
Heterogeneous Computing in 
Charm++

Michael Robson



GPU Overview
• Programmed with CUDA
• 1,000s of threads
• 100s GB/s bandwidth
• ~16 GB of memory
• TeraFLOPS double 

precision performance

24/18/17 Charm++ Workshop 2017



GPU MANAGER

34/18/17 Charm++ Workshop 2017



GPU Manager
• GPU task Management library
• Register kernel for asynchronous invocation
• Automates data movement 
• Overlap kernel execution and data transfer
• Pre-allocated pool of pinned memory
• Runtime profiling integration (Projections)

4/18/17 Charm++ Workshop 2017 4



Using GPU Manager
• Build charm with cuda
• Enqueue work request:
– Describe buffers
– Callback(s) 
– Run kernel function

54/18/17 Charm++ Workshop 2017



Original Design

6

User

Charm

pinnedMallocHost()

Time

cudaMallocHost()

Other CPU-side Work

pinnedMallocHost()

Only if all streams are free –
else put in queue

To get pinned memory used for 
asynchronous memcpy

User-defined Callback ...

...

gpuProgressFn()

Handles workRequests

User-defined Callback

When workRequest is complete & data 
is copied back to host

kernelSelect()

1. Memcpy into pinned memory 
2. Insert workRequest

1. Memcpy into host memory
2. Use data

* The user can also get pre-pinned memory from mempool.
In this case, there is no need to wait for callback.

cudaMallocHost() causes implicit synchronization, 
halting all operations in the streams

Expensive but necessary since having too much 
pinned memory degrades system performance

Handles workRequests

4/18/17 Charm++ Workshop 2017



Handling workRequests
• 3 streams for data transfer & computation 

overlap:
• data_in_stream
• kernel_stream
• data_out_stream

• Handled via gpuProgressFn(), called periodically 
by scheduler

74/18/17 Charm++ Workshop 2017



Handling workRequests

8

data_in

kernel

data_out

[1] cudaMalloc

Time

[1] cudaMemcpyAsync

gpuProgressFn()
interval

[1] - HEAD Q TI EX

[2] Q Q TI

[3] Q Q Q
* Q: Queued, TI: Transfer-In, EX: Executing, TO: Transfer-Out

State

[2] cudaMalloc

[2] cudaMemcpyAsync

[1] kernelGap Gap

Not good! Could have started 
[2] kernel, because 
of concurrent 
kernel execution

[2] kernel

[3] cudaMemcpyAsync

Could also have started [3] 
cudaMemcpyAsync
(if no cudaMalloc
necessary for [3])

4/18/17 Charm++ Workshop 2017



New Design
• Avoid polling via stream callbacks
– Added new callback locations
– Supported in CUDA 5.0 (K20)

• Enable concurrent execution
– Spawns max streams, one per workRequest
– Supported in compute capability 2.x (Tesla)

94/18/17 Charm++ Workshop 2017



NVTX Concurrent Async Old

4/18/17 Charm++ Workshop 2017 10



NVTX Concurrent Async New

4/18/17 Charm++ Workshop 2017 11



OpenAtom
• Ab-inito molecular 

dynamics
• Offloads forward and 

backwards path of pair 
calculator

• New GPU target

4/18/17 Charm++ Workshop 2017 12



OpenAtom Performance

134/18/17 Charm++ Workshop 2017



OpenAtom Performance

4/18/17 Charm++ Workshop 2017 14



OpenAtom
• Cosmological N-body 

simulations
• Leverages GPU 

Manager
• Offloads gravity kernels
• Active work in 

optimization
4/18/17 Charm++ Workshop 2017 15



ChaNGa Performance

164/18/17 Charm++ Workshop 2017



ACCEL FRAMEWORK

174/18/17 Charm++ Workshop 2017



Motivation
• Exploit runtime info. for dynamic execution
• Runtime (RTS) can map to various platforms
• RTS can proactively move needed data

• Don’t leave hardware sitting idle

4/18/17 Charm++ Workshop 2017 18



Accel Framework
• Generate code from tagged entry methods
– Host (CPU) and device (CUDA)
– Extend with tuning keywords
– Annotate object data access

• Builds on GPU manager
• Batch fine grained kernel launches
4/18/17 Charm++ Workshop 2017 19



Example Code
entry [triggered accel] void foo() 
[

readonly : float matrix [SIZE]
<implobj->matrix>,

writeonly : float matTmp [SIZE]
<implobj->matrixTmp> ] {

// implementation here
} fooPost;
4/18/17 Charm++ Workshop 2017 20



Benchmarks
• stencil2d (aka jacobi)

– weighted five point stencil
– CPU friendly

• md 
– molecular dynamics
– GPU friendly

• Stampede
– 1 GPU node (K20 + Xeon E5-2680)
– 16 cores/processing elements

4/18/17 Charm++ Workshop 2017 21



Stencil 2D

4/18/17 22



Molecular Dynamics

4/18/17 23



Analysis

• Using hardware improves performance
• Even when it’s not ideal

Code % Dev. Host Device

stencil 30% 1.58x 3.09x
md 65% 3.02x 1.46x

4/18/17 Charm++ Workshop 2017 24



FUTURE WORK

4/18/17 Charm++ Workshop 2017 25



Future Work
• OpenCL and other language support
• Stream priorities
• Ongoing unified memory experiments
• Heterogenous multi-node load balancing

264/18/17 Charm++ Workshop 2017



QUESTIONS?

Michael Robson
mprobson@illinois.edu

274/18/17 Charm++ Workshop 2017



BACKUP SLIDES

4/18/17 Charm++ Workshop 2017 28



[accel] Framework Usage
• modifiers:
– read-only, write-only, read-write
– shared – one copy per batch
– persist – resident in device memory

• parameters:
– triggered – one invocation per chare in array
– splittable (int) – AEM does part of work
– threadsPerBlock (int) – specify block size

29Charm++ Workshop 2017



Projections Timelines

4/18/17 Charm++ Workshop 2017 30


