
Adaptive MPI
Performance & Application

Studies

Sam White
PPL, UIUC

Motivation
• Variability is becoming a problem for more

applications
– Software: multi-scale, multi-physics, mesh

refinements, particle movements
– Hardware: turbo-boost, power budgets,

heterogeneity

• Who should be responsible for addressing
it?
– Applications? Runtimes? A new language?
– Will something new work with existing code?

1

Motivation
• Q: Why MPI on top of Charm++?

• A: Application-independent features for MPI
codes:
– Most existing HPC codes/libraries are already

written in MPI
– Runtime features in familiar programming model:

• Overdecomposition
• Latency tolerance
• Dynamic load balancing
• Online fault tolerance

2

Adaptive MPI
• MPI implementation on top of Charm++
– MPI ranks are lightweight, migratable user-level

threads encapsulated in Charm++ objects

3

Node 0

... ...

Rank 0

Processor 0

Rank 1

Rank 2 Rank 3

Rank 4

Processor 1

Rank 5

Rank 6

Overdecomposition
• MPI programmers already decompose to MPI

ranks:
– One rank per node/socket/core/…

• AMPI virtualizes MPI ranks, allowing multiple
ranks to execute per core
– Benefits:

• Cache usage
• Communication/computation overlap
• Dynamic load balancing of ranks

4

Thread Safety
• AMPI virtualizes ranks as threads
– Is this safe?

5

int rank, size;
int main(int argc, char *argv[]) {

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank==0) MPI_Send(…);
else MPI_Recv(…);

MPI_Finalize();
}

Thread Safety
• AMPI virtualizes ranks as threads
– Is this safe? No, globals are defined per process

6

Thread Safety
• AMPI programs are MPI programs without

mutable global/static variables
A. Refactor unsafe code to pass variables on the

stack
B. Swap ELF Global Offset Table entries during ULT

context switch
• ampicc -swapglobals

C. Swap Thread Local Storage (TLS) pointer during
ULT context switch
• ampicc -tlsglobals
• Tag unsafe variables with C/C++ ‘thread_local’ or

OpenMP’s ‘threadprivate’ attribute, or …
• In progress: compiler can tag all unsafe variables, i.e.

‘icc –fmpc-privatize’

7

Process 0

Scheduler

Message Queue

Process 1

Scheduler

Message Queue

Message-driven Execution

MPI_Send()

8

Migratability
• AMPI ranks are migratable at runtime across

address spaces
– User-level thread stack & heap

9

• Isomalloc memory
allocator
– No application-specific

code needed
– Link with ‘-memory

isomalloc’

text

data
bss

thread 3 stack
thread 2 stack

thread 0 stack

text

data
bss

thread 4 stack

thread 1 stack

0xFFFFFFFF 0xFFFFFFFF

0x00000000 0x00000000

thread 0 heap

thread 2 heap
thread 3 heap

thread 1 heap

thread 4 heap

Migratability
• AMPI ranks (threads) are bound to chare

array elements
– AMPI can transparently use Charm++ features

• ‘int AMPI_Migrate(MPI_Info)’ used for:
– Measurement-based dynamic load balancing
– Checkpoint to file
– In-memory double checkpoint
– Job shrink/expand

10

Applications

• LLNL proxy apps & libraries

• Harm3D: black hole simulations

• PlasComCM: Plasma-coupled combustion
simulations

11

LLNL Applications
• Work with Abhinav Bhatele & Nikhil Jain
• Goals:
– Assess completeness of AMPI implementation

using full-scale applications
– Benchmark baseline performance of AMPI

compared to other MPI implementations
– Show benefits of AMPI’s high-level features

12

LLNL Applications
• Quicksilver proxy app
– Monte Carlo Transport
– Dynamic neutron transport problem

13

LLNL Applications
• Hypre benchmarks
– Performance varied across machines, solvers

• SMG uses many small messages, latency sensative

14

LLNL Applications
• Hypre benchmarks
– Performance varied across machines, solvers

• SMG uses many small messages, latency sensative

15

LLNL Applications
• LULESH 2.0
– Shock hydrodynamics on a 3D unstructured mesh

16

LLNL Applications
• LULESH 2.0
– With multi-region load imbalance

17

Harm3D
• Collaboration with Scott Noble, Professor of

Astrophysics at the University of Tulsa
– PAID project on Blue Waters, NCSA

• Harm3D is used to simulate & visualize the
anatomy of black hole accretions
– Ideal-Magnetohydrodynamics (MHD) on curved

spacetimes
– Existing/tested code written in C and MPI
– Parallelized via domain decomposition

18

Harm3D
• Load imbalanced case: two black holes

(zones) move through the grid
– 3x more computational work in buffer zone than

in near zone

19

Harm3D
• Recent/initial load balancing results:

20

PlasComCM
• XPACC: PSAAPII Center for Exascale

Simulation of Plasma-Coupled Combustion

21

PlasComCM
• The “Golden Copy” approach:
– Maintain a single clean copy of the source code

• Fortran90 + MPI (no new language)
– Computational scientists add new simulation

capabilities to the golden copy
– Computer scientists develop tools to transform

the code in non-invasive ways
• Source-to-source transformations
• Code generation & autotuning
• JIT compiler
• Adaptive runtime system

22

PlasComCM

23

• Multiple timescales
involved in a single
simulation (right)
– Leap is a python tool that

auto-generates multi-rate
time integration code
• Integrate only as needed,

naturally creating load
imbalance

• Some ranks perform twice the
RHS calculations of others

PlasComCM
• The problem is

decomposed into 3
overset grids
– 2 ”fast”, 1 ”slow”
– Ranks only own points

on one grid
– Below: load imbalance

24

PlasComCM
• Metabalancer
– Idea: let the runtime system decide when and how

to balance the load
• Use machine learning over LB database to select strategy
• See Kavitha’s talk later today for details

– Consequence: domain scientists don’t need to
know details of load balancing

25

PlasComCM on 128 cores of Quartz (LLNL)

Recent Work
• Conformance:
– AMPI supports the MPI-2.2 standard
– MPI-3.1 nonblocking & nbor collectives
– User-defined, non-commutative reductions ops
– Improved derived datatype support

• Performance:
– More efficient (all)reduce & (all)gather(v)
– More communication overlap in

MPI_{Wait,Test}{any,some,all} routines
– Point-to-point messaging, via Charm++’s new

zero-copy RDMA send API

26

Summary
• Adaptive MPI provides Charm++’s high-level

features to MPI applications
– Virtualization
– Communication/computation overlap
– Configurable static mapping
– Measurement-based dynamic load balancing
– Automatic fault recovery

• See the AMPI manual for more info.

27

Thank you

OpenMP Integration
• Charm++ version of LLVM OpenMP works

with AMPI
– (A)MPI+OpenMP configurations on P cores/node:

– AMPI+OpenMP can do >P:P without
oversubscription of physical resources

Notation Ranks/Node Threads/Rank MPI(+OpenMP) AMPI(+OpenMP)

P:1 P 1 ✔ ✔

1:P 1 P ✔ ✔

P:P P P ✔

