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Interaction	Between	the	Runtime	System	and	
the	Resource	Manager

ü Allows	dynamic	interaction	between	the	system	resource	manager	or	scheduler	and	the	job	runtime	system
ü Meets	system-level	constraints	such	as	power	caps	and	hardware	configurations
ü Achieves	the	objectives	of	both	datacenter	users	and	system	administrators
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Components	of	Charm++	with	Its	Interactions

Charm++	has	three	main	components:	
• Local	manager: tracks	local	information	

such	as	object	loads,	CPU	temperatures
• Load-balancing	module:	makes	load-balancing
decisions	and	redistributes	load
• Power-resiliency	module:	ensures	that	the	

CPU	temperatures	remain	below	the	temperature
threshold,	change	the	power	cap
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Support	for	Proactive	Cooling	Decisions
with	Neural	Network-Based	Temperature Prediction

BILGE	ACUN1, 	EUN KYUNG	LEE1, 	YOONHO PARK1, 	LAXMIKANT V. 	KALE2

1 IBM	T. J . 	WATSON	RESEARCH	CENTER

2 UNIVERSITY	OF	 ILL INOIS	AT	URBANA-CHAMPAIGN

BILGE	ACUN	- CHARM++	WORKSHOP	20174/18/17 4



Motivation

BILGE	ACUN	- CHARM++	WORKSHOP	2017

1. Pressure	of	reducing	the	power	consumption	and	carbon	footprint	of	

datacenters	and	supercomputers	is	increasing

2. Other	expected	problems	include:

◦ Larger	process	variations,	temperature	variations

◦ More	heat	dissipation

◦ Denser	nodes	with	different	components	in	the	node	such	as	GPUs,	co-processors	that	

have	different	temperature,	cooling	characteristics
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Motivation

BILGE	ACUN	- CHARM++	WORKSHOP	2017

• Temperature	variations	among	cores:
• 7 C	in	idle	temperatures
• 9	C	in	all	active	temperatures
• 20	C	idle/active	mixed

• Synchronous	fan	control:
• 4	independent	fans	in	the	node
• Fans	all	act	together	and	cause	

even	further	temperature	variation

• Reactive	cooling	behavior:
• 54	W	jump	in	fan	power
• 10	minutes	stabilization	time

with	a	regular	workload

7C 20	C
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Temperature	Variation	in	Large	Scale
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Cori	at	NERSC	– Intel	Haswell Minsky at	IBM	POWER8

Temperature	distribution	of	1800	cores
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Oscillatory	Cooling	Behavior
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Fan	Behavior	of	Different	Applications
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Why	Temperature	Modeling	is	Difficult?
• There	are	lots	of	parameters	affecting	the	core	temperatures:
◦ Complex	workloads
◦ Ambient	temperature
◦ Core	frequencies
◦ Fan	speed	level
◦ Physical	layout
◦ Hardware	variations

• Combination	of	these	parameters	create
an	exponential	modeling	space
◦ 10	different	cores
◦ 0-100	CPU	utilization	levels
◦ 44	different	frequency	levels
◦ 3000	RPM-10000	RPM	fan	speed	levels
◦ 4	fans
v (10^10)	*	44	*	(10^4)	=	~	2^52
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Neural	Networks	for	Temperature	Modeling

BILGE	ACUN	- CHARM++	WORKSHOP	2017

•Neural	networks	are	good	because:
◦ They	can	capture	linear	and	non-linear	behavior	between
input	and	output	parameters

◦ They	work	well	in	noisy	data
◦ They	do	not	need	for	formulation	of	an	objective	function

• Neural	networks	has	been	used	in	HPC	for:
◦ Energy	and	power	modeling	[1]
◦ Performance	modeling	[2]
◦ Temperature	modeling
◦ For	GPU	temperature	modeling	[3]
◦ For	coarse-grained	data	center	level	modeling	[4]

1. A.	Tiwari,	M.	A.	Laurenzano,	L.	Carrington,	and	A.	Snavely.	Modeling	power	and	energy	usage	of	HPC	kernels.	In	Parallel	and	Distributed	Processing	Symposium	Workshops	&	PhD	Forum	(IPDPSW),	IEEE,	2012.
2. B.	C.	Lee,	D.	M.	Brooks,	B.	R.	de	Supinski,	M.	Schulz,	K.	Singh,	and	S.	A.	McKee.	Methods	of	inference	and	learning	for	performance	modeling	of	parallel	applications.	In	Proceedings	of	the	12th	ACM	SIGPLAN	

Symposium	on	Principles	and	Practice	of	Parallel	Programming,	PPoPP '07,	 2007.
3. A.	Sridhar,	A.	Vincenzi,	M.	Ruggiero,	and	D.	Atienza.	Neural	network-based	thermal	simulation	of	integrated	circuits	on	GPUs. IEEE	Transactions	on	Computer-Aided	Design	of	Integrated	Circuits	and	Systems 31.
4. L.	Wang,	G.	von	Laszewski,	F.	Huang,	J.	Dayal,	T.	Frulani,	and	G.	Fox.	Task	scheduling	with	ann-based	temperature	prediction	in	a	data	center:	a	simulation-based	study.	Engineering	with	Computers,	2011.
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Neural	Networks	for	Temperature	Prediction
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Experimental	Setup:
• Firestone	cluster	at	IBM	with	

Power	8	processors
• 1	node	=	2	sockets,	20	physical	

cores,	160	SMT	cores
• OCC,	and	BMC	for	

temperature,	power	readings
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Neural	Network	Configuration	and	Validation

BILGE	ACUN	- CHARM++	WORKSHOP	2017

• Other	configurations	include	number	of	layers,	and	number	of	neurons.	

• We	test	different	back-propagation	algorithms	with	different	time	and	memory	requirements.	
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Model	Guided	Proactive	Cooling	Decisions
1. Fan	control
◦ This	can	reduce	chip-to-chip	temperature	variations.
◦ What	should	be	the	fan	speed	level	to	be	able	keep	the	chips	at	a	certain	temperature	limit?	

2. Load	balancing
◦ This	can	remove	core-to-core,	as	well	as	chip-to-chip	temperature	variations.
◦ What	would	the	core	temperatures	become	if	a	certain	amount	of	data	is	moved	from	one	
core	to	another?	

3. DVFS
◦ Chip-level	DVFS	can	reduce	chip-to-chip,	core	level	DVFS	core-to-core	temperature	variations.
◦ What	frequency	level	we	need	to	set	for	the	cores	to	stay	under	a	temperature	limit	for	a	
workload?	
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Model	Guided	Proactive	Cooling	Decisions
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Proactive	Fan	Control	Mechanism

BILGE	ACUN	- CHARM++	WORKSHOP	2017

v Preemptive	fan-control	removes	temperature	peaks,	and
is	able	to	keep	the	temperature	as	the	same	level	as	reactive	fan	control.

v The	key	idea	is	cool	the	processor	proactively,	for	example,	before	the	application	starts.

v It	can	be	done	via	job	scheduler,	and/or	runtime	without	taking	over	the	total	control	of	the	fan.
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Power	Reductions	With	Proactive	Cooling
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Power	Reduction	=	Maximum	Power	– Stable	Power
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35%	reduction
in	fan	power



Decoupling	the	Fans
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BEFORE AFTER
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18%	reduction
in	fan	power



Total	Reduction	in	Fan	Power
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53%	reduction
in	fan	power	on	average



Remaining	Temperature	Variation
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• DVFS?
• Load	Balancing?
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Temperature-Aware	Load	Balancing	With	Charm++

BILGE	ACUN	- CHARM++	WORKSHOP	2017

• Load	balancing	can	help	reduce	the	temperature	variations,	but how	do	we	decide	how	much	load	to	move?

• Charm++	[1]	has	an	runtime	database	which	stores:
• Number	of	tasks	per	process
• Load	of	each	object	(in	terms	of	execution	time)
• Communication	load	of	each	object

• Load	balancing	is	triggered	periodically	with
customizable	periods

• We	implement	our	temperature-aware	model	
guided load	balancing	algorithm.	

• Load	balancing	has	potential	to	remove	both	
chip	and	core	level	variations.

1.	B.	Acun,	et	al.	Parallel	programming	with	migratable objects:	charm++	in	practice.	In	SC14:	International	
Conference	for	High	Performance	Computing,	Networking,	Storage	and	Analysis,	pages	647-658.	IEEE,	2014.
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Conclusion
• In	summary,	we	propose:
◦ A neural-network	based	temperature	prediction	model
◦ Proactive	cooling	mechanisms:
◦ Fan	control
◦ Load	balancing

• Our	results	shows:
◦ We	can	accurately	predict	core	temperatures
◦ Peak	fan	power	can	be	reduced	by	53%
◦ Air	cooling	systems	can	be	made	more	efficient
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Thank	you!



Comparison	of	Reactive	vs	Preemptive	Fan	Control
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v Preemptive	fan-control	removes	temperature	peaks,	and
is	able	to	keep	the	temperature	as	the	same	level	as	reactive	fan	control.

v The	key	idea	is	cool	the	processor	proactively,	for	example,	before	the	application	starts.

v It	can	be	done	via	job	scheduler,	and/or	runtime	without	taking	over	the	total	control	of	the	fan.
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Power	Reductions	in	Preemptive	Fan	Control

BILGE	ACUN	- CHARM++	WORKSHOP	2017

Workload	Starts

How	
early	to	
set	the	
cooling	
speed?

v Peak	fan	power	can	be	reduced	by	54	Watts	=	58%	reduction	in	cooling	power.
v 2790 Joules	of	energy	is	saved	=	Red	area	– black	area
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