
Histogram	sort	with	Sampling	
(HSS)

Vipul	Harsh,	Laxmikant Kale



Parallel sorting in the age of Exascale

• Charm	N-body	GrAvity solver
• Massive	Cosmological	N-body	simulations	
• Parallel	sorting	in	every	iteration



• Charm	N-body	GrAvity solver
• Massive	Cosmological	N-body	simulations	
• Parallel	sorting	in	every	iteration

CHARM

Parallel sorting in the age of Exascale

• Cosmology	code	based	on	Chombo
• Global	sorting	every	step	for	load	
balance/locality



Parallel sorting: Goals

• Load	balance	across	processors

• Optimal	data	movement

• Generality:	robustness	to	input	distributions,	duplicates

• Scalability	and	performance



Parallel sorting: A basic template

• p processors,	N/p keys	in	each	processor

• Determine	(p-1)	splitter	keys	to	partition	keys	into	p
buckets

• Send	all	keys	to	appropriate	destination	bucket	processor

• Eg.	Sample	sort,	Histogram	sort



• Samples	s keys	from	each	processor	

• Picks	(p-1)	splitters	from	p	x	s samples

Problem:	Too	many	samples	required	for	good	load	balance	

Existing algorithms: Parallel Sample sort



• Samples	s keys	from	each	processor	

• Picks	(p-1)	splitters	from	p	x	s samples

Existing algorithms: Parallel Sample sort

Problem:	Too	many	samples	required	for	good	load	balance

64	bit	keys,	p =	100,000	&	5%	max	load	imbalance,	sample	
size	≈	8	GB



• Pick	s	x	p candidate	keys	

• Compute	rank	of	each	candidate	key	(histogram)

• Select	splitters	from	the	candidates

Existing algorithms: Histogram sort



• Pick	s	x	p candidate	keys	

• Compute	rank	of	each	candidate	key	(histogram)

• Select	splitters	from	the	candidates

Existing algorithms: Histogram sort

OR
• Refine	the	candidates	and	repeat



• Pick	s	x	p candidate	keys	

• Compute	rank	of	each	candidate	key	(histogram)

• Select	splitters	from	the	candidates

Existing algorithms: Histogram sort

OR
• Refine	the	candidates	and	repeat

- Works	quite	well	for	large	p
- But	can	take	more	iterations	if	input	skewed



• An	adaptation	of	Histogram	sort	

• Sample	before	each	histogramming round
• Sample	intelligently
• Use	results	from	previous	rounds
• Discard	wasteful	samples	at	source

Histogram sort with sampling (HSS)



• An	adaptation	of	Histogram	sort	

• Sample	before	each	histogramming round
• Sample	intelligently
• Use	results	from	previous	rounds
• Discard	wasteful	samples	at	source

• HSS	has	sound	theoretical	guarantees

Histogram sort with sampling (HSS)



• An	adaptation	of	Histogram	sort	

• Sample	before	each	histogramming round
• Sample	intelligently
• Use	results	from	previous	rounds
• Discard	wasteful	samples	at	source

• HSS	has	sound	theoretical	guarantees
• Independent	of	input	distribution

Histogram sort with sampling (HSS)



• An	adaptation	of	Histogram	sort	

• Sample	before	each	histogramming round
• Sample	intelligently
• Use	results	from	previous	rounds
• Discard	wasteful	samples	at	source

• HSS	has	sound	theoretical	guarantees
• Independent	of	input	distribution
• Justifies	why	Histogram	sort	does	well	

Histogram sort with sampling (HSS)



HSS: Intelligent Sampling
Find	(p-1)	splitter	keys	to	partition	input	into	p ranges



Ideal	Splitters

HSS: Intelligent Sampling
Find	(p-1)	splitter	keys	to	partition	input	into	p ranges



After	first	round

Ideal	Splitters

HSS: Intelligent Sampling
Find	(p-1)	splitter	keys	to	partition	input	into	p ranges



Ideal	Splitters

After	first	round

Next	round	of	
sampling	only	in	
shaded	intervals

HSS: Intelligent Sampling
Find	(p-1)	splitter	keys	to	partition	input	into	p ranges



Fall	2014 19CS420:	Sorting

Ideal	Splitters

After	first	round

Next	round	of	
sampling	only	in	
shaded	intervals

Samples	outside	the	shaded	
intervals	are	wasteful

HSS: Intelligent Sampling
Find	(p-1)	splitter	keys	to	partition	input	into	p ranges



HSS: Sample size



HSS: Sample size



HSS: Sample size



HSS: Sample size



HSS: Sample size



HSS: Sample size



HSS: Sample size



HSS: Sample size

350	x

64	bit	keys,	5%	load	imbalance



Number of histogram rounds

Number	of	rounds	hardly	increases	with	p		è log	(log	p)	complexity

p (x	1000) sample	
size/round		(x	p)

Number	of	
rounds

Number	of	
rounds						
(Theoretical)

4 5 4 8

8 5 4 8

16 5 4 8

32 5 4 8



Optimizing for shared memory

• Modern	machines	are	highly	multicore	
• BG/Q:		64	hardware	threads/node
• Stampede	KNL(2.0):	272	hardware	threads/node	

• How	to	take	advantage	of	within-node	parallelism?



Final All-to-all data exchange

• In	the	final	step,		each	processor	sends	a	data	message	
to	every	other	processor		

• O(𝑝") fine	grained	messages	in	the	network



Final All-to-all data exchange

• In	the	final	step,		each	processor	sends	a	data	message	
to	every	other	processor		

• O(𝑝") fine	grained	messages	in	the	network

• What	if	all	messages	having	the	same	source,	
destination	node	are	combined	into	one?

• Messages	in	the	network:	O(𝑛")
• Two	orders	of	magnitude	less!



What about splitting?…

• We	really	need	splitting	across	nodes	rather	than	
individual	processors

• (n-1)	splitters	needed	instead	of	(p-1)
• An	order	of	magnitude	less
• Reduces	sample	size	even	more

• Add	a	final	within	node	sorting	step	to	the	algorithm



Execution time breakdown

Very	little	time	is	spent	
on	histogramming!

Weak	Scaling	experiments	on	BG/Q	Mira	with	1	million	8	byte	keys	and	4	byte	
payload	per	key	on	each	processor,		with	4	ranks/node



Conclusion

• HSS	combines	sampling	and	histogramming to	
accomplish	fast	splitter	determination

• HSS	provides	sound	theoretical	guarantees

• Most	of	the	running	time	spent	in	local	sorting	&	data	
exchange	(unavoidable)



Future work

• Integration	in	HPC	applications	(e.g.	ChaNGa)



Future work

• Integration	in	HPC	applications	(e.g.	ChaNGa)

Acknowledgements
• Edgar	Solomnik
• Omkar Thakoor
• ALCF



Thank	You!



Thank	You!



Backup	slides



HSS: Computation/Communication complexity


