Histogram sort with Sampling
(HSS)

Vipul Harsh, Laxmikant Kale

e
=

Parallel sorting in the age of Exascale

 Charm N-body GrAvity solver
* Massive Cosmological N-body simulations
* Parallel sorting in every iteration

T PPL

TR T

Parallel sorting in the age of Exascale

 Charm N-body GrAvity solver
* Massive Cosmological N-body simulations
* Parallel sorting in every iteration

* Cosmology code based on Chombo
* Global sorting every step for load
balance/locality

vroc

Parallel sorting: Goals

Load balance across processors
* Optimal data movement
* Generality: robustness to input distributions, duplicates

 Scalability and performance

7 il

_m = vroc

Parallel sorting: A basic template

* p processors, N/p keys in each processor

 Determine (p-1) splitter keys to partition keys into p
buckets

* Send all keys to appropriate destination bucket processor

Eg. Sample sort, Histogram sort

PPL

vroc

Existing algorithms: Parallel Sample sort

Brue 88"
esearch Institute
m arle NEC Resear <510
. 1. Blelloch (s MIT Princeton. NJ 0854
a p eS S y ro ea p ro eSSO r o Mellon University Cambridge, MA 0 ! i Zagha
Carnegie 17213 i Marco Zag
gh, PA 1O + N U niversi
|.‘\x\\,\yr‘,\\.| Stephen 3. Smi \;l. N Carnegie e “.‘_"\ ‘;:”..‘
hines ! »ttshurghs g
C. Greg \'w-\"~"'f“ Thinking ‘\“ :1‘“\ 02142 Pi

* Picks (p-1) splitters from p x s samples (SPAN 91)

Problem: Too many samples required for good load balance

T PPL

5NN
TR Uroc

uw

Existing algorithms: Parallel Sample sort

. Or'\(h“\"
arison of Sorting 5“’1 CM-2
A Compari nection Machine &
n b

 Samples s keys from each processor

* Picks (p-1) splitters from p x s samples (SPAN 91)

Problem: Too many samples required for good load balance

64 bit keys, p = 100,000 & 5% max load imbalance, sample
size= 8 GB

e
-

\J
TR X

PPL

vroc

Existing algorithms: Histogram sort

* Pick s x p candidate keys

 Compute rank of each candidate key (histogram)

* Select splitters from the candidates

5] :". m

E =N Uroc

Existing algorithms: Histogram sort

* Pick s x p candidate keys

 Compute rank of each candidate key (histogram)

* Select splitters from the candidates

OR
e Refine the candidates and repeat

0= m

E =N Uroc

Existing algorithms: Histogram sort

M
L SORTING ALGOR!TH

A R
A ('/ONlPARlSO N BASED PA ALLE

* Pick s x p candidate keys S :

 Compute rank of each candidate key (histogram)

* Select splitters from the candidates

OR
e Refine the candidates and repeat

- Works quite well for large p
- But can take more iterations if input skewed

PPL

181
EE =E Uroc

Histogram sort with sampling (HSS)

* An adaptation of Histogram sort

 Sample before each histogramming round
* Sample intelligently
* Use results from previous rounds
e Discard wasteful samples at source

PPL

vroc

Histogram sort with sampling (HSS)

* An adaptation of Histogram sort

 Sample before each histogramming round
* Sample intelligently
* Use results from previous rounds
e Discard wasteful samples at source

HSS has sound theoretical guarantees

1T PPL

I M
N =N vIuC

Histogram sort with sampling (HSS)

* An adaptation of Histogram sort

 Sample before each histogramming round
* Sample intelligently
* Use results from previous rounds
e Discard wasteful samples at source

HSS has sound theoretical guarantees
Independent of input distribution

B 1
.-L",'

ER =N

PPL

vroc

Histogram sort with sampling (HSS)

* An adaptation of Histogram sort

 Sample before each histogramming round
* Sample intelligently
* Use results from previous rounds
e Discard wasteful samples at source

HSS has sound theoretical guarantees
Independent of input distribution
Justifies why Histogram sort does well

PPL

Ll viuc

HSS: Intelligent Sampling

Find (p-1) splitter keys to partition input into p ranges

PPL

vroc

HSS: Intelligent Sampling
Find (p-1) splitter keys to partition input into p ranges

| | | |

| n ! —> Ideal Splitters

PPL

vroc

HSS: Intelligent Sampling

Find (p-1) splitter keys to partition input into p ranges

| l ! —> Ideal Splitters

—f— —t , , : —H— After first round

PPL

vroc

HSS: Intelligent Sampling
Find (p-1) splitter keys to partition input into p ranges

| | | |
—>

an PPL
LI uiuc

HSS: Intelligent Sampling

Find (p-1) splitter keys to partition input into p ranges

L | | | |
NN I e 1 | l | 1

Samples outside the shaded
intervals are wasteful

g\ﬂ L]
i | PPL
| =all 2014 CS420: Sorting 19 vruc

HSS: Sample size

Algorithm

Overall
sample size

Overall sample

size for
p=10°¢€=5%

Sample sort

with regular (9(1’;) 1600 GB
sampling
Sample sort
with random O(’“Z—%N) 8.1 GB
sampling
HSS Wlth (f)(plogp) 184 MB
one round €
HSS with o
two rounds O(p Y _%2) 24 MB
HSS with k& o
rounds O(kp %))
HSS with
O(log °£2) | O(plog °&P) 10 MB
rounds

R EN
me e
= |

N
e >

EE al

R EN

HSS: Sample size

Overall sample
size for

p=10°¢€=5%

Overall

Algorithm :
sample size

Sample sort

with regular (’)(1’;) 1600 GB
7%?1';115
Sample sort
< with random O(’DIZ—§N) 8.1 GB
N sampling
. O(rler) 184 MB
one round €
HSS with o
two rounds O(p V “e) 24 MB
HSS with k o
rounds O(kpy/ =))
HSS with
O(log °£2) | O(plog °&P) 10 MB
rounds

F Irm
7
= 5= |

u|w
e 3

PPL

vroc

mEE vEm

L]
o
e
|

R En
ne
mEE vEm

u|w

HSS: Sample size

Algorithm

Overall
sample size

Overall sample

size for
p=10°¢€=5%

Sample sort

0

with regular (’)(1’;) 1600 GB
sampling
Sample sort
with random Q(plog N 8.1 GB
/smphng
, .

HSS with O(mg_p) 184 MB
two rounds -—Uwﬁé_(24 MB
HSS with k /1o

rounds O(kpy/ =*))

HSS with
O(log °£2) | O(plog °&P) 10 MB

rounds

R EN

HSS: Sample size

Overall sample

size for
p=10°¢€=5%

Overall

Algorithm :
sample size

Sample sort
with regular (’)(1’;) 1600 GB
sampling
Sample sort
with random O(’DIZ—§N) 8.1 GB
sampling
HSS with

ﬁﬂﬂ 184 MB

7WVULLU

HSS with -

N Ty
h % =

rounds Iz -

HSS with

O(log *22) | O(plog 52) 10 MB

rounds

e
]
.3

N S
R X
|

PPL

vroc

|)0
| | Wy |

R EN

HSS: Sample size

Overall sample

size for
p=10°¢€=5%

Overall

Algorithm :
sample size

Sample sort

with regular (’)(1’;) 1600 GB
sampling

Sample sort

with random O(’DIZ—§N) 8.1 GB
sampling
HSS with O(mg_p) 184 MB
one round €

HSS with

;y—iemlus
HSS with k
%

O(log °&2) | O(plog &) 10 MB
rounds

(I&LP) 24 MB

Okpi/=2)) -

VN

e
]
= 5= |

N S
R X
|

PPL

vroc

[L)
mEE vEm

R EN

HSS: Sample size

Overall sample

size for
p=10°¢€=5%

Overall

Algorithm :
sample size

Sample sort

with regular (’)(1’;) 1600 GB
sampling

Sample sort

with random O(’DIZ—§N) 8.1 GB
sampling
HSS with O(mg_p) 184 MB
one round €
HSS with

O(py/ °&2) 24 MB

two rounds €

ASS with & T on s

—redkad/) :
HSS with
KO(log logp) | O(plog lo82) 10 MB

rounds

\

e
]
= 5= |

N S
R X
|

PPL

vroc

[L)
mEE vEm

R EN

HSS: Sample size

Overall sample

size for
p=10°¢€=5%

Overall

Algorithm :
sample size

Sample sort

with regular (’)(1’;) 1600 GB
sampling
Sample sort
with random O(’DIZ—§N) 8.1 GB
sampling
HSS Wlth 0(1010510) 184 MB
one round €
HSS with o
two rounds O(p Y %) 24 MB
HSS with k& o
rounds O(kp %))
HSS with
O(log °22) | (O(plog °&r) 10 MB
rounds

e
]
= 5= |

N S
R X
|

PPL

vroc

[L)
mEE vEm

HSS: Sample size

10 72 1 T PRSP
r ——a regular sampling
64B = ————— random sampling = o A
a5 | ————— HSS - 1 round
_ e HSS-2rounds A
% 256M (= HSS - constant oversampling «~ .. _— °
3 - 350 x
I LM oo Al
P F
N F
o e
o IM i e T S
s
= BAK b oo L T Ll e S
n N o T e
S el
256 e A e T B et SRS UR RN
L6 @
1 [N T [N TR A SO IS T S T S S N T—
4 16 64 256 1K 4K 16K 64K 256K
#processors

1 64 bit keys, 5% load imbalance
et PPL
T uIuC

Number of histogram rounds

Number of
rounds
(Theoretical)

sample Number of

size/round (x p) rounds

4 5 4 8
8 5 4 8
16 5 4 8
32 5 4 8

Number of rounds hardly increases with p = log (log p) complexity

:g\nl
Tt PPL
(TR 1 vioc

Optimizing for shared memory

* Modern machines are highly multicore
e BG/Q: 64 hardware threads/node
» Stampede KNL(2.0): 272 hardware threads/node

* How to take advantage of within-node parallelism?

T PPL

_m = vroc

Final All-to-all data exchange

* In the final step, each processor sends a data message
to every other processor

 O(p?) fine grained messages in the network

T PPL

_m = vroc

Final All-to-all data exchange

In the final step, each processor sends a data message
to every other processor

O(p?) fine grained messages in the network

What if all messages having the same source,
destination node are combined into one?

« Messages in the network: O(n?)
* Two orders of magnitude less!

e En
me e
3

PPL

vroc

J
-
)

What about splitting?...

* We really need splitting across nodes rather than
individual processors

* (n-1) splitters needed instead of (p-1)
* An order of magnitude less

* Reduces sample size even more

* Add a final within node sorting step to the algorithm

e

NS
e
B

-l N

PPL

vroc

Execution time breakdown

| e e] Very little time is spent
on histogramming!

EZA local sort

Execution time (sec)

512 2048 8192 32K
processors

Weak Scaling experiments on BG/Q Mira with 1 million 8 byte keys and 4 byte
payload per key on each processor, with 4 ranks/node

vroc

Conclusion

e HSS combines sampling and histogramming to
accomplish fast splitter determination

* HSS provides sound theoretical guarantees

* Most of the running time spent in local sorting & data
exchange (unavoidable)

PPL

vroc

Future work

* Integration in HPC applications (e.g. ChaNGa)

PPL

vroc

Future work

* Integration in HPC applications (e.g. ChaNGa)

Acknowledgements

* Edgar Solomnik
e Omkar Thakoor
e ALCF

PPL

vroc

Thank You!

e
=

Thank You!

e
=

Backup slides

e
'

HSS:

Computation/Communication complexity

Algorithm

Overall
sample size

Overall sample
size for

p=10°€=5%

Computation complexity

Communication complexity

Sample sort
with regular
sampling

%)

1600 GB

O

Nipe N 4 22 N
plogp+€logp+plogp)

/N

O(% +p+ 3

N——"

Sample sort
with random
sampling

O(plogN)

€

8.1 GB

O(%log% + m%g—p + %bgp)

€

O(M +p+ %)

HSS with
one round

O(plogp)

184 MB

N N | plogp N
(’)(plogp+ : logN—l—plogp)

O(Pl(;gp +p_+_ %)

HSS with
two rounds

O(py/ *£2)

24 MB

10%logN-l— %logp)

(9(p 82 4 p+ %)

HSS with k&
rounds

O(kp {/162)

C’?(kp’“ EP 4 p+ %)

HSS with
O(log l"—f—p)
rounds

O(plog 1"%)

10 MB

(
(% log %—f—kp s 1"% log N+% logp)
(

O(7 log %—I—plogb% log N+3 logp)

O(ploglo% +p+ %)

PPL

vloc

