PARALLEL
PP'{ PROGRAMMING
ALY | ABORATORY

A Parallel Union-Find Library in Charm++

Karthik Senthil

Parallel Programming Laboratory
University of Illinois at Urbana-Champaign

17 April 2017

15t Annual Workshop on Charm++ and its Applications 2017

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 1/22

Problem Statement

Definition:

A union-find algorithm is an algorithm that performs two operations on a
disjoint-set data structure

@ Find : Determine which subset a particular element is in

@ Union : Join two subsets into a single subset
Figure 1: Connected Components in a graph

Other applications : Kruskal’s minimum spanning tree algorithm

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 2/22

© Related Work

© A Charm++ Approach to Union-Find
© Challenges

@ Optimizations

© Current Status

© What's In Store

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 3/22

Outline

© Related Work

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017

Related Work

Connectivity in a graph is a very well explored problem
@ Shiloach, Yossi, and Uzi Vishkin. “An O (logn) parallel connectivity algorithm.”
Journal of Algorithms 3.1 (1982): 57-67.

@ Nassimi, David, and Sartaj Sahni. “Finding connected components and connected
ones on a mesh-connected parallel computer.” SIAM Journal on computing 9.4
(1980): 744-757.

@ Krishnamurthy, A., Lumetta, S., Culler, D. E., & Yelick, K. (1997). “Connected
components on distributed memory machines”. Third DIMACS Implementation
Challenge, 30, 1-21.

@ Manne, Fredrik, and Md Patwary. “A scalable parallel union-find algorithm for
distributed memory computers.” Parallel Processing and Applied Mathematics
(2010): 186-195.

Our motivation : A scalable union-find algorithm in a distributed
asynchronous environment

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 4/22

Outline

© A Charm++ Approach to Union-Find

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 4 /22

Our algorithm

o Given a graph G = (V, E), with n=|V| and m = |E|
@ An edge e = (vy, v») represents a union operation
Our algorithm:
© Message v for the operation find(v1)
@ v; messages parents till boss; = find(v1)
@ boss; messages v» for operation find(v2) and carries info of boss

@ When boss, = find(v2), align parent pointers of bosses

@ Effectively we are constructing a forest of inverted trees; each tree is a unique
connected component

@ Root of a tree = Representative of the component

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 5/22

Our algorithm

union(A, B)

Figure 2: Asynchronous union-find algorithm

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017

Outline

© Challenges

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017

Challenges

RACE l}lIHIIITIlIIIS

RACE GIIIIIII'I'IIIHS EUEIIWJIIEIIE

Consider 3 PEs, one chare on
each PE

union(1, 2) on chare 0

union(2, 3) on chare 1
union(3, 1) on chare 2

Too much symmetry

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017

@ Simplicity is the best way of dealing with complexity

@ Enforce a strict ordering in the union operation, say based on vertex
ID

@ Brings in an additional min-heap like property to the inverted trees

o ID of a parent node is always lesser than IDs of its children

o A possible cycle edge can be detected if a node with lower ID is asked
to point to node with higher ID

o We reprocess the union-request by flipping the order to comply with
the ordering

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 8 /22

Solution - 3 Functions

union_request(vi, wv2) {
if (vi.ID > v,.ID)
union_request(va, vi)
else
find_bossi(vi, w)

}

Listing 1: union_request

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 9 /22

Solution - 3 Functions

union_request(vi, wv2) {
if (vi.ID > v,.ID)
union_request(va, vi)
else
find_bossi(vi, w)

}

Listing 1: union_request

find_boss1i(vi, wv2) {

if (vi.parent == -1)
find_boss2(v>, bossi)
else

find_boss1(vi.parent, v2)

Listing 2: find_bossl

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 9 /22

/

Solution - 3 Functions

union_request(vi, w») {
if (v1.ID > v,.ID)

union_request(va, v1)

else find_boss2(v>, boss) {
find_bossi(vi, w) if (vo.parent == -1) {
¥ if (bossi.ID > v,.ID)
Listing 1: union_request union_request(vz, boss)
else
vo.parent = boss;
}
find_bossi(vi, wo) { else
if (vi.parent == -1) find_boss2(w».parent, bossi)
find_boss2(v2, bossi) b
else Listing 3: find_boss2

find_boss1(vi.parent, v2)

Listing 2: find_bossl

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 9 /22

Outline

@ Optimizations

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017

Optimizations

Motivation to optimize:
@ Tree construction is very communication-intensive

o Lots of tiny messages (~1.5 billion messages for 16 million vertices, 6
million edges)
@ We also found the trees to be very deep
e Sequentially, path compression is used to get optimal performance

@ Climbing long tree paths for each request slowed down tree
construction

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 10 / 22

Optimizations

©Q Locality-based tree climbing
o Sequentially traverse the tree path until the next vertex lies on a
different chare
e This increases work per chare but drastically reduces number of
messages
o Observed 25x speedup in tree construction

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 11 /22

Optimizations

©Q Locality-based tree climbing

o Sequentially traverse the tree path until the next vertex lies on a
different chare
e This increases work per chare but drastically reduces number of
messages
o Observed 25x speedup in tree construction
@ Local path compression

o Make the local tree constructed in every chare completely shallow
o Provides a one-hop access to bosses

More optimization if extended to PE-level or node-level

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 11 /22

Outline

© Current Status

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017

Current Status

Library designed using bound-array concept
Connected components detection
o Phase 1 : Build the forest of inverted trees using our asynchronous
union-find algorithm
o Phase 2 : Identify the bosses of each component and label all vertices
in that component
e Phase 3 : Prune out insignificant components

Tested and verified with real-world graphs (protein structures from
PDB)

Large scale testing with probabilistic mesh concept

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 12 / 22

Probabilistic Mesh

@ A class of graphs motivated by cluster dynamics in computational
physics! (2D Ising model)
@ A random graph built on a lattice structure
o Edge between two lattice points (vertices) is determined by
calculating a probability value using coordinate positions
Advantages:

o Easy to scale the size of graph
o Easy to verify results and catch race conditions

o Fixed probability and lattice size produces same graph
o Play with the number of chares and PEs

15, S. Lumetta, A. Krishnamurthy, and D. E. Culler. “Towards Modeling the Performance of a Fast Connected Components
Algorithm on Parallel Machines”. In: Proceedings of the IEEE/ACM SC95 Conference. 1995 pp. 32-32.

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 13 / 22

Experiments performed:
© Phase runtime evaluation

o Mesh configurations : 10242 (1M), 20482 (4M), 40962 (16M),
81922 (64M)
o Probabilities : 2D00, 2D40, 2D60
o Problem size per chare fixed at : 64x64 mesh piece
@ Scaling performance

o Mesh configuration : 20482, 2D40
o Problem size per chare : 2x2 mesh piece
e Number of physical nodes : 2, 4, 8, 16, 32, 64

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 14 / 22

Results - Phase runtime

4 . T T
Phase 3 o=
Phase 2 o
35 Phase 1 oo -
3
w
£ 25
]
£
= 2
c
2
3
o 15
w
1
05
0
2D00 2D40 2D60
Probabilities

Figure 4: Mesh size 1024x1024 on 2 nodes

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017

Results - Phase runtime

20 T . :
Phase 3 o=
Phase 2 o
Phase 1 oommm
15

Execution Time (in s)
=)

2D00 2D40 2D60
Probabilities

Figure 5: Mesh size 2048x2048 on 2 nodes

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017

Results - Phase runtime

Phase 3 ===
140 Phase 2 oo |
Phase 1 oommm

Execution Time (in s)

2D40 2D60
Probabilities

Figure 6: Mesh size 4096x4096 on 16 nodes

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 17/

Results - Phase runtime

250 ' Phase 3 o |
Phase 2 o
Phase 1 oommm

Execution Time (in s)

2D40 2D60
Probabilities

Figure 7: Mesh size 8192x8192 on 32 nodes

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017

Results - Scaling runs

Execution Time (in's)

14 0.16
3 0.14
12
0.12
?
11 £
] 01
1 £
§
v HIRLG
" =
o
0.06
08
07 004
06 002
2 4 8 16 32 64 2 4 8 16 32 64

Number of nodes Number of nodes

Phase 1 Phase 2
Figure 8: Scaling runs on mesh size 2048x2048

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 19 /

Results - Scaling runs

78

76

74

72

68

Execution Time (in's)

66

64

62

2 4 8 16 32 64
Number of nodes

Phase 3
Figure 9: Scaling runs on mesh size 2048x2048

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 20/ 22

Outline

© What's In Store

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 20 / 22

On the to-do list:
@ Optimizing Phase 1 for very large graphs (planning on sub-phases)
@ Priority for particular kinds of messages
@ Global level path compression which is PE and node-aware
@ Use TRAM library in Charm++
@ Target ChaNGa for friends-of-friends based galaxy detection

Code and examples on Gerrit: users/karthik/unionFind

Acknowledgements: This material is based in part upon work supported
by the NSF, SI2-SSI: Collaborative Research: ParaTreet: Parallel Software
for Spatial Trees in Simulation and Analysis (NSF #1550554).

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 21 /22

Thank You

It's banquet time!

Karthik Senthil (PPL) Charm++ Workshop 2017 17 April 2017 22 /22

	Related Work
	A Charm++ Approach to Union-Find
	Challenges
	Optimizations
	Current Status
	What's In Store

