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Heterogeneous Computing

▶ Computing with different types of devices
▶ In this talk: using GPUs to boost performance
▶ GPU

▶ Throughput oriented
▶ Data parallel (SIMD)
▶ Many simple, low frequency cores
▶ Teraflops of computing power
▶ Separate memory (GDDR or HBM)
▶ Data transfer overhead

▶ Now a critical factor of performance
Figure: NVIDIA Tesla V1001

1
Image source: https://www.nvidia.com/en-us/data-center/tesla-v100
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How to Utilize GPUs in Charm++

1. Use CUDA directly
▶ Let each chare offload (small) kernels
▶ Or manually aggregate data at a synchronization point and offload one big kernel

2. Use GPU Manager library of Charm++
▶ Why? What good is it?
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Problems with Using GPUs in Charm++

▶ Due to overdecomposition and asynchrony

1. Granularity of work

2. Blocking offload API

3. Responsiveness
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Problem 1: Granularity of Work

▶ Each chare is fine-grained
▶ Contain little data and work → small kernels
▶ Kernels should be able to execute concurrently
▶ Or need to aggregate kernels
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Problem 2: Blocking Offload API

▶ Commonly used CUDA API are blocking
▶ E.g. cudaDeviceSynchronize(), cudaStreamSynchronize()

▶ PEs are implemented as persistent threads on CPU cores
▶ Blocking call thus prevents another chare from executing
▶ Another problem: number of concurrent kernels limited to the number of PEs
▶ Offload API should be non-blocking for Charm++
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Problem 3: Responsiveness

Figure: Slow initiation
Figure: Slow response

1. Slow initiation
▶ Method offloading work must wait if target PE is busy (even if the GPU is free)

2. Slow response
▶ Handling completed GPU work delayed if target PE is busy
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Current GPU Manager

▶ Addresses Problem 2 (blocking offload API)
▶ User constructs and submits a WorkRequest object, specifying

▶ Data buffers and directions of transfer
▶ Kernel to be executed and its specifications (e.g. grid size, block size)

▶ Runtime tracks WorkRequests, overlapping data transfers with kernel execution
▶ But does NOT overlap multiple kernel executions
▶ Because only one CUDA stream is used for kernels

▶ Execution continues without blocking after WorkRequest submission
▶ 3 CUDA streams used internally: Data-in, Kernel, Data-out
▶ Problems

▶ Only one CUDA stream for all kernels
▶ Unnecessarily complex API
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New GPU Manager: Release 6.9.0

▶ Partially addresses Problem 1 (granularity of work)
▶ Allows kernels to execute in separate CUDA streams
▶ Runtime support for kernel aggregation is ongoing research

▶ Non-blocking feature implemented using CUDA events
▶ Much simpler API (almost identical to CUDA API)

▶ Hybrid API: hapi prefix instead of cuda
▶ hapiAddCallback(): invoke provided Charm++ callback function when data

transfer/kernel execution completes, replaces cudaStreamSynchronize()

▶ Ongoing research to address Problem 3 (responsiveness)
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Non-blocking Implementation of Offloading

▶ Use CUDA events to detect completion of GPU work
▶ Each PE maintains a queue of events
▶ Queue is checked in the scheduler before choosing what to execute next
▶ Charm++ callback invoked on completion to continue program flow
▶ Impractical for the user to implement

▶ Unclear where in the program flow the queue should be checked
▶ Unclear how frequent the checking should occur

▶ Alternative: CUDA callback, but single callback thread becomes a bottleneck
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Matmul Code Comparison: Current GPU Manager
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Matmul Code Comparison: CUDA, New GPU Manager

Figure: CUDA
Figure: New API
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Performance Evaluation: Test Environment

▶ Single compute node of OLCF Titan
▶ Up to 8 cores of AMD Opteron 6274 CPU
▶ 32GB DDR3 memory
▶ NVIDIA Tesla K20X GPU
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Performance Evaluation: busywait

▶ Benchmark designed to validate new GPU Manager
▶ Tasks (kernels on GPU) busywait both on CPU and GPU
▶ Vary how much work out of total is offloaded, and how long they take
▶ 3 configurations of task duration:

▶ CPU 1 ms, GPU 10 ms
▶ CPU 10 ms, GPU 1 ms
▶ CPU 10 ms, GPU 10 ms

▶ 8 PEs, 16 chares per PE, 128 chares total, 100 iterations
▶ 32 concurrent kernels with new GPU Manager (vs. 8 without)
▶ Up to 4.79x speedup compared to directly using CUDA
▶ Effectiveness of runtime support depends on application characteristics
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Performance Evaluation: busywait

Figure: Speedup of busywait benchmark
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Performance Evaluation: stencil2d

▶ 2D 5-point iterative stencil benchmark
▶ Evaluate effectiveness under realistic workload
▶ 16,384 x 16,384 grid, decomposed into 512 x 512 blocks (chares)
▶ 8 PEs, 128 chares per PE, 1,024 chares total, 100 iterations
▶ Vary percentage of chares that offload work to GPU
▶ 32 concurrent kernels with new GPU Manager (vs. 8 without)
▶ Up to 2.75x speedup compared to directly using CUDA
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Performance Evaluation: stencil2d

Figure: Execution Time and Speedup of stencil2d benchmark
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GPU Applications: ChaNGa

▶ Cosmological N-body
simulations

▶ Leverages GPU Manager
▶ Offloads physics kernels
▶ Active work in optimization

Figure: ChaNGa GPU Manager Design
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GPU Applications: Recent ChaNGa Results

Figure: ChaNGa dwf1 on 4 XK Nodes of BlueWaters
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GPU Applications: ChaNGa GPU Tree Walk
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Figure: Strategy Comparison
Jianqiao Liu, Purdue University
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GPU Applications: ChaNGa on GPU Generations

Mert Hidayetoglu, University of Illinois
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Conclusion

▶ New GPU Manager: presented as a ACM SRC poster at SC’17
▶ 3 main issues with using GPUs in Charm++

1. Granularity
2. Blocking
3. Responsiveness

▶ Mostly resolved issue #2, but need more work on issues #1 and #3
▶ Interesting research topics with fine-grain tasks and GPUs
▶ Increasing importance of accelerators even for irregular applications
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Thank You
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