
A Parallel Union-Find Library in Charm++

Karthik Senthil

Parallel Programming Laboratory
University of Illinois at Urbana-Champaign

17 April 2017

15th Annual Workshop on Charm++ and its Applications 2017

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 1 / 22

Problem Statement

Definition:
A union-find algorithm is an algorithm that performs two operations on a
disjoint-set data structure

Find : Determine which subset a particular element is in

Union : Join two subsets into a single subset

Figure 1: Connected Components in a graph

Other applications : Kruskal’s minimum spanning tree algorithm

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 2 / 22

Outline

1 Related Work

2 A Charm++ Approach to Union-Find

3 Challenges

4 Optimizations

5 Current Status

6 What’s In Store

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 3 / 22

Outline

1 Related Work

2 A Charm++ Approach to Union-Find

3 Challenges

4 Optimizations

5 Current Status

6 What’s In Store

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 3 / 22

Related Work

Connectivity in a graph is a very well explored problem

Shiloach, Yossi, and Uzi Vishkin. “An O (logn) parallel connectivity algorithm.”
Journal of Algorithms 3.1 (1982): 57-67.

Nassimi, David, and Sartaj Sahni. “Finding connected components and connected
ones on a mesh-connected parallel computer.” SIAM Journal on computing 9.4
(1980): 744-757.

Krishnamurthy, A., Lumetta, S., Culler, D. E., & Yelick, K. (1997). “Connected
components on distributed memory machines”. Third DIMACS Implementation
Challenge, 30, 1-21.

Manne, Fredrik, and Md Patwary. “A scalable parallel union-find algorithm for
distributed memory computers.” Parallel Processing and Applied Mathematics
(2010): 186-195.

Our motivation : A scalable union-find algorithm in a distributed
asynchronous environment

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 4 / 22

Outline

1 Related Work

2 A Charm++ Approach to Union-Find

3 Challenges

4 Optimizations

5 Current Status

6 What’s In Store

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 4 / 22

Our algorithm

Given a graph G = (V ,E), with n = |V | and m = |E |
An edge e = (v1, v2) represents a union operation

Our algorithm:

1 Message v1 for the operation find(v1)

2 v1 messages parents till boss1 = find(v1)

3 boss1 messages v2 for operation find(v2) and carries info of boss1
4 When boss2 = find(v2), align parent pointers of bosses

Effectively we are constructing a forest of inverted trees; each tree is a unique
connected component

Root of a tree = Representative of the component

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 5 / 22

Our algorithm

Figure 2: Asynchronous union-find algorithm

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 6 / 22

Outline

1 Related Work

2 A Charm++ Approach to Union-Find

3 Challenges

4 Optimizations

5 Current Status

6 What’s In Store

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 6 / 22

Challenges

Too much symmetry

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 7 / 22

Solution

Simplicity is the best way of dealing with complexity

Enforce a strict ordering in the union operation, say based on vertex
ID

Brings in an additional min-heap like property to the inverted trees

ID of a parent node is always lesser than IDs of its children
A possible cycle edge can be detected if a node with lower ID is asked
to point to node with higher ID
We reprocess the union-request by flipping the order to comply with
the ordering

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 8 / 22

Solution - 3 Functions

union_request(v1, v2) {

if (v1.ID > v2.ID)

union_request(v2, v1)
else

find_boss1(v1, v2)
}

Listing 1: union request

find_boss1(v1, v2) {

if (v1.parent == -1)

find_boss2(v2, boss1)
else

find_boss1(v1.parent, v2)
}

Listing 2: find boss1

find_boss2(v2, boss1) {

if (v2.parent == -1) {

if (boss1.ID > v2.ID)

union_request(v2, boss1)
else

v2.parent = boss1
}

else

find_boss2(v2.parent, boss1)
}

Listing 3: find boss2

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 9 / 22

Solution - 3 Functions

union_request(v1, v2) {

if (v1.ID > v2.ID)

union_request(v2, v1)
else

find_boss1(v1, v2)
}

Listing 1: union request

find_boss1(v1, v2) {

if (v1.parent == -1)

find_boss2(v2, boss1)
else

find_boss1(v1.parent, v2)
}

Listing 2: find boss1

find_boss2(v2, boss1) {

if (v2.parent == -1) {

if (boss1.ID > v2.ID)

union_request(v2, boss1)
else

v2.parent = boss1
}

else

find_boss2(v2.parent, boss1)
}

Listing 3: find boss2

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 9 / 22

Solution - 3 Functions

union_request(v1, v2) {

if (v1.ID > v2.ID)

union_request(v2, v1)
else

find_boss1(v1, v2)
}

Listing 1: union request

find_boss1(v1, v2) {

if (v1.parent == -1)

find_boss2(v2, boss1)
else

find_boss1(v1.parent, v2)
}

Listing 2: find boss1

find_boss2(v2, boss1) {

if (v2.parent == -1) {

if (boss1.ID > v2.ID)

union_request(v2, boss1)
else

v2.parent = boss1
}

else

find_boss2(v2.parent, boss1)
}

Listing 3: find boss2

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 9 / 22

Outline

1 Related Work

2 A Charm++ Approach to Union-Find

3 Challenges

4 Optimizations

5 Current Status

6 What’s In Store

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 9 / 22

Optimizations

Motivation to optimize:

Tree construction is very communication-intensive

Lots of tiny messages (∼1.5 billion messages for 16 million vertices, 6
million edges)

We also found the trees to be very deep

Sequentially, path compression is used to get optimal performance

Climbing long tree paths for each request slowed down tree
construction

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 10 / 22

Optimizations

1 Locality-based tree climbing
Sequentially traverse the tree path until the next vertex lies on a
different chare
This increases work per chare but drastically reduces number of
messages
Observed 25x speedup in tree construction

2 Local path compression
Make the local tree constructed in every chare completely shallow
Provides a one-hop access to bosses

More optimization if extended to PE-level or node-level

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 11 / 22

Optimizations

1 Locality-based tree climbing
Sequentially traverse the tree path until the next vertex lies on a
different chare
This increases work per chare but drastically reduces number of
messages
Observed 25x speedup in tree construction

2 Local path compression
Make the local tree constructed in every chare completely shallow
Provides a one-hop access to bosses

More optimization if extended to PE-level or node-level

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 11 / 22

Outline

1 Related Work

2 A Charm++ Approach to Union-Find

3 Challenges

4 Optimizations

5 Current Status

6 What’s In Store

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 11 / 22

Current Status

Library designed using bound-array concept

Connected components detection

Phase 1 : Build the forest of inverted trees using our asynchronous
union-find algorithm
Phase 2 : Identify the bosses of each component and label all vertices
in that component
Phase 3 : Prune out insignificant components

Tested and verified with real-world graphs (protein structures from
PDB)

Large scale testing with probabilistic mesh concept

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 12 / 22

Probabilistic Mesh

A class of graphs motivated by cluster dynamics in computational
physics1 (2D Ising model)

A random graph built on a lattice structure

Edge between two lattice points (vertices) is determined by
calculating a probability value using coordinate positions

Advantages:

Easy to scale the size of graph

Easy to verify results and catch race conditions

Fixed probability and lattice size produces same graph
Play with the number of chares and PEs

1S. S. Lumetta, A. Krishnamurthy, and D. E. Culler. “Towards Modeling the Performance of a Fast Connected Components
Algorithm on Parallel Machines”. In: Proceedings of the IEEE/ACM SC95 Conference. 1995, pp. 32–32.

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 13 / 22

Experiments

Experiments performed:
1 Phase runtime evaluation

Mesh configurations : 10242 (1M), 20482 (4M), 40962 (16M),
81922 (64M)
Probabilities : 2D00, 2D40, 2D60
Problem size per chare fixed at : 64x64 mesh piece

2 Scaling performance

Mesh configuration : 20482, 2D40
Problem size per chare : 2x2 mesh piece
Number of physical nodes : 2, 4, 8, 16, 32, 64

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 14 / 22

Results - Phase runtime

Figure 4: Mesh size 1024x1024 on 2 nodes

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 15 / 22

Results - Phase runtime

Figure 5: Mesh size 2048x2048 on 2 nodes

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 16 / 22

Results - Phase runtime

Figure 6: Mesh size 4096x4096 on 16 nodes

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 17 / 22

Results - Phase runtime

Figure 7: Mesh size 8192x8192 on 32 nodes

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 18 / 22

Results - Scaling runs

Phase 1 Phase 2

Figure 8: Scaling runs on mesh size 2048x2048

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 19 / 22

Results - Scaling runs

Phase 3

Figure 9: Scaling runs on mesh size 2048x2048

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 20 / 22

Outline

1 Related Work

2 A Charm++ Approach to Union-Find

3 Challenges

4 Optimizations

5 Current Status

6 What’s In Store

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 20 / 22

Future Work

On the to-do list:

Optimizing Phase 1 for very large graphs (planning on sub-phases)

Priority for particular kinds of messages

Global level path compression which is PE and node-aware

Use TRAM library in Charm++

Target ChaNGa for friends-of-friends based galaxy detection

Code and examples on Gerrit: users/karthik/unionFind

Acknowledgements: This material is based in part upon work supported
by the NSF, SI2-SSI: Collaborative Research: ParaTreet: Parallel Software
for Spatial Trees in Simulation and Analysis (NSF #1550554).

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 21 / 22

Thank You
It’s banquet time!

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 22 / 22

	Related Work
	A Charm++ Approach to Union-Find
	Challenges
	Optimizations
	Current Status
	What's In Store

