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Parallel sorting in the age of Exascale

 Charm N-body GrAvity solver
* Massive Cosmological N-body simulations
* Parallel sorting in every iteration
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Parallel sorting in the age of Exascale

 Charm N-body GrAvity solver
* Massive Cosmological N-body simulations
* Parallel sorting in every iteration

* Cosmology code based on Chombo
* Global sorting every step for load
balance/locality
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Parallel sorting: Goals

Load balance across processors
* Optimal data movement
* Generality: robustness to input distributions, duplicates

 Scalability and performance
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Parallel sorting: A basic template

* p processors, N/p keys in each processor

 Determine (p-1) splitter keys to partition keys into p
buckets

* Send all keys to appropriate destination bucket processor

Eg. Sample sort, Histogram sort
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Existing algorithms: Parallel Sample sort
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* Picks (p-1) splitters from p x s samples (SPAN 91)

Problem: Too many samples required for good load balance
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Existing algorithms: Parallel Sample sort
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 Samples s keys from each processor

* Picks (p-1) splitters from p x s samples (SPAN 91)

Problem: Too many samples required for good load balance

64 bit keys, p = 100,000 & 5% max load imbalance, sample
size= 8 GB
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Existing algorithms: Histogram sort

* Pick s x p candidate keys

 Compute rank of each candidate key (histogram)

* Select splitters from the candidates

5] :". m

E =N Uroc



Existing algorithms: Histogram sort

* Pick s x p candidate keys

 Compute rank of each candidate key (histogram)

* Select splitters from the candidates

OR
e Refine the candidates and repeat
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Existing algorithms: Histogram sort
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* Pick s x p candidate keys S :

 Compute rank of each candidate key (histogram)

* Select splitters from the candidates

OR
e Refine the candidates and repeat

- Works quite well for large p
- But can take more iterations if input skewed
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Histogram sort with sampling (HSS)

* An adaptation of Histogram sort

 Sample before each histogramming round
* Sample intelligently
* Use results from previous rounds
e Discard wasteful samples at source
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Histogram sort with sampling (HSS)

* An adaptation of Histogram sort

 Sample before each histogramming round
* Sample intelligently
* Use results from previous rounds
e Discard wasteful samples at source

HSS has sound theoretical guarantees
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Histogram sort with sampling (HSS)

* An adaptation of Histogram sort

 Sample before each histogramming round
* Sample intelligently
* Use results from previous rounds
e Discard wasteful samples at source

HSS has sound theoretical guarantees
Independent of input distribution
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Histogram sort with sampling (HSS)

* An adaptation of Histogram sort

 Sample before each histogramming round
* Sample intelligently
* Use results from previous rounds
e Discard wasteful samples at source

HSS has sound theoretical guarantees
Independent of input distribution
Justifies why Histogram sort does well
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HSS: Intelligent Sampling

Find (p-1) splitter keys to partition input into p ranges
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HSS: Intelligent Sampling
Find (p-1) splitter keys to partition input into p ranges
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HSS: Intelligent Sampling

Find (p-1) splitter keys to partition input into p ranges

| l ! —> Ideal Splitters

—f— —t , , : —H— After first round
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HSS: Intelligent Sampling
Find (p-1) splitter keys to partition input into p ranges
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HSS: Intelligent Sampling

Find (p-1) splitter keys to partition input into p ranges
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Samples outside the shaded
intervals are wasteful
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HSS: Sample size

Algorithm

Overall
sample size

Overall sample

size for
p=10°¢€=5%

Sample sort

with regular (9(1’;) 1600 GB
sampling
Sample sort
with random O(’“Z—%N) 8.1 GB
sampling
HSS Wlth (f)(plogp) 184 MB
one round €
HSS with o
two rounds O(p Y _%2) 24 MB
HSS with k& o
rounds O(kp %) )
HSS with
O(log °£2) | O(plog °&P) 10 MB
rounds
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HSS: Sample size

Overall sample
size for

p=10°¢€=5%

Overall

Algorithm :
sample size

Sample sort

with regular (’)(1’;) 1600 GB
7%?1';115
Sample sort
< with random O(’DIZ—§N) 8.1 GB
N sampling
. O(rler) 184 MB
one round €
HSS with o
two rounds O(p V “e) 24 MB
HSS with k o
rounds O(kpy/ =) )
HSS with
O(log °£2) | O(plog °&P) 10 MB
rounds
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HSS: Sample size

Algorithm

Overall
sample size

Overall sample

size for
p=10°¢€=5%

Sample sort

0

with regular (’)(1’;) 1600 GB
sampling
Sample sort
with random Q(plog N 8.1 GB
/smphng
, .

HSS with O(mg_p) 184 MB
two rounds -—Uwﬁé_( 24 MB
HSS with k /1o

rounds O(kpy/ =*) )

HSS with
O(log °£2) | O(plog °&P) 10 MB

rounds
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HSS: Sample size

Overall sample

size for
p=10°¢€=5%

Overall

Algorithm :
sample size

Sample sort
with regular (’)(1’;) 1600 GB
sampling
Sample sort
with random O(’DIZ—§N) 8.1 GB
sampling
HSS with

ﬁﬂﬂ 184 MB
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HSS with -

N Ty
h % =

rounds Iz -

HSS with

O(log *22) | O(plog 52) 10 MB

rounds
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HSS: Sample size

Overall sample

size for
p=10°¢€=5%

Overall

Algorithm :
sample size

Sample sort

with regular (’)(1’;) 1600 GB
sampling

Sample sort

with random O(’DIZ—§N) 8.1 GB
sampling
HSS with O(mg_p) 184 MB
one round €

HSS with

;y—iemlus
HSS with k
%

O(log °&2) | O(plog &) 10 MB
rounds

( I&LP) 24 MB
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HSS: Sample size

Overall sample

size for
p=10°¢€=5%

Overall

Algorithm :
sample size

Sample sort

with regular (’)(1’;) 1600 GB
sampling

Sample sort

with random O(’DIZ—§N) 8.1 GB
sampling
HSS with O(mg_p) 184 MB
one round €
HSS with

O(py/ °&2) 24 MB

two rounds €

ASS with & T on s

—redkad/ ) :
HSS with
KO(log logp) | O(plog lo82) 10 MB
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HSS: Sample size

Overall sample

size for
p=10°¢€=5%

Overall

Algorithm :
sample size

Sample sort

with regular (’)(1’;) 1600 GB
sampling
Sample sort
with random O(’DIZ—§N) 8.1 GB
sampling
HSS Wlth 0(1010510) 184 MB
one round €
HSS with o
two rounds O(p Y %) 24 MB
HSS with k& o
rounds O(kp %) )
HSS with
O(log °22) | (O(plog °&r) 10 MB
rounds
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HSS: Sample size
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Number of histogram rounds

Number of
rounds
(Theoretical)

sample Number of

size/round (x p) rounds

4 5 4 8
8 5 4 8
16 5 4 8
32 5 4 8

Number of rounds hardly increases with p = log (log p) complexity
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Optimizing for shared memory

* Modern machines are highly multicore
e BG/Q: 64 hardware threads/node
» Stampede KNL(2.0): 272 hardware threads/node

* How to take advantage of within-node parallelism?
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Final All-to-all data exchange

* In the final step, each processor sends a data message
to every other processor

 O(p?) fine grained messages in the network
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Final All-to-all data exchange

In the final step, each processor sends a data message
to every other processor

O(p?) fine grained messages in the network

What if all messages having the same source,
destination node are combined into one?

« Messages in the network: O(n?)
* Two orders of magnitude less!
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What about splitting?...

* We really need splitting across nodes rather than
individual processors

* (n-1) splitters needed instead of (p-1)
* An order of magnitude less

* Reduces sample size even more

* Add a final within node sorting step to the algorithm

e

NS
e
B

-l N

PPL

vroc



Execution time breakdown

| e e ] Very little time is spent
on histogramming!

EZA local sort

Execution time (sec)

512 2048 8192 32K
processors

Weak Scaling experiments on BG/Q Mira with 1 million 8 byte keys and 4 byte
payload per key on each processor, with 4 ranks/node
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Conclusion

e HSS combines sampling and histogramming to
accomplish fast splitter determination

* HSS provides sound theoretical guarantees

* Most of the running time spent in local sorting & data
exchange (unavoidable)
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Future work

* Integration in HPC applications (e.g. ChaNGa)
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Future work

* Integration in HPC applications (e.g. ChaNGa)
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Thank You!
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Backup slides
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HSS:

Computation/Communication complexity

Algorithm

Overall
sample size

Overall sample
size for

p=10°€=5%

Computation complexity

Communication complexity

Sample sort
with regular
sampling
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Sample sort
with random
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one round
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