
Welcome	to	the	
2017	Charm++	Workshop!

Laxmikant	(Sanjay)	Kale
http://charm.cs.illinois.edu

Parallel	Programming	Laboratory
Department	of	Computer	Science

University	of	Illinois	at	Urbana	Champaign

2017	CHARM++	WORKSHOP 1

A	bit	of	history
• This	is	the	15th workshop	in	a	series	that	began	
in	2001

2017	CHARM++	WORKSHOP 2

2017	CHARM++	WORKSHOP 3

A	Reflection	on	the	History
• Charm++,	the	name,	is	from	1993
• Most	of	the	foundational	concepts	:	by	2002
• So,	what	does	this	long	period	of	15	years	signify?
• Maybe	I	was	too	slow
• But	I	prefer	the	interpretation:
– We	have	been	enhancing	and	adding	features	based	on	
large-scale	application	development.
• A	long	co-design	cycle	

– The	research	agenda	opened	up	by	the	foundational	
concepts	is	vast

– Although	the	foundations	were	done	in	2002,	the	fleshing	
out	of	adaptive	runtime	capabilities	is	where	many	
intellectual	challenges,	and	engineering	work,	lay.

2017	CHARM++	WORKSHOP 4

What	is	Charm++?
• Charm++	is	a	generalized	approach	to	writing	
parallel	programs
– An	alternative	to	the	likes	of	MPI,	UPC,	GA	etc.
– But	not	to	sequential	languages	such	as	C,	C++,	Fortran

• Represents:
– The	style	of	writing	parallel	programs
– The	runtime	system
– And	the	entire	ecosystem	that	surrounds	it

• Three	design	principles:	
– Overdecomposition,	Migratability,	Asynchrony

52017	CHARM++	WORKSHOP

Overdecomposition
• Decompose	the	work	units	&	data	units	into	
many	more	pieces	than	execution	units
– Cores/Nodes/..

• Not	so	hard:	we	do	decomposition	anyway

62017	CHARM++	WORKSHOP

Migratability
• Allow	these	work	and	data	units	to	be	
migratable at	runtime
– i.e.	the	programmer	or	runtime,	can	move	them

• Consequences	for	the	app-developer
– Communication	must	now	be	addressed	to	logical	
units	with	global	names,	not	to	physical	processors

– But	this	is	a	good	thing
• Consequences	for	RTS
–Must	keep	track	of	where	each	unit	is
– Naming	and	location	management

72017	CHARM++	WORKSHOP

Asynchrony:	Message-Driven	Execution

• With	over	decomposition	and	Migratibility:
– You	have	multiple	units	on	each	processor
– They	address	each	other	via	logical	names

• Need	for	scheduling:
– What	sequence	should	the	work	units	execute	in?
– One	answer:	let	the	programmer	sequence	them

• Seen	in	current	codes,	e.g.	some	AMR	frameworks
– Message-driven	execution:	

• Let	the	work-unit	that	happens	to	have	data	(“message”)	
available	for	it	execute	next

• Let	the	RTS	select	among	ready	work	units
• Programmer	should	not	specify	what	executes	next,	but	can	
influence	it	via	priorities

82017	CHARM++	WORKSHOP

Realization	of	this	model	in	Charm++

• Overdecomposed entities:	chares
– Chares are	C++	objects	
– With	methods	designated	as	“entry”	methods

• Which	can	be	invoked	asynchronously	by	remote	chares
– Chares are	organized	into	indexed	collections

• Each	collection	may	have	its	own	indexing	scheme
– 1D,	..7D	
– Sparse
– Bitvector or	string	as	an	index

– Chares communicate	via	asynchronous	method	
invocations
• A[i].foo(….);		A	is	the	name	of	a	collection,	i is	the	index	of	the	
particular	chare.

92017	CHARM++	WORKSHOP

Parallel	Address	Space

Processor	3Processor	2

Processor	1Processor	0

Scheduler

Message	Queue

Scheduler

Message	Queue

Scheduler

Message	Queue

Scheduler

Message	Queue
102017	CHARM++	WORKSHOP

Message-driven	Execution

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

A[23].foo(…)

112017	CHARM++	WORKSHOP

Processor	2

Scheduler

Message	Queue

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

Processor	3

Scheduler

Message	Queue
122017	CHARM++	WORKSHOP

Processor	2

Scheduler

Message	Queue

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

Processor	3

Scheduler

Message	Queue
132017	CHARM++	WORKSHOP

Processor	2

Scheduler

Message	Queue

Processor	1

Scheduler

Message	Queue

Processor	0

Scheduler

Message	Queue

Processor	3

Scheduler

Message	Queue
142017	CHARM++	WORKSHOP

Empowering	the	RTS

• The	Adaptive	RTS	can:
– Dynamically	balance	loads
– Optimize	communication:

• Spread	over	time,	async collectives
– Automatic	latency	tolerance
– Prefetch data	with	almost	perfect	predictability

Asynchrony Overdecomposition Migratability

Adaptive
Runtime	System

Introspection Adaptivity

152017	CHARM++	WORKSHOP

Some	Production	Applications
Application Domain Previous parallelization Scale

NAMD Classical	MD PVM 500k

ChaNGa N-body	gravity	&	SPH MPI 500k

EpiSimdemics Agent-based	epidemiology MPI 500k

OpenAtom Electronic	Structure MPI 128k

Spectre Relativistic MHD 100k

FreeON/SpAMM Quantum	Chemistry OpenMP 50k

Enzo-P/Cello Astrophysics/Cosmology MPI 32k

ROSS PDES MPI 16k

SDG Elastodynamic	fracture 10k

ADHydro Systems Hydrology 1000

Disney	ClothSim Textile &	rigid	body	dynamics TBB 768

Particle	Tracking Velocimetry	reconstruction 512

JetAlloc Stochastic	MIP optimization 480
2017	CHARM++	WORKSHOP 16

Relevance	to	Exascale
Intelligent, introspective, Adaptive
Runtime Systems, developed for handling
application’s dynamic variability, already
have features that can deal with
challenges posed by exascale hardware

2017	CHARM++	WORKSHOP 17

Relevant	capabilities	for	Exascale
• Load	balancing
• Data-driven	execution	in	support	of	task-based	
models

• Resilience
– multiple	approaches:	in-memory	checkpoint,	leveraging	
NVM,	message-logging	for	low	MTBF

– all	leveraging	object-based	overdecomposition
• Power/Thermal	optimizations
• Shrink/Expand	sets	of	processors	allocated	during	
execution

• Adaptivity-aware	resource	management	for	
whole-machine	optimizations

2017	CHARM++	WORKSHOP 18

IEEE	Computer	highlights	Charm++	energy	efficient	
runtime

2017	CHARM++	WORKSHOP 19

Interaction	Between	the	Runtime	
System	and	the	Resource	Manager

ü Allows	dynamic	interaction	between	the	system	resource	manager	or	scheduler	and	the	job	runtime	system
ü Meets	system-level	constraints	such	as	power	caps	and	hardware	configurations
ü Achieves	the	objectives	of	both	datacenter	users	and	system	administrators

2017	CHARM++	WORKSHOP 20

Charm++	interoperates	with	MPI

Charm++	
Control

So,	you	can	write	one	module	in	Charm++,	while	keeping	the	rest	in	MPI

2017	CHARM++	WORKSHOP 21

Integration	of	Loop	Parallelism

• Used	for	transient	load	balancing	within	a	node	
• Mechanisms:
– Charm++’s	old	CkLoop construct
– New	integration	with	OpenMP (gomp,	and	now	llvm)
– BSC’s	OMPSS	integration	is	orthogonal
– Other	new	OpenMP schedulers

• RTS	splits	a	loop	into	Charm++	messages
– Pushed	into	each	local	work	stealing	queue
• where	idle	threads	within	the	same	node	can	steal	tasks

2017	CHARM++	WORKSHOP 22

2
3

Integrated RTS
(Using	Charm++	construct	or	OpenMP pragmas)

Core0 Core1

Message QueueMessage Queue

Task Queue Task Queue

for	(i	=	0;	i	<	n	;	i++)	{
…
}

Recent	Developments:	Charmworks,	Inc.
• Charm++	is	now	a	commercially	supported	system
– Charmworks,	Inc.
– Supported	by	DoE	SBIR	and	small	set	of	initial	customers

• Non	profit	use	(academia,	US	Govt.	Labs..)	remains	free
• We	are	bringing	improvements	made	by	Charmworks	
into	the	University	version	(no	forking	of	code	so	far)

• Specific	improvements	have	included:	
– Better	handling	of	errors
– Robustness	and	ease	of	use	improvements
– Production	versions	of	research	capabilities

• A	new	project	at	Charmworks for	support	and	
improvements	to	Adaptive	MPI	(AMPI)	

2017	CHARM++	WORKSHOP 24

Upcoming	Challenges	and	Opportunities

• Fatter	nodes
• Improved	global	load	balancing	support	in	
presence	of	GPGPUs

• Complex	memory	hierarchies	(e.g.	HBM)
– I	think	we	are	well-equipped	for	that,	with	prefetch

• Fine-grained	messaging	and	lots	of	tiny	chares:
– Graph	algorithms,	some	solvers,	DES,	..

• Subscale-simulations,	multiple	simulations
• In-situ	analytics
• Funding!

2017	CHARM++	WORKSHOP 25

A	glance	at	the	Workshop
• Keynotes:	Michael	Norman,	Rajeev	Thakur
• PPL	taks:	
– Capabilities:	load	balancing*,	heterogenity,	DES
– Algorithms:	sorting,	connected	components

• Languages:	DARMA,	Green-Marl,	HPX	(non-charm)
• Applications:	
– NAMD,	ChaNGA,	OpenAtom,	multi-level	summation
– TaBaSCo (LANL,	proxy	app),	
– Quinoa	(LANL,	Adaptive	CFD)
– SpECTRE (Relativistic	Astrophysics)

• Panel:	relevance	of	exascale to	mid-range	HPC

2017	CHARM++	WORKSHOP 26

