

CharmPy: Parallel Programming with
Python Objects

Juan Galvez
April 11, 2018

16th Annual Workshop on Charm++ and its Applicatons

What is CharmPy?
● Parallel/distributed programming framework for Python
● Charm++ programming model (Charm++ for Python)
● High-level, general purpose
● Runs on top of Charm++ runtme (C++)
● Good runtme performance
● Adaptve runtme features: asynchronous remote method

invocaton, dynamic load balancing, automatc
communicaton/computaton overlap

Why CharmPy?
● Python+Charmpy easy to learn/use, many productvity benefts
● Bring Charm++ to Python community

– No high-level & fast & highly-scalable parallel frameworks for Python
● Beneft from Python sofware stack

– Python widely used for data analytcs, machine learning
– Opportunity to bring data and HPC closer

● Cons?
– Potentally, performance, BUT performance can be similar to C++

Charmpy Python-derived benefts
● Productvity (high-level, less lines of code, easy to debug)
● Automatc memory management
● Automatc object serializaton

– No need to defne serializaton (PUP) routnes
– Can customize serializaton if needed

● Easy access to Python sofware libraries (numpy, pandas,
scikit-learn, TensorFlow, etc)

Charmpy-specifc features
● Simplifes Charm++ programming

– Much simpler, more intuitve API
● No specialized languages, preprocessing or

compilaton
– Using refecton/introspecton
– Everything can be expressed in Python
– No interface (ci) fies!

Hello World
#hello_world.py
from charmpy import charm, Chare, Group

class Hello(Chare):
 def sayHi(self, vals):
 print('Hello from PE', charm.myPe(), 'vals=', vals)
 self.contribute(None, None, self.thisProxy[0].done)

 def done(self): charm.exit()

def main(args):
 g = Group(Hello) # create a Group of Hello chares
 g.sayHi([1, 2.33, 'hi'])

charm.start(entry=main)

Run Hello World

$./charmrun +p4 /usr/bin/python3 hello_world.py
similarly on a supercomputer with aprun/srun/…

Hello from PE 0 vals= [1, 2.33, 'hi']
Hello from PE 3 vals= [1, 2.33, 'hi']
Hello from PE 1 vals= [1, 2.33, 'hi']
Hello from PE 2 vals= [1, 2.33, 'hi']

Charmpy components
Other Python libraries/technologies:
numpy, numba, pandas, matplotlib,
scikit-learn, TensorFlow, ...

C / C++ / Fortran / OpenMP

charmlib interface layer

charmpy module

Python
application

ctypes cython

cython

import charmpy

Charm++ shared library
(libcharm.so)

cffi

What about performance?
● Many (compiled) parallel programming languages

proposed over the years for HPC
● Use Python in same way: high-level language driving

machine-optmized compiled code
– Numpy (high-level arrays/matrices API, natve implementaton)
– Numba (JIT compiles Python “math/array” code)
– Cython (compile generic Python to C)

Numba
● Compiles Python to natve machine using LLVM compiler

– Good for loops and numpy array code
@numba.jit
def sum2d(arr):
 M, N = arr.shape
 result = 0.0
 for i in range(M):
 for j in range(N):
 result += arr[i,j]
 return result

a = arange(9).reshape(3,3)
print(sum2d(a))

(from http://numba.pydata.org)

http://numba.pydata.org/

Numba
● Interestng feature:

– Input parameters that are normally variables can be compiled
as constants thanks to JIT compilaton

● Can write CUDA kernels

@numba.jit
def compute(arr, ...)
for x in range(block_size_x):
 for y in range(block_size_y):
 arr[x,y] = ...

Values can be
supplied at
launch, but be
compiled as
constants

Chares are distributed Python objects
● Remote methods invoked like regular Python objects, via proxy:
obj_proxy.doWork(x, y)

● Objects are migratable (handled by Charm++ runtme)
● Method invocaton asynchronous in general (good for

performance)
● Can also do: ret = obj_proxy.getVal(block=True)

– Caller gets value returned by remote method
– Entry method on which call is made needs to be marked as @threaded (runtme will

inform)

Distributed collectons (Groups, Arrays)

group = Group(MyChare) # one instance per PE

array = Array(MyChare, (100,100)) # 2D array, 100x100
 # instances

array.work(x,y,z) # invoke method on all objects in
 # array
array[3,10].work(x,y,z) # invoke method on object with
 # index (3,10)

Reductons
● Reducton (e.g. sum) by elements in a collecton:

● Easy to defne custom reducer functons. Example:
– def mysum(contributions): return sum(contributions)

– self.contribute(A, Reducer.mysum, obj.collectResult)

def work(self, x, y, z):
 A = numpy.arange(100)
 self.contribute(A, Reducer.sum, obj.collectResults)

Benchmark using stencil3d
● In examples/stencil3d, ported from Charm++
● Stencil code, 3D array decomposed into chares
● Full Python applicaton, array/math sectons JIT

compiled with Numba
● Cori KNL 2 nodes, strong scaling from 8 to 128 cores

stencil3d results on Cori KNL

Evoluton of performance

Benchmark using LeanMD
● MD mini-app for Charm++ (

htp://charmplusplus.org/miniApps/#lleanmd)
– Simulates the behavior of atoms based on the Lennard-Jones potental
– Computaton mimics the short-range non-bonded force calculaton in NAMD
– 3D space consistng of atoms decomposed into cells
– In each iteraton, force calculatons done for all pairs of atoms within the

cutof distance
● Ported to Charmpy, full Python applicaton. Physics code and other

numerical code JIT compiled with Numba

http://charmplusplus.org/miniApps/#leanmd

LeanMD results on Blue Waters

Avg difference is 19%

(results not based on latest
Charmpy version)

Serializaton (aka pickling)
● Most Python types, including custom types, can be pickled
● Can customize pickling with __getstate__ and __setstate__

methods
● pickle module implemented in C, recent versions are prety

fast (for built-in types)
– Pickling custom objects not recommended in critcal path

● Charmpy bypasses pickling for certain types like numpy arrays

Shared memory parallelism
● In the Python interpreter, NO

– CPython (most common Python implementaton) stll can’t run
multple threads concurrently

● Outside the interpreter, YES
– Numpy internally runs compiled code, can use multple threads

(Intel Python + numpy seems to be very good at this)
– Access external OpenMP code from Python
– Numba parallel loops

Summary
● Easy way to write parallel programs based on Charm++ model
● Good runtme performance

– Critcal sectons of Charmpy runtme in C with Cython
– Most of the runtme is C++

● High performance using NumPy, Numba, Cython, interactng
with natve code

● Easy access to Python libraries, like SciPy and PyData stacks

Thank you!
● More resources:
● Documentaton and tutorial at

htp://charmpy.readthedocs.io
● Examples in project repo:

htps://github.com/UIUC-PPL/charmpy

http://charmpy.readthedocs.io/
https://github.com/UIUC-PPL/charmpy

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

