (p) ;
}
}
}

Asynchronous Task Dependence

* Increase power of tasks, reduce

. . . int fib(int n
barrier synchronization S

intx,vy;
if (n < 2) return n;

* Task synchronization constructs else {

— taskwait, and barrier construct #prziTa c;mp task shared(x)
x = fib(n-1);

#pragma omp task shared(y)
y = fib(n-2);

#pragma omp taskwait
return x +vy;

}
}

#pragma omp task depend (out: t1, t2, ...) depend (in: t4, t5)
* Avoid the use of global locks
Work witl | i

* Decentralized dependency setup and resolution 20

Eliminating Global Barriers in
Smith-Waterman

Performance in seconds for sequence size 4096 with chunk size 320

T Intel ——

R GNU -3¢

10 [5 OpenUH-without ext -

OpenUH-with-ext-V1 -3

OpenUH-with-ext-V2 ----

g 8 S SUN-Oracle

g PGl @~

§ OmpSs -
(%)
£
(0]
£
'—

Number of Threads

Threads | OpenUH_ext | OmpSs | Quark
2 1.045 52.251 2.639
4 0.511 50.640 2.278
8 0.480 48.645 2.081

16 0.669 2.395

A Prototype Implementation of OpenMP Task Dependency Support; Priyanka Ghosh, Yonghong Yan,
J Deepak Eachempati and Barbara Chapman; International Workshop on OpenMP (IWOMP) 2013 21
SCIENCE

Core Heterogeneity in HPC Systems

Compute
Nodes Compute Nodes
with GPUs

Each node has multiple CPU cores, and some of the nodes are equipped
with additional computational accelerators, such as GPUs.

www.olcf.ornl.gov/wp-content/uploads/.../Exascale-ASCR-Analysis.pdf

°
$; IQCS INSTITUTE FOR ADVANCED
\ COMPUTATIONAL SCIENCE

OpenACC

Directive-based programming for CPU
offloading code to accelerators ...

— For Fortran, C, C++

— Loop-based computations ...

Compute directives

GPU

Your original code,,,.. . crr

SAN T

— parallel: control to the user

— kernels: freedom to the compiler Program myscience
) ... serial code ...
Three levels of parallelism: gang, 15;;;?,_5.;5.2?
worker and vector | doi = 1.n2 int
Open-source and proprietary ... parallel code ...
implementations eggdo
. . . enaao

OpenACC Validation Suite ISacc end parellel 16op

— C and Fortran validation for End Program myscience

OpenACC 2.0

SPEC Accelerator Benchmarks
http://www.openacc-standard.org/

°
@ IR‘ S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Agenda

* Today’s challenges

‘ g) °
IH‘ S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

OpenACC Compiler Translation

Need to achieve coalesced memory access on GPUs

#pragma acc loop gang(2) vector (2)
for (i = x1; i < X1; i++) {
#pragma acc loop gang(3) vector (4)
for (j = yi1; j < Y1; j++) {...... }
}

= : : 1000 ‘
=~ - Map2_1 Map3_1 :
o v 30 FMap2 2 woosd] Map3_2 5666551
P:l(?ikf(ao.'.(.)) Map2_ 3w Map3_3
j0.12,... 28 ~Map2 4 KX i
Grid) 100 | |
rid 2% L |
block(1,0)
:2,6,10,... _ 24 _ _
j:0,12,... w 0
v - B [} L J
£ 22 £ 10
F ool] F
! 1 . o . 3 .|
16 |- . i IR g R
b KX o i o1 i i
Jacobi DGEMM Gaussblur Stencil Laplacian Wavel3pt
Benchmark Benchmark
Double nested loop mapping. Triple nested loop mapping.

Compiling a High-level Directive-Based Programming Model for GPGPUs; Xiaonan Tian, Rengan Xu, Yonghong Yan,
Zhifeng Yun, Sunita Chandrasekaran, and Barbara Chapman; 26th International Workshop on Languages and Compilers for
Parallel Computing (LCPC2013)

OpenMP for Accelerators

#pragma omp target data device (gpu0) map(to:n, m, omega, ax, ay, b, \
f[0:n][0:m]) map(tofrom:u[0:n][0:m]) map(alloc:uold[0:n][0:m])

while ((k<=mits)&&(error>tol))
{

Il a loop copying ul][] to uold[][] is omitted here

#pragma omp target device(gpu0)

#pragma omp parallel for private(resid,j,i) reduction(+:error)

for (i=1;i<(n-1);i++)
for (j=1;j<(m-1);j++)
{
resid = (ax*(uold(i-1][j] + uold[i+1][j])\

+ ay*(uold[iJ[-1] + uold[il[i+1])+ b * uoldfil[] - fili])/b:;

ui][j] = uold[i][j] - omega * resid;
error = error + resid*resid ;
} I/ rest of the code omitted ...

}

100

920

80

70

60

50

40

30

20

10

0

target

Copy in

remote dat

- -
Copy out

Jacobi Execution Time (s)

q
. .

v

Tasks acc. cores

ffloaded to

—+—first version / /
target-dat: / /
——Loop collapse using linearization with static-even scheduling / /
—#—Loop collapse using 2-D mapping (16x16 block) /
Loop collapse using 2-D mapping (8x32 block) /
Loop collapse using linearization with round-robin sched}i(g /
128x128 256x256 512x512 1024x1024 2048x2048

Matrix size (float)

Early Experiences With The OpenMP Accelerator Model; Chunhua Liao, Yonghong Yan, Bronis R. de Supinski, Daniel J.
Quinlan and Barbara Chapman; International Workshop on OpenMP (IWOMP) 2013, September 2013

Dynamic Program Adaptation

e OpenMP fairly amenable to
dynamic adaptation

« Adjustment of thread count, SreEitil? BrasiE OPe"ti": Runtime
schedule (object code) rary

* Adaptive barriers, reduction
routines

* Runtime decisions
* Tasks, mergeable
 Use of performance interface
to inform dynamic tools

e (Can help adjust data layout,
find memory performance

problems
* Potential useful for variety of Performance Tool

runtime techniques

executable (./a.out)

request
events

‘ g) °
IH‘ S INSTITUTE FOR ADVANCED
I

COMPUTATIONAL SCIENCE

False Sharing: Monitoring Results

« Cache line invalidation measurements

m

histogram
kmeans
linear_regression
matrix_multiply
pca
reverse_index
string_match

word_count

383

9
31,139
44,517
4,284
82
4,877

7,820,000
28,590
417,225,000
31,152
46,757
89,466
82,503,000
6,531,793

IHCS INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

16,532,800
47,541
254,442,000
84,227
80,373
217,884
73,178,800
18,071,086

5,959,190
54,345
154,970,000
101,094
122,288
590,013
221,882,000
68,801,742

False Sharing: Data Analysis Results

* Determining the variables that cause misses

Global/static data Dynamic data

histogram main_221

linear_regression - main_155

reverse_index use len main_519

string_match key2_final string_match_map_26
6

word_count length, use_len, -

words

Runtime False Sharing Detection

Original Version Optimized Version
B 1-thread ™ 2-threads B 1-thread ™ 2-threads
®4-threads " 8-threads 4-threads " 8-threads
8 8
° 2°
'§-4 §4
n2 2
ool il o .- dl il ol o
S g & & RS e & &
<§‘§(\ & & & O @0‘(\ S & &
O7 14 % RN Q7 %
& O PN T 3 O @O &
o < % O O O Q % O O
(5\> KQA ‘%6 $ (b\> KQ)A %\g S
< <
N\ ©
CQ B. Wicaksono, M. Tolubaeva and B. Chapman. "Detecting false sharing in OpenMP
IAC applications using the DARWIN framework”, LCPC 2011

Energy Management Tools

OpenMP runtime settings
can be adjusted statically
and dynamically for best
performance

— Number of threads,
scheduling policy and chunk
size, wait policy, binding
policy, may all affect
performance

Selections are not

independent of power cap

Modeling may help select
settings to optimize both
energy and execution
performance

%Improvement

Improvement on Best Configuration compared to default

10 - M
S | T |
F

0 ‘ _[_l || O ‘

S5 10 t £ b 2] |
101 g e p i
15 - 3
-20 §)
-25 - Different Aspects

B 55w ® 70w LI85W [C100W LI115W

%-age improvement in Co-MD application
under different power capping

IHCS INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Agenda

e Where to next?

‘ g > °
IH‘ S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

SW

& Launch

/E

Memory Will Change

Machines + Disk arrays

Se

101001010

Inte

00 Q0
PCB

Chassis w/ large DDR+NYM per Exa-machine

Boards w/ limited DDR+NVM per Chassis

Sockets w/ IPM per Board

|

Dies w/ shared LL$/SPAD per socket
[\

Blocks w/ shared L2 per die
1

Cores per block

LLS
L2S
L1S

ALU

>
—
=]

LLS
L2$

!
! L
: o
[

[
i
i
i
i
1
i
i
1
i
i
i
i
1
i
L

(0L)o

(00})0

i
i
i
1
i
i
i
i
1
i
i
1
i
i
i
i
1
i
L

(1)o

(1)o

Pool
NV
M
DDR
NV
M
DDR
IPM

‘ g > °
IH' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

So Will Integration of Accelerators

HCA, CAPI, GPU interconnect

Programmability
Diversity

POWER CPU

A Layered Programming Approach

— Computational Climate Astrophvsics
Applications Chemistry Research Phy
New kinds " . . :
of info DSLs, other means for application scientists to provide information
Yy VN
- Adapted versions of today’s portable parallel programming APIs (MPI,
Familiar OpenMP, PGAS, Charm++)
y VN
Custom Maybe some non-portable low-level APIs (threads, CUDA, Verilog)
\ \ 4 \
Ivef/gl o Machine code, device-level interoperability stds, powerful runtime
Heterogeneous s s e L
Hardware e

e

More Dynamic Execution?

Empowering the RTS

Adaptive
Runtime System

) - .' -l y T
A1 B woccion e
- Asynchrony Overdecomposition Migratability

™ + The Adaptive RTS can

- Dynamically balance losds

Adaptive Framework

Run-time System
ARMI Communication = Scheduler Executor’ Performance
Library

- Optimize communication Pthreads, OpenMP, MPI, Native, ...
v S & o L

Gread over time e Ot e . T
= o . —— Pr——— Automatic latency twolerance Application Analytics / Graph Processing JCompuudondem/Slm\hlbn ntecfoce
A s et S e S - Preferch data with almost perfect vvcdln:mm’;y“ : T) [' to Users

e —— o A SHMEM Chapel Kokkos* |OpenMP MPI

Runtime Portals* QTHREADS* Portals® | scofoble
............... et ParolNe!

os Kitten Lightweight Kermel* or Linux OS Runtime (SPR)

Architecture | Adv. Arch. Testbeds SST Simalator* | Ligacy WW | Future ASC Systems

 What will the runtime (RT) environment look like? How
dynamic will it be?

* Role of runtime system? Relationship between RT and OS,
programming models? How is information exchanged?

Performance less predictable in dynamic

3iAce execution environment

OpenMP in an Exascale World

OpenX: prototype software
stack for Exascale systems

— HPXis runtime system
— Lightweight threads
— Thread migration for load
balancing, throughput.
Translating OpenMP -> HPX

— Maps OpenMP task and
data parallelism onto HPX

— Exploit data flow execution
capabilities at scale

— Big increase in throughput
for fine-grained tasks

Migration path for OpenMP
applications

XPRESS Migration Stack

MPI/OpenMP Application

OpenMP compiler

MPI OpenMP Thin Runtime

Glue

HPX

Legacy
stack

OpenX

OpenMP over HPX (on-going work)

Execution model: dynamic adaptive resource management;

message-driven computation; efficient synchronization; global name
space; task scheduling

OpenMP translation:

No direct interface to OS 90 . LU Run Time on 40 Threads, size = 8192
threads ¥
No tied tasks Azz e /
Threadprivate tricky, slow gSO —e—tpx g
Doesn’t support places L
OpenMP task dependencies =,
via futures -
HPX locks faster than OS 10
locks 0

512 341 256 228 171 128 114 85 64
Block Size

IH' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

Synchronization in OpenMP Execution

5 6 C1 c2 c3 c4
C1 C2 C3 C4
co C10 c7 Cc8
C5 C6 C7 C8
C13 C14 C11 C12
C9 C10 Cl11 C12
C17 Cl5 C21 Cl6 C18 (19
C20
C13 C14 C15 C16
c22 c23 C24 (25

T.-H. Weng, B. Chapman: Implementing OpenMP Using Dataflow Execution
CQ iF Model for Data Locality and Efficient Parallel Execution. Proc. HIPS-7, 2002

A Data-
Centric Era

Continuum of needs from
computation-heavy to data
heavy

Potentially within a single
application or workflow

Need to address data
movement in its entirety
* Data Layout

* New kinds of memory

What role does user play?

Computation-intensive Data-intensive

¢ <2)

& o g o G

Applications

AN

TTU\/ UH

Compute on Data Path Data Model Compute on Data Path Programming Model

Iﬂ' S INSTITUTE FOR ADVANCED

COMPUTATIONAL SCIENCE

Compute-Intensive N-htensive ‘%

freeereeeteeetenaeensrenrenaetutunetanateetneaneanenerensrensanastnnstan
« Compute on Data Path Runtime System

U H On-board Compute Compute-side Inter Storage Shared

Resources ‘_ Resources ‘_ Servers ‘_ Connection‘- Servers Storage
L8

' CPU GPU

ocal Memo;

Concept and Model

Where are Directives Headed?

OpenMP has shown significant staying power despite
some big changes in hardware characteristics

* Broad user base; yet strong HPC representation
* Paying more attention to data locality, affinity, tasking

Need to continue to evolve directives and
implementation

— Data and memory challenges remain
— Less synchronization, more tasks, is good
— Performance; validation, power/energy savings,..
— Runtime: resources, more dynamic execution
What about level of abstraction?
— Performance portability is a major challenge
— OpenMP codes often hardwire in system-specific details

Wrap-Up

 Programmers need portable, productive programming
interfaces

— Directives help deliver new concepts
— Hardware changes require us to continue to adapt
— Importance of accelerator devices likely to grow

— Many new challenges posed by diversity, large data sets,
memory and new application trends

* Directives pretty successful

* Not all the answers are in the programming interface
— New or adapted algorithms
— Novel compiler translations; modeling for smart decisions
— Innovative implementations and runtime adaptations
— Tools to facilitate development and tuning

‘ gi) °
Iﬂ' S INSTITUTE FOR ADVANCED
COMPUTATIONAL SCIENCE

