
Exploiting Computation and Communication Overlap in 
MVAPICH2 MPI Library

Dhabaleswar K. (DK) Panda

The Ohio State University
E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

Keynote Talk at Charm++ Workshop (April ‘18)

by

http://www.cse.ohio-state.edu/%7Epanda


Charm++ Workshop (April ’18) 2Network Based Computing Laboratory

High-End Computing (HEC): Towards Exascale

Expected to have an ExaFlop system in 2020-2022!

100 PFlops in 
2016

1 EFlops in 2020-
2022?



Charm++ Workshop (April ’18) 3Network Based Computing Laboratory

Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory
Logical shared memory

Shared Memory Model

SHMEM, DSM
Distributed Memory Model 

MPI (Message Passing Interface)
Partitioned Global Address Space (PGAS)

Global Arrays, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems
– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• PGAS models and Hybrid MPI+PGAS models are gradually receiving 
importance

• Task-based models (Charm++) are getting used extensively



Charm++ Workshop (April ’18) 4Network Based Computing Laboratory

Supporting  Programming Models for Multi-Petaflop and 
Exaflop Systems: Challenges 

Programming Models
MPI, PGAS (UPC, Global Arrays, OpenSHMEM), CUDA, OpenMP, 
OpenACC, Charm++, Hadoop (MapReduce), Spark (RDD, DAG)

Application Kernels/Applications

Networking Technologies
(InfiniBand, 40/100GigE, 

Aries, and Omni-Path)

Multi-/Many-core
Architectures

Accelerators
(GPU and FPGA)

Middleware
Co-Design 

Opportunities 
and 

Challenges 
across Various 

Layers

Performance
Scalability
Resilience

Communication Library or Runtime for Programming Models
Point-to-point 

Communication
Collective 

Communication
Energy-

Awareness
Synchronization 

and Locks
I/O and

File Systems
Fault

Tolerance



Charm++ Workshop (April ’18) 5Network Based Computing Laboratory

Basic Concept of Overlapping Communication with 
Computation

Networking 
Technology

Runtime (MPI, 
Charm++)

Application

Design Runtime Primitives Exploiting
Overlap Capabilities of 
Network Mechanisms

Take Advantage of Overlap
- Transparently

- Co-design 



Charm++ Workshop (April ’18) 6Network Based Computing Laboratory

Overview of the MVAPICH2 Project
• High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)

– MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002

– MVAPICH2-X (MPI + PGAS), Available since 2011

– Support for GPGPUs  (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014

– Support for Virtualization (MVAPICH2-Virt), Available since 2015

– Support for Energy-Awareness (MVAPICH2-EA), Available since 2015

– Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015

– Used by more than 2,875 organizations in 86 countries

– More than 462,000 (> 0.46 million) downloads from the OSU site directly

– Empowering many TOP500 clusters (Nov ‘17 ranking)
• 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China 

• 9th, 556,104 cores (Oakforest-PACS) in Japan

• 12th, 368,928-core (Stampede2) at TACC 

• 17th, 241,108-core (Pleiades) at NASA 

• 48th, 76,032-core (Tsubame 2.5) at Tokyo Institute of Technology

– Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)

– http://mvapich.cse.ohio-state.edu

• Empowering Top500 systems for over a decade

http://mvapich.cse.ohio-state.edu/


Charm++ Workshop (April ’18) 7Network Based Computing Laboratory

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000
Se

p-
04

Fe
b-

05

Ju
l-0

5

De
c-

05

M
ay

-0
6

O
ct

-0
6

M
ar

-0
7

Au
g-

07

Ja
n-

08

Ju
n-

08

N
ov

-0
8

Ap
r-

09

Se
p-

09

Fe
b-

10

Ju
l-1

0

De
c-

10

M
ay

-1
1

O
ct

-1
1

M
ar

-1
2

Au
g-

12

Ja
n-

13

Ju
n-

13

N
ov

-1
3

Ap
r-

14

Se
p-

14

Fe
b-

15

Ju
l-1

5

De
c-

15

M
ay

-1
6

O
ct

-1
6

M
ar

-1
7

Au
g-

17

Ja
n-

18

N
um

be
r o

f D
ow

nl
oa

ds

Timeline

M
V 

0.
9.

4

M
V2

 0
.9

.0

M
V2

 0
.9

.8

M
V2

1.
0

M
V

1.
0

M
V2

1.
0.

3

M
V

1.
1

M
V2

1.
4

M
V2

1.
5

M
V2

1.
6

M
V2

1.
7

M
V2

1.
8

M
V2

1.
9

M
V2

-G
D

R 
2.

0b

M
V2

-M
IC

 2
.0

M
V2

-G
D

R 
 2

.3
a

M
V2

-X
2.

3b
M

V2
Vi

rt
 2

.2

M
V2

  2
.3

rc
1

O
SU

 IN
AM

 0
.9

.3

MVAPICH2 Release Timeline and Downloads



Charm++ Workshop (April ’18) 8Network Based Computing Laboratory

Architecture of MVAPICH2 Software Family

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-
point 

Primitives

Collectives 
Algorithms

Energy-

Awareness

Remote 
Memory 
Access

I/O and

File Systems

Fault

Tolerance
Virtualization Active 

Messages
Job Startup

Introspection 
& Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi, ARM, NVIDIA GPGPU)

Transport Protocols Modern Features

RC XRC UD DC UMR ODP
SR-
IOV

Multi 
Rail

Transport Mechanisms
Shared 

Memory
CMA IVSHMEM

Modern Features

MCDRAM* NVLink* CAPI*

* Upcoming

XPMEM*



Charm++ Workshop (April ’18) 9Network Based Computing Laboratory

MVAPICH2 Software Family 
High-Performance Parallel Programming Libraries

MVAPICH2 Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

MVAPICH2-X Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and 
MPI+PGAS programming models with unified communication runtime

MVAPICH2-GDR Optimized MPI for clusters with NVIDIA GPUs

MVAPICH2-Virt High-performance and scalable MPI for hypervisor and container based HPC cloud

MVAPICH2-EA Energy aware and High-performance MPI

MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Microbenchmarks

OMB Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++) 
libraries for CPUs and GPUs

Tools

OSU INAM Network monitoring, profiling, and analysis for clusters with MPI and scheduler 
integration

OEMT Utility to measure the energy consumption of MPI applications



Charm++ Workshop (April ’18) 10Network Based Computing Laboratory

• MVAPICH2/MVAPICH2-X
– Job Startup

– Point-to-point Communication

– Remote Memory Access (RMA)

– Collective Communication

• MVAPICH2-GDR
– Support for InfiniBand Core-Direct

– GPU-kernel based Reduction

– Datatype Processing

• Deep Learning Application: OSU Caffe

Presentation Outline



Charm++ Workshop (April ’18) 11Network Based Computing Laboratory

MPI_Init

Application

Exchange Addresses

Obtain Endpoint Address
Initialize HCA

Compute / Communicate
Set Up Problem
Read Input Files

P0 P1 P2 P3

MPI_Init

Application

Ex
ch

an
ge

 A
dd

re
ss

es

Obtain Endpoint Address
Initialize HCA

P0 P1 P2 P3

Communication 
Independent Tasks

Set Up Problem
Read Input Files

Compute / Communicate

Overlapping Application Compute with MPI Startup

No Overlap between MPI_Init and 
Application Computation

MPI can continue to initialize in the 
background while Application starts



Charm++ Workshop (April ’18) 12Network Based Computing Laboratory

• Near-constant MPI and OpenSHMEM 
initialization time at any process count

• 10x and 30x improvement in startup time 
of  MPI and OpenSHMEM respectively at 
16,384 processes

• Memory consumption reduced for 
remote endpoint information by 
O(processes per node)

• 1GB Memory saved per node with 1M 
processes and 16 processes per node

Towards High Performance and Scalable Startup at Exascale

P M

O

Job Startup Performance

M
em

or
y 

Re
qu

ire
d 

to
 S

to
re

 
En

dp
oi

nt
 In

fo
rm

at
io

n
a b c d

eP

M

PGAS – State of the art

MPI – State of the art

O PGAS/MPI – Optimized

PMIX_Ring

PMIX_Ibarrier

PMIX_Iallgather

Shmem based PMI

b

c

d

e

a On-demand 
Connection

On-demand Connection Management for OpenSHMEM and OpenSHMEM+MPI. S. Chakraborty, H. Subramoni, J. Perkins, A. A. Awan, and D K 
Panda, 20th International Workshop on High-level Parallel Programming Models and Supportive Environments (HIPS ’15)

PMI Extensions for Scalable MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, J. Perkins, M. Arnold, and D K Panda, Proceedings of the 21st 
European MPI Users' Group Meeting (EuroMPI/Asia ’14)

Non-blocking PMI Extensions for Fast MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, A. Venkatesh, J. Perkins, and D K Panda, 15th 
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’15)

SHMEMPMI – Shared Memory based PMI for Improved Performance and Scalability. S. Chakraborty, H. Subramoni, J. Perkins, and D K Panda, 16th 
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’16) 

a

b

c d

e



Charm++ Workshop (April ’18) 13Network Based Computing Laboratory

Startup Performance on KNL + Omni-Path

0

50

100

150

200
64 12

8
25

6
51

2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

18
1K

23
2K

M
PI

_I
ni

t (
Se

co
nd

s)

Number of Processes

MPI_Init - TACC Stampede-KNL

Intel MPI 2018 beta

MVAPICH2 2.3a

0

5

10

15

20

25

64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

Ti
m

e 
Ta

ke
n 

(S
ec

on
ds

)

Number of Processes

MPI_Init & Hello World - Oakforest-PACS

Hello World (MVAPICH2-2.3a)

MPI_Init (MVAPICH2-2.3a)

• MPI_Init takes 51 seconds on 231,956 processes on 3,624 KNL nodes (Stampede – Full scale)
• 8.8 times faster than Intel MPI at 128K processes (Courtesy: TACC)
• At 64K processes, MPI_Init and Hello World takes 5.8s and 21s respectively (Oakforest-PACS)
• All numbers reported with 64 processes per node

5.8s

21s

51s

8.8x

New designs available in MVAPICH2-2.3a and as patch for SLURM-15.08.8 and SLURM-16.05.1



Charm++ Workshop (April ’18) 14Network Based Computing Laboratory

• SHMEMPMI allows MPI processes to directly read remote endpoint (EP) information from the process 
manager through shared memory segments

• Only a single copy per node - O(processes per node) reduction in memory usage 

• Estimated savings of 1GB per node with 1 million processes and 16 processes per node

• Up to 1,000 times faster PMI Gets compared to default design

• Available since MVAPICH2 2.2rc1 and SLURM-15.08.8

Process Management Interface (PMI) over Shared Memory (SHMEMPMI)

0
50

100
150
200
250
300

1 2 4 8 16 32Ti
m

e 
Ta

ke
n 

(m
ill

ise
co

nd
s)

Number of Processes per Node

Time Taken by one PMI_Get
Default

SHMEMPMI

0.0001
0.001

0.01
0.1

1
10

100
1000

10000

16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

M
em

or
y U

sa
ge

 p
er

 N
od

e 
(M

B)
Number of Processes per Job

Memory Usage for Remote EP Information
Fence - Default
Allgather - Default
Fence - Shmem
Allgather - Shmem

Estimated
10

00
x

Actual

16x



Charm++ Workshop (April ’18) 15Network Based Computing Laboratory

On-demand Connection Management for OpenSHMEM+MPI

0

5

10

15

20

25

30

35

32 64 128 256 512 1K 2K 4K

Ti
m

e 
Ta

ke
n 

(S
ec

on
ds

)

Number of Processes

Breakdown of OpenSHMEM Startup

Connection Setup

PMI Exchange

Memory Registration

Shared Memory Setup

Other

0

20

40

60

80

100

120

16 32 64 128 256 512 1K 2K 4K 8K

Ti
m

e 
Ta

ke
n 

(S
ec

on
ds

)

Number of Processes

Performance of OpenSHMEM 
Initialization and Hello World

Hello World - Static

Initialization - Static

Hello World - On-demand

Initialization - On-demand

• Static connection establishment wastes memory and takes a lot of time

• On-demand connection management  improves OpenSHMEM initialization time by 29.6 times

• Time taken for Hello World reduced by 8.31 times at 8,192 processes

• Available since MVAPICH2-X 2.1rc1



Charm++ Workshop (April ’18) 16Network Based Computing Laboratory

• MVAPICH2/MVAPICH2-X
– Job Startup

– Point-to-point Communication

– Remote Memory Access (RMA)

– Collective Communication

• MVAPICH2-GDR
– Support for InfiniBand Core-Direct

– GPU-kernel based Reduction

– Datatype Processing

• Deep Learning Application: OSU Caffe

Presentation Outline



Charm++ Workshop (April ’18) 17Network Based Computing Laboratory

Application

MPI Library

High-Performance Networks

– Good communication performance for smaller messages

– No synchronization required between sender and receiver

– Cost of extra copies is high for large messages

Communication Costs of Point-to-point Protocols - Eager

Application 
Data

Pre-registered Communication 
Buffers

Pre-registered Communication 
Buffers

Buffer #1 Buffer #1Buffer #n Buffer #n

Application 
Data

Cost: 
Memcpy

Cost:
Memcpy

Cost:
Network Transfer



Charm++ Workshop (April ’18) 18Network Based Computing Laboratory

Communication Costs of Point-to-point Protocols - Rendezvous

Cost:
Half RTT

Cost:
Half RTT

Cost:
Network Transfer

Cost:
Half RTT

– Avoid extra copies for larger messages

– Synchronization required between sender and receiver

– Can be based on RDMA Read or RDMA Write (shown here)



Charm++ Workshop (April ’18) 19Network Based Computing Laboratory

• Application processes schedule communication operation

• Network adapter progresses communication in the background

• Application process free to perform useful compute in the foreground

• Overlap of computation and communication => Better Overall 
Application Performance

• Increased buffer requirement

• Poor communication performance if used for all types of 
communication operations

Analyzing Overlap Potential of Eager Protocol

Application
Process

Application
Process

Network Interface
Card

Network Interface
Card

Schedule
Send

Operation

Schedule
Receive

Operation

Check for
Completion

Check for
Completion

Complete Complete

Impact of changing Eager Threshold on performance of multi-pair
message-rate benchmark with 32 processes on Stampede

Computation Communication Progress



Charm++ Workshop (April ’18) 20Network Based Computing Laboratory

• Application processes schedule communication 
operation

• Application process free to perform useful compute in 
the foreground

• Little communication progress in the background

• All communication takes place at final synchronization

• Reduced buffer requirement

• Good communication performance if used for large 
message sizes and operations where communication 
library is progressed frequently

• Poor overlap of computation and communication => 
Poor Overall Application Performance

Analyzing Overlap Potential of Rendezvous Protocol
Application

Process
Application

Process
Network Interface

Card
Network Interface

Card

Schedule
Send

Operation

Schedule
Receive

Operation

RTS

Check for
Completion

Check for
Completion

Not Complete

Not Complete

CTS

Check for
Completion

Check for
Completion

Not Complete

Not Complete

Check for
Completion

Check for
Completion

Complete

Complete

Computation Communication Progress



Charm++ Workshop (April ’18) 21Network Based Computing Laboratory

Impact of Tuning Rendezvous Threshold on 3D-Stencil

0

5

10

15

20

25

30

35
1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K

La
te

nc
y 

(m
s)

Message Size (Bytes)

Communication Time

Default

Tuned

0

20

40

60

80

100

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K

O
ve

rla
p 

(%
)

Message Size (Bytes)

Overlap Potential

Default

Tuned
0

10

20

30

40

50

60

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K

La
te

nc
y 

(m
s)

Message Size (Bytes)

Overall Performance

Default

Tuned

• Increased eager threshold from 16KB to 512KB

• Very small degradation in raw communication performance

• Significant improvement in overlap of computation and communication

• ~18% Improvement in overall performance

MV2_IBA_EAGER_THRESHOLD=512K
MV2_SMP_EAGERSIZE=512K

(Applicable to both InfiniBand and 
Omni-Path)

8192 Processes, SandyBridge + FDR



Charm++ Workshop (April ’18) 22Network Based Computing Laboratory

Impact of Tuning Rendezvous Protocol on 3D-Stencil

• RDMA Read based protocol (RGET) used instead of RDMA Write

• Very minor penalty in raw performance

• Offers more overlap due to less synchronization overhead

• Up to 15% improvement in overall execution time

MV2_RNDV_PROTOCOL=RGET

(Applicable to InfiniBand)

64 Processes, Broadwell + EDR

0
1
2
3
4
5
6
7
8

La
te

nc
y 

(u
s)

Message Size (Bytes)

Communication Time

Default

Tuned

0

20

40

60

80

100

O
ve

rla
p 

(%
)

Message Size (Bytes)

Overlap Potential

Default

Tuned

0

2

4

6

8

10

12

La
te

nc
y 

(u
s)

Message Size (Bytes)

Overall Performance

Default

Tuned



Charm++ Workshop (April ’18) 23Network Based Computing Laboratory

Dynamic and Adaptive MPI Point-to-point Communication 
Protocols

• Different communication protocols have different trade-offs
– Need to consider performance, overlap, memory requirement

– Manual tuning is difficult and time-consuming

• Can the MPI library select the best protocol at runtime?
– Use different protocols and thresholds between different pair of processes

– Deliver good performance and minimize resource consumption

– Dynamically adapt to the application’s communication requirements at runtime

Design Metrics: Overlap & Memory Requirement Metrics: Performance & Productivity

Default Poor overlap;  Low memory requirement Low Performance; High Productivity

Manually Tuned Good overlap; High memory requirement High Performance; Low Productivity

Dynamic + Adaptive Good overlap; Optimal memory requirement High Performance; High Productivity



Charm++ Workshop (April ’18) 24Network Based Computing Laboratory

Dynamic and Adaptive MPI Point-to-point Communication Protocols (Cont.)

Process on Node 1 Process on Node 2

Eager Threshold for Example Communication Pattern with Different Designs

0 1 2 3

4 5 6 7

Default

16 KB 16 KB 16 KB 16 KB

0 1 2 3

4 5 6 7

Manually Tuned

128 KB 128 KB 128 KB 128 KB

0 1 2 3

4 5 6 7

Dynamic + Adaptive

32 KB 64 KB 128 KB 32 KB

H. Subramoni, S. Chakraborty, D. K. Panda, Designing Dynamic & Adaptive MPI Point-to-Point Communication Protocols for Efficient Overlap of Computation & Communication, ISC'17 - Best Paper

0

100

200

300

400

500

600

128 256 512 1K

W
al

l C
lo

ck
 T

im
e 

(s
ec

on
ds

)

Number of Processes

Execution Time of Amber

Default Threshold=17K Threshold=64K

Threshold=128K Dynamic Threshold

0

2

4

6

8

10

128 256 512 1KRe
la

tiv
e 

M
em

or
y 

Co
ns

um
pt

io
n

Number of Processes

Relative Memory Consumption of Amber

Default Threshold=17K Threshold=64K

Threshold=128K Dynamic Threshold

Process Pair Eager Threshold (KB)

0 – 4 32

1 – 5 64

2 – 6 128

3 – 7 32

Desired Eager Threshold



Charm++ Workshop (April ’18) 25Network Based Computing Laboratory

• MVAPICH2/MVAPICH2-X
– Job Startup

– Point-to-point Communication

– Remote Memory Access (RMA)

– Collective Communication

• MVAPICH2-GDR
– Support for InfiniBand Core-Direct

– GPU-kernel based Reduction

– Datatype Processing

• Deep Learning Application: OSU Caffe

Presentation Outline



Charm++ Workshop (April ’18) 26Network Based Computing Laboratory

• Non-blocking one-sided communication routines 

– Put, Get  (Rput, Rget)

– Accumulate, Get_accumulate

– Atomics

• Flexible synchronization operations to control initiation and completion

MPI-3 RMA: Communication and synchronization  Primitives

MPI One-sided Synchronization/Completion Primitives 

Synchronization Completion Win_sync

Lock/
Unlock

Lock_all/
Unlock_all

Fence

Post-Wait/
Start-Complete

Flush

Flush_all

Flush_local

Flush_local_all

MVAPICH2 supports all 
RMA communication with 

Best performance and overlap



Charm++ Workshop (April ’18) 27Network Based Computing Laboratory

0

20

40

60

80

100

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

O
ve

rla
p 

(%
)

Message Size (Bytes)

MPI_Put with Lock/Unlock and MPI_Win_flush

MVAPICH2-2.3rc1

MVAPICH2-2.3rc1
Intel Haswell  (E5-2687W @ 3.10 GHz) node - 20 cores

Mellanox Connect-X4 EDR HCA
Mellanox OFED 4.3

Overlap between Computation and RMA Operations

• 67-99% overlap between MPI_Put and computation

• 75-99% overlap between MPI_Get and computation

0

20

40

60

80

100

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

O
ve

rla
p 

(%
)

Message Size (Bytes)

MPI_Get with Lock/Unlock and MPI_Win_flush

MVAPICH2-2.3rc1



Charm++ Workshop (April ’18) 28Network Based Computing Laboratory

• Proposed design performs better than default implementation

• For Weakly Connected Components (WCC) on 256 cores, proposed design could 
reduce the total execution time by 2X compared with the default scheme

Graph Processing Framework with Optimized MPI RMA

0

100

200

300

400

500

64 128 256

Ex
ec

ut
io

n
Ti

m
e

(s
)

#Cores

Mizan-Default
Mizan-RMA-Opt

Better

PageRank with LiveJournal1

0
20
40
60
80

100
120
140
160

64 128 256

Ex
ec

ut
io

n
Ti

m
e

(s
)

#Cores

Mizan-Default
Mizan-RMA-Opt

WCC with LiveJournal1

2X
3X

M. Li, X. Lu, K. Hamidouche, J. Zhang and D. K. Panda, "Mizan-RMA: Accelerating Mizan Graph Processing Framework with MPI RMA," IEEE HiPC, 2016



Charm++ Workshop (April ’18) 29Network Based Computing Laboratory

• Proposed design shows good strong scaling

• Proposed design scales better than default implementation 

Graph Processing Framework with Optimized MPI RMA

0

200

400

600

800

1000

1200

1400

256 384 512 640

To
ta

l E
xe

cu
tio

n 
Ti

m
e 

(s
)

Applications (128 Processes)

Mizan-Default
Mizan-RMA-Opt

2.5X

PageRank with Arabic Dataset

Better

M. Li, X. Lu, K. Hamidouche, J. Zhang and D. K. Panda, "Mizan-RMA: Accelerating Mizan Graph Processing Framework with MPI RMA," IEEE HiPC, 2016



Charm++ Workshop (April ’18) 30Network Based Computing Laboratory

• MVAPICH2/MVAPICH2-X
– Job Startup

– Point-to-point Communication

– Remote Memory Access (RMA)

– Collective Communication

• MVAPICH2-GDR
– Support for InfiniBand Core-Direct

– GPU-kernel based Reduction

– Datatype Processing

• Deep Learning Application: OSU Caffe

Presentation Outline



Charm++ Workshop (April ’18) 31Network Based Computing Laboratory

Collective Communication in MVAPICH2

Run-time flags:
All shared-memory based collectives :   MV2_USE_SHMEM_COLL (Default: ON)
Hardware Mcast-based collectives      :   MV2_USE_MCAST (Default : OFF)
CMA-based collectives                           :   MV2_USE_CMA_COLL (Default : ON)

Multi/Many-Core 
Aware Designs

Blocking and Non-Blocking 
Collective Algorithms in MV2

Conventional 
(Flat)

Inter-Node
Communication

Intra-Node 
Communication

Point to Point
(SHMEM, 

LiMIC, CMA, 
XPMEM)

Direct Shared 
Memory

Direct Kernel 
Assisted

(CMA, XPMEM, 
LiMIC)

Point to 
Point

Hardware 
Multicast SHARP RDMA

Designed for Performance & Overlap



Charm++ Workshop (April ’18) 32Network Based Computing Laboratory

Hardware Multicast-aware MPI_Bcast on TACC Stampede

0
5

10
15
20
25
30
35
40

2 8 32 128 512

La
te

nc
y 

 (u
s)

Message Size (Bytes)

Small Messages (102,400 Cores)
Default
Multicast

0

100

200

300

400

500

2K 8K 32K 128K

La
te

nc
y 

 (u
s)

Message Size (Bytes)

Large Messages (102,400 Cores)
Default
Multicast

0

10

20

30

La
te

nc
y 

(u
s)

Number of Nodes

16 Byte Message

Default
Multicast

0

50

100

150

200

La
te

nc
y 

(u
s)

Number of Nodes

32 KByte Message

Default
Multicast

• MCAST-based  designs improve latency of MPI_Bcast by up to  85%

• Use MV2_USE_MCAST=1 to enable MCAST-based designs

80%

85%



Charm++ Workshop (April ’18) 33Network Based Computing Laboratory

Optimized CMA-based Collectives for Large Messages

1

10

100

1000

10000

100000

1000000
1K 2K 4K 8K 16

K
32

K
64

K
12

8K
25

6K
51

2K 1M 2M 4M
Message Size

KNL (2 Nodes, 128 Procs)

MVAPICH2-2.3a

Intel MPI 2017

OpenMPI 2.1.0

Tuned CMA

La
te

nc
y 

(u
s)

1

10

100

1000

10000

100000

1000000

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M

Message Size

KNL (4 Nodes, 256 Procs)

MVAPICH2-2.3a

Intel MPI 2017

OpenMPI 2.1.0

Tuned CMA
1

10

100

1000

10000

100000

1000000

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

Message Size

KNL (8 Nodes, 512 Procs)

MVAPICH2-2.3a

Intel MPI 2017

OpenMPI 2.1.0

Tuned CMA

• Significant improvement over existing implementation for Scatter/Gather with 
1MB messages (up to 4x on KNL, 2x on Broadwell, 14x on OpenPower)

• New two-level algorithms for better scalability
• Improved performance for other collectives (Bcast, Allgather, and Alltoall)

~ 2.5x
Better

~ 3.2x
Better

~ 4x
Better

~ 17x
Better

S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI 
Collectives for Multi/Many-core Systems, IEEE Cluster ’17, BEST Paper Finalist

Performance of MPI_Gather on KNL nodes (64PPN)

Available in MVAPICH2-X 2.3b



Charm++ Workshop (April ’18) 34Network Based Computing Laboratory

Shared Address Space (XPMEM)-based Collectives Design

1

10

100

1000

10000

100000

16K 32K 64K 128K 256K 512K 1M 2M 4M

La
te

nc
y 

(u
s)

Message Size

MVAPICH2-2.3b
IMPI-2017v1.132
MVAPICH2-Opt

OSU_Allreduce (Broadwell 256 procs)

• “Shared Address Space”-based true zero-copy Reduction collective designs in MVAPICH2

• Offloaded computation/communication to peers ranks in reduction collective operation

• Up to 4X improvement for 4MB Reduce and up to 1.8X improvement for 4M AllReduce

73.2

1.8X

1

10

100

1000

10000

100000

16K 32K 64K 128K 256K 512K 1M 2M 4M
Message Size

MVAPICH2-2.3b

IMPI-2017v1.132

MVAPICH2-Opt

OSU_Reduce (Broadwell 256 procs)

4X

36.1

37.9

16.8

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. Panda, Designing Efficient Shared Address Space Reduction 
Collectives for Multi-/Many-cores, International Parallel & Distributed Processing Symposium (IPDPS '18), May 2018.

Will be available in future



Charm++ Workshop (April ’18) 35Network Based Computing Laboratory

Application-Level Benefits of XPMEM-Based Collectives

MiniAMR (Broadwell, ppn=16) 

• Up to 20% benefits over IMPI for CNTK DNN training using AllReduce
• Up to 27% benefits over IMPI and up to 15% improvement over MVAPICH2 for 

MiniAMR application kernel

0

200

400

600

800

28 56 112 224

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

No. of Processes

IMPI-2017v1.132
MVAPICH2-2.3b
MVAPICH2-Opt

CNTK AlexNet Training 
(Broadwell, B.S=default, iteration=50, ppn=28)

0

20

40

60

80

16 32 64 128 256

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

No. of Processes

IMPI-2017v1.132
MVAPICH2-2.3b
MVAPICH2-Opt20%

9%

27%

15%



Charm++ Workshop (April ’18) 36Network Based Computing Laboratory

Problems with Blocking Collective Operations
Application

Process
Application

Process
Application

Process
Application

Process
Computation

Communication

• Communication time cannot be used for compute
– No overlap of computation and communication

– Inefficient 



Charm++ Workshop (April ’18) 37Network Based Computing Laboratory

• Application processes schedule collective operation

• Check periodically if operation is complete

• Overlap of computation and communication => Better Performance

• Catch: Who will progress communication 

Concept of Non-blocking Collectives
Application

Process
Application

Process
Application

Process
Application

Process

Computation

Communication

Communication
Support Entity

Communication
Support Entity

Communication
Support Entity

Communication
Support Entity

Schedule
Operation

Schedule
Operation

Schedule
Operation

Schedule
Operation

Check if
Complete

Check if
Complete

Check if
Complete

Check if
Complete

Check if
Complete

Check if
Complete

Check if
Complete

Check if
Complete



Charm++ Workshop (April ’18) 38Network Based Computing Laboratory

• Enables overlap of computation with communication

• Non-blocking calls do not match blocking collective calls
– MPI  may use different algorithms for blocking and non-blocking collectives

– Blocking collectives: Optimized for latency

– Non-blocking collectives: Optimized for overlap

• A process calling a NBC operation
– Schedules collective operation and immediately returns

– Executes application computation code

– Waits for the end of the collective

• The communication progress by
– Application code through MPI_Test

– Network adapter (HCA) with hardware support

– Dedicated processes / thread in MPI library

• There is a non-blocking equivalent for each blocking operation 
– Has an “I” in the name

• MPI_Bcast -> MPI_Ibcast; MPI_Reduce  -> MPI_Ireduce

Non-blocking Collective (NBC) Operations



Charm++ Workshop (April ’18) 39Network Based Computing Laboratory

void main()

{

MPI_Init()

…..

MPI_Ialltoall(…)

Computation that does not depend on result of Alltoall

MPI_Test(for Ialltoall) /* Check if complete (non-blocking) */

Computation that does not depend on result of Alltoall

MPI_Wait(for Ialltoall) /* Wait till complete (Blocking) */

…

MPI_Finalize()

}

How do I write applications with NBC?



Charm++ Workshop (April ’18) 40Network Based Computing Laboratory

P3DFFT Performance with Non-Blocking Alltoall using RDMA Primitives

• Weak scaling experiments; problem size increases with job size

• RDMA-Aware delivers 19% improvement over Default @ 8,192 procs

• Default-Thread exhibits worst performance
– Possibly because threads steal CPU cycles from P3DFFT

– Do not consider for large scale experiments

0

2

4

6

8

10

12

14

128 256 512 1K 2K 4K 8K

CP
U

 T
im

e 
Pe

r L
oo

p 
(S

ec
on

ds
)

Number of Processes

Large Scale Runs

Default RDMA-Aware

0
2
4
6
8

10
12
14
16

128 256 512CP
U

 T
im

e 
Pe

r L
oo

p 
(S

ec
on

ds
)

Number of Processes

Small Scale Runs

Default RDMA-Aware Default-Thread 19%

Designing Non-Blocking Personalized Collectives with Near Perfect Overlap for RDMA-Enabled Clusters, H. Subramoni , 
A. Awan , K. Hamidouche , D. Pekurovsky , A. Venkatesh , S. Chakraborty , K. Tomko , and D. K. Panda, ISC '15, Jul 2015

Will be available in future



Charm++ Workshop (April ’18) 41Network Based Computing Laboratory

 Management and execution of MPI operations in the 
network by using SHArP
 Manipulation of data while it is being transferred in the switch 

network

 SHArP provides an abstraction to realize the reduction 
operation
 Defines Aggregation Nodes (AN), Aggregation Tree, and 

Aggregation Groups

 AN logic is implemented as an InfiniBand Target Channel 
Adapter (TCA) integrated into the switch ASIC *

 Uses RC for communication between ANs and between AN and 
hosts in the Aggregation Tree * 

Offloading with Scalable Hierarchical Aggregation Protocol (SHArP)

Physical Network Topology*

Logical SHArP Tree** Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu


Charm++ Workshop (April ’18) 42Network Based Computing Laboratory

0
1
2
3
4
5
6
7
8
9

4 8 16 32 64 128

Pu
re

 C
om

m
un

ic
at

io
n 

La
te

nc
y 

(u
s)

Message Size (Bytes)

1 PPN*, 8 NodesMVAPICH2

MVAPICH2-SHArP

0
5

10
15
20
25
30
35
40
45
50

4 8 16 32 64 128Co
m

m
un

ic
at

io
n-

Co
m

pu
ta

tio
n 

 O
ve

rla
p 

(%
)

Message Size (Bytes)

1 PPN, 8 Nodes
MVAPICH2

MVAPICH2-SHArP

Evaluation of SHArP based Non Blocking Allreduce

MPI_Iallreduce Benchmark

2.3x

*PPN: Processes Per Node 

• Complete offload of Allreduce collective operation to Switch helps to have 
much higher overlap of communication and computation

Low
er is Better

Hi
gh

er
 is

 B
et

te
r

Available since MVAPICH2 2.3a



Charm++ Workshop (April ’18) 43Network Based Computing Laboratory

• Mellanox’s ConnectX-2, ConnectX-3, ConnectIB, ConnectX-4, and ConnectX-5 
adapters feature “task-list” offload interface

– Extension to existing InfiniBand APIs 

• Collective communication with `blocking’ feature is usually a scaling bottleneck
– Matches with the need for non-blocking collective in MPI

• Accordingly MPI software stacks need to be re-designed to leverage offload in a 
comprehensive manner

• Can applications be modified to take advantage of non-blocking collectives and 
what will be the benefits?

Collective Offload in ConnectX-2, ConnectX-3, Connect-IB 
and ConnectX-4, ConnectX-5



Charm++ Workshop (April ’18) 44Network Based Computing Laboratory

Application

Collective Offload Support in ConnectX InfiniBand Adapter 
(Recv followed by Multi-Send)

• Sender creates a task-list consisting of only send and wait 
WQEs

– One send WQE is created for each registered receiver and is 
appended to the rear of a singly linked task-list

– A wait WQE is added to make the ConnectX-2 HCA wait for 
ACK packet from the receiver

InfiniBand HCA

Physical Link

Send Q

Recv Q

Send CQ

Recv CQ

DataData

M
CQ

MQ

Task List
Send WaitSendSendSend Wait



Charm++ Workshop (April ’18) 45Network Based Computing Laboratory

Co-designing HPL with Core-Direct and Performance Benefits

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70N
or

m
al

ize
d 

H
PL

 P
er

fo
rm

an
ce

 

HPL Problem Size (N) as % of Total Memory

HPL-Offload HPL-1ring HPL-Host

HPL Performance Comparison with 512 Processes 
HPL-Offload consistently offers higher throughput than HPL-1ring and HPL-
Host. Improves peak throughput by up to 4.5 % for large problem sizes

4.5%

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000

0
10
20
30
40
50
60
70
80
90

64 128 256 512

Th
ro

ug
hp

ut
 (G

Fl
op

s)

M
em

or
y 

C
on

su
m

pt
io

n 
(%

)

System Size (Number of Processes)

HPL-Offload HPL-1ring HPL-Host
HPL-Offload HPL-1ring HPL-Host

HPL-Offload surpasses the peak throughput of HPL-1ring with 
significantly smaller problem sizes and run-times! 

K. Kandalla, H. Subramoni, J. Vienne, S. Pai Raikar, K. Tomko, S. Sur, and D K Panda,
Designing Non-blocking Broadcast with Collective Offload on InfiniBand Clusters: A Case Study with HPL, (HOTI 2011)



Charm++ Workshop (April ’18) 46Network Based Computing Laboratory

Pre-conditioned Conjugate Gradient (PCG) Solver Performance 
with Non-Blocking Allreduce based on CX-2 Collective Offload

0

5

10

15

64 128 256 512

Ru
n-

Ti
m

e 
(s

)

Number of Processes

PCG-Default Modified-PCG-Offload

64,000 unknowns per process.
Modified PCG with Offload-Allreduce performs 21% better than default PCG 

21.8%

K. Kandalla, U. Yang, J. Keasler, T. Kolev, A. Moody, H. Subramoni, K. Tomko,  J. Vienne and D. K. Panda, Designing Non-blocking
Allreduce with Collective Offload on InfiniBand Clusters: A Case Study with Conjugate Gradient Solvers, IPDPS ’12, May 2012.



Charm++ Workshop (April ’18) 47Network Based Computing Laboratory

• MVAPICH2/MVAPICH2-X
– Job Startup

– Point-to-point Communication

– Remote Memory Access (RMA)

– Collective Communication

• MVAPICH2-GDR
– Support for InfiniBand Core-Direct

– GPU-kernel based Reduction

– Datatype Processing

• Deep Learning Application: OSU Caffe

Presentation Outline



Charm++ Workshop (April ’18) 48Network Based Computing Laboratory

At Sender:

At Receiver:
MPI_Recv(r_devbuf, size, …);

inside
MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0) 

• Overlaps data movement from GPU with RDMA transfers 

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU 



Charm++ Workshop (April ’18) 49Network Based Computing Laboratory

CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.3 Releases

• Support for MPI communication from NVIDIA GPU device memory
• High performance RDMA-based inter-node point-to-point communication 

(GPU-GPU, GPU-Host and Host-GPU)
• High performance intra-node point-to-point communication for multi-GPU 

adapters/node (GPU-GPU, GPU-Host and Host-GPU)
• Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node 

communication for multiple GPU adapters/node
• Optimized and tuned collectives for GPU device buffers
• MPI datatype support for point-to-point and collective communication from 

GPU device buffers
• Unified memory



Charm++ Workshop (April ’18) 50Network Based Computing Laboratory

• OFED with support for GPUDirect RDMA is developed by NVIDIA 
and Mellanox

• OSU has a design of MVAPICH2 using GPUDirect RDMA

– Hybrid design using GPU-Direct RDMA
• GPUDirect RDMA and Host-based pipelining

• Alleviates P2P bandwidth bottlenecks on SandyBridge and IvyBridge

• Similar bottlenecks on Haswell

– Support for communication using multi-rail

– Support for Mellanox Connect-IB and ConnectX VPI 
adapters

– Support for RoCE with Mellanox ConnectX VPI adapters

GPU-Direct RDMA (GDR) with CUDA 

IB 
Adapter

System
Memory

GPU
Memory

GPU

CPU

Chipset

SNB E5-2670 IVB E5-2680V2

SNB E5-2670 /

IVB E5-2680V2

Intra-socket Inter-sockets Intra-socket Inter-sockets

P2P read <1.0 GBs <300 MBs 3.5 GBs <300 MBs

P2P write 5.2 GBs <300 MBs 6.4 GBs <300 MBs



Charm++ Workshop (April ’18) 51Network Based Computing Laboratory

0

2000

4000

6000

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K

Ba
nd

w
id

th
 (M

B/
s)

Message Size (Bytes)

GPU-GPU Inter-node Bi-Bandwidth

MV2-(NO-GDR) MV2-GDR-2.3a

0
1000
2000
3000
4000

1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K

Ba
nd

w
id

th
 (M

B/
s)

Message Size (Bytes)

GPU-GPU Inter-node Bandwidth

MV2-(NO-GDR) MV2-GDR-2.3a

0

10

20

30
0 1 2 4 8 16 32 64 12
8

25
6

51
2 1K 2K 4K 8K

La
te

nc
y 

(u
s)

Message Size (Bytes)

GPU-GPU Inter-node Latency

MV2-(NO-GDR) MV2-GDR-2.3a

MVAPICH2-GDR-2.3a
Intel Haswell  (E5-2687W @ 3.10 GHz) node - 20 cores

NVIDIA Volta V100 GPU
Mellanox Connect-X4 EDR HCA

CUDA 9.0
Mellanox OFED 4.0 with GPU-Direct-RDMA

10x

9x

Optimized MVAPICH2-GDR Design 

1.88us
11X



Charm++ Workshop (April ’18) 52Network Based Computing Laboratory

0
20
40
60
80

100

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M

O
ve

rla
p 

(%
)

Message Size (Bytes)

GPU-GPU Inter-node Overlap*

MVAPICH2-(NO-GDR) MVAPCH2-GDR-2.3a

0
20
40
60
80

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M

O
ve

rla
p 

(%
)

Message Size (Bytes)

GPU-GPU Intra-node Overlap*

MVAPICH2-GDR-2.3a

MVAPICH2-GDR-2.3a
Intel Haswell  (E5-2687W @ 3.10 GHz) node - 20 cores

NVIDIA Volta V100 GPU
Mellanox Connect-X4 EDR HCA

CUDA 9.0
Mellanox OFED 4.0 with GPU-Direct-RDMA

Overlap with Optimized MVAPICH2-GDR Design 

• Up to 69% overlap* for intra-node GPU-GPU 
communication

• With GDR, up to 78% overlap* for inter-node small 
and medium message transfers

• With intelligent pipeline, up to 88% overlap* for inter-
node large message transfers

*Overlap between GPU-to-GPU communication and CPU computation



Charm++ Workshop (April ’18) 53Network Based Computing Laboratory

• Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)
• HoomdBlue Version 1.0.5 

• GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 
MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 
MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

Application-Level Evaluation (HOOMD-blue)

0

500

1000

1500

2000

2500

4 8 16 32

Av
er

ag
e 

Ti
m

e 
St

ep
s p

er
 

se
co

nd
 (T

PS
)

Number of Processes 

MV2 MV2+GDR

0
500

1000
1500
2000
2500
3000
3500

4 8 16 32Av
er

ag
e 

Ti
m

e 
St

ep
s p

er
 

se
co

nd
 (T

PS
)

Number of Processes 

64K Particles 256K Particles 

2X2X

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu


Charm++ Workshop (April ’18) 54Network Based Computing Laboratory

Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland

0

0.2

0.4

0.6

0.8

1

1.2

16 32 64 96N
or

m
al

ize
d 

Ex
ec

ut
io

n 
Ti

m
e

Number of GPUs

CSCS GPU cluster

Default Callback-based Event-based

0
0.2
0.4
0.6
0.8

1
1.2

4 8 16 32

N
or

m
al

ize
d 

Ex
ec

ut
io

n 
Ti

m
e

Number of GPUs

Wilkes GPU Cluster

Default Callback-based Event-based

• 2X improvement on 32 GPUs nodes
• 30% improvement on 96 GPU nodes (8 GPUs/node) 

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee , H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data 
Movement Processing on Modern GPU-enabled Systems, IPDPS’16

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

Cosmo model: http://www2.cosmo-model.org/content
/tasks/operational/meteoSwiss/

mailto:panda@cse.ohio-state.edu
http://www2.cosmo-model.org/content
mailto:panda@cse.ohio-state.edu


Charm++ Workshop (April ’18) 55Network Based Computing Laboratory

• MVAPICH2/MVAPICH2-X
– Job Startup

– Point-to-point Communication

– Remote Memory Access (RMA)

– Collective Communication

• MVAPICH2-GDR
– Support for InfiniBand Core-Direct

– GPU-kernel based Reduction

– Datatype Processing

• Deep Learning Application: OSU Caffe

Presentation Outline



Charm++ Workshop (April ’18) 56Network Based Computing Laboratory

• Applications use GPU/CPU resources for computation and MPI for 
communication directly from GPU buffers

• MPI collectives common in GPU applications. E.g.: Alltoall for FFTs

• Collectives are time consuming with scale so MPI-3.0 introduced NBCs

• Non-blocking communication operations from GPU buffers can
– Allow CPU to overlap GPU-based communication with CPU compute

– Ease GPU kernels redundancy in waiting for non-dependent communication

– Allow power efficient execution from CPU perspective

• Rich set of GPU and network primitives available for NBC designs but 
architectural limitations must be addressed

Motivation: Exploiting CORE-Direct and GPUDirect RDMA

A. Venkatesh, K. Hamidouche, H. Subramoni, and D. K. Panda, Offloaded GPU Collectives using CORE-Direct and CUDA Capabilities on IB Clusters, HiPC ’15 



Charm++ Workshop (April ’18) 57Network Based Computing Laboratory

• Realized through mapping of MPICH schedule abstraction
– Schedule composed of sched_send, sched_barrier, sched_recv, sched_start etc 

– Mapped to Core-Direct primitives with collective-specific GPU↔Host done 
additionally

• Multiple designs explored
– Naïve Design: Host-assisted GPU NBC (Scatter)

– Offload-Staged: Host-assisted GPU NBC + Core-Direct

– Offload-GDR: (GDR + Core-Direct)-based NBC

– Offload-Callback: (Core-Direct, GDR, CUDA)-based NBC

Overview of Core-Direct + GPUDirect Designs



Charm++ Workshop (April ’18) 58Network Based Computing Laboratory

• Use of GDR and CUDA callback mechanisms improve latency (comparable for alltoall)

• Latency high for the case of alltoall even though callback designed to avoid staging latency

Latency Comparison with Blocking Collectives

3000

13000

23000

33000

43000

53000

63000

4K 64K 1M B

LA
TE

N
CY

 (U
S)

MESSAGE SIZE (BYTES)

6 4 - NODE  I A L LGATHE R 
L A T ENCY

gdr-offload-cb
staged-offload
offload-gdr
Blocking

3000

13000

23000

33000

43000

53000

63000

73000

4K 64K 1M B

LA
TE

N
CY

 (U
S)

MESSAGE SIZE (BYTES)

6 4 - NODE  I A L LTOALL
L A T ENCY

gdr-offload-cb
staged-offload
offload-gdr
Blocking



Charm++ Workshop (April ’18) 59Network Based Computing Laboratory

• New schemes are able to exploit overlap well

Effect of Compute Location on Overlap/Latency

0
10
20
30
40
50
60
70
80
90

100

4K 8K 16K 32K 64K 128K 256K

OV
ER

LA
P(

%
)

MESSAGE SIZE (BYTES)

6 4-NODE I ALLGATHER
OVERLAP

gdr-offload-cb-GPU
gdr-offload-cb-CPU
offload-gdr-GPU
offload-gdr-CPU

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

4K 8K 16K 32K 64K 128K 256K

LA
TE

N
CY

 (U
S)

MESSAGE SIZE (BYTES)

6 4-NODE I ALLGATHER
L ATENCY

gdr-offload-cb-GPU
gdr-offload-cb-CPU
offload-gdr-GPU
offload-gdr-CPU

Available in MVAPICH2-GDR 2.3a



Charm++ Workshop (April ’18) 60Network Based Computing Laboratory

• MVAPICH2/MVAPICH2-X
– Job Startup

– Point-to-point Communication

– Remote Memory Access (RMA)

– Collective Communication

• MVAPICH2-GDR
– Support for InfiniBand Core-Direct

– GPU-kernel based Reduction

– Datatype Processing

• Deep Learning Application: OSU Caffe

Presentation Outline



Charm++ Workshop (April ’18) 61Network Based Computing Laboratory

• Scientific parallel applications spend a considerable amount of time in
GPU-based collective communication operations

– E.g. Deep learning frameworks such as TensorFlow and Caffe

• Optimized computation-intensive collectives in MVAPICH2-GDR
– MPI_Reduce and MPI_Allreduce

– Exploring the best combinations
• Computation on

– CPU or GPU

• Communication through

– Host or GPU memory

GPU-kernel based Reduction

CPU

Host Memory

GPU

PCIe IB 
Adapter

CPU

Host Memory

GPU

PCIeIB 
Adapter1

2

3

4

1

2

Node BNode A



Charm++ Workshop (April ’18) 62Network Based Computing Laboratory

16K 64K 256K 1M 4M

La
te

nc
y 

(u
s)

Message Size (Bytes)

Default BD-DD
GR-DD GR-HD
GR-HH GR-H-HH

0

50

100

150

200

250

4 8 16 32 64 128 256 512 1K 2K 4K 8K

La
te

nc
y 

(u
s)

Message Size (Bytes)

Default BD-DD GR-DD

GR-HD GR-HH GR-H-HH

Evaluation - MPI_Reduce @ CSCS (96 GPUs)

Gather-first approaches* 
win for small messages

K-nomial GPU-based approach* win for large 
messages

*Ching-Hsiang Chu, Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan, and Dhabaleswar K. Panda, "CUDA Kernel based Collective Reduction 
Operations on Large-scale GPU Clusters, ” IEEE/ACM CCGrid’16.



Charm++ Workshop (April ’18) 63Network Based Computing Laboratory

0

5

10

15

20

25

La
te

nc
y 

(m
s)

Message Size (Bytes)

Default

RD-DD

BRB-DD

0

2

4

6

8

10

2 4 8 16 32

La
te

nc
y 

(m
s)

System Size (Number of Nodes)

Default

RD-DD

BRB-DD

Evaluation - MPI_Allreduce

96 GPUs @ CSCS

Good Scalability
32 GPU Nodes @ Wilkes

Ching-Hsiang Chu, Khaled Hamidouche, Akshay Venkatesh, Ammar Ahmad Awan, and Dhabaleswar K. Panda, "CUDA Kernel based Collective Reduction 
Operations on Large-scale GPU Clusters, ” IEEE/ACM CCGrid’16.

Available in MVAPICH2-GDR 2.3a



Charm++ Workshop (April ’18) 64Network Based Computing Laboratory

• MVAPICH2/MVAPICH2-X
– Job Startup

– Point-to-point Communication

– Remote Memory Access (RMA)

– Collective Communication

• MVAPICH2-GDR
– Support for InfiniBand Core-Direct

– GPU-kernel based Reduction

– Datatype Processing

• Deep Learning Application: OSU Caffe

Presentation Outline



Charm++ Workshop (April ’18) 65Network Based Computing Laboratory

• Multi-dimensional data
• Row based organization
• Contiguous on one dimension 
• Non-contiguous on other dimensions

• Halo data exchange
• Duplicate the boundary
• Exchange the boundary in each 

iteration

Halo data exchange

Non-contiguous Data Exchange



Charm++ Workshop (April ’18) 66Network Based Computing Laboratory

MPI Datatype support in MVAPICH2
• Datatypes support in MPI

– Operate on customized datatypes to improve productivity

– Enable MPI library to optimize non-contiguous data

At Sender: 
MPI_Type_vector (n_blocks, n_elements, stride, old_type, &new_type);
MPI_Type_commit(&new_type);
…
MPI_Send(s_buf, size, new_type, dest, tag, MPI_COMM_WORLD);

• Inside MVAPICH2 
- Use datatype specific CUDA Kernels to pack data in chunks
- Efficiently move data between nodes using RDMA
- In progress - currently optimizes vector and hindexed datatypes
- Transparent to the user
H. Wang, S. Potluri, D. Bureddy, C. Rosales and D. K. Panda, GPU-aware MPI on RDMA-Enabled Clusters: Design, Implementation and Evaluation, IEEE Transactions on Parallel 
and Distributed Systems, Vol. 25, No. 10, pp. 2595-2605 , Oct 2014. 



Charm++ Workshop (April ’18) 67Network Based Computing Laboratory

MPI Datatype Processing (Computation Optimization )

• Comprehensive support 
• Targeted kernels  for regular datatypes  - vector, subarray, indexed_block

• Generic kernels for all other irregular datatypes

• Separate non-blocking stream for kernels launched by MPI library 
• Avoids stream conflicts with application kernels  

• Flexible set of parameters for users to tune kernels
• Vector 

• MV2_CUDA_KERNEL_VECTOR_TIDBLK_SIZE

• MV2_CUDA_KERNEL_VECTOR_YSIZE

• Subarray 
• MV2_CUDA_KERNEL_SUBARR_TIDBLK_SIZE 
• MV2_CUDA_KERNEL_SUBARR_XDIM
• MV2_CUDA_KERNEL_SUBARR_YDIM 
• MV2_CUDA_KERNEL_SUBARR_ZDIM 

• Indexed_block
• MV2_CUDA_KERNEL_IDXBLK_XDIM



Charm++ Workshop (April ’18) 68Network Based Computing Laboratory

MPI Datatype Processing (Communication Optimization )

Waste of computing resources on CPU and GPU

MPI_Isend(Buf1, ...,req1); 

MPI_Isend(Buf2, ...,req2); 

Application work on the 
CPU/GPU

MPI_Waitall(requests, …)

Common Scenario

*Buf1, Buf2…contain non-contiguous MPI Datatype



Charm++ Workshop (April ’18) 69Network Based Computing Laboratory

• Modified ‘CUDA-Aware’ DDTBench for NAS_MG_y
– Up to 90% overlap between datatype processing and other computation

0

20

40

60

80

100

[32x16x16] [128x64x64] [256x128x128] [512x256x256]

O
ve

rla
p 

(%
)

Input Size

Default Event-based Callback-based

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee , H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data Movement 
Processing on Modern GPU-enabled Systems, IPDPS’16

MPI Datatype Processing (Communication Optimization )
Available in MVAPICH2-GDR 2.3a



Charm++ Workshop (April ’18) 70Network Based Computing Laboratory

• MVAPICH2/MVAPICH2-X
– Job Startup

– Point-to-point Communication

– Remote Memory Access (RMA)

– Collective Communication

• MVAPICH2-GDR
– Support for InfiniBand Core-Direct

– GPU-kernel based Reduction

– Datatype Processing

• Deep Learning Application: OSU Caffe

Presentation Outline



Charm++ Workshop (April ’18) 71Network Based Computing Laboratory

• Deep Learning frameworks are a different game 
altogether

– Unusually large message sizes (order of megabytes)

– Most communication based on GPU buffers

• Existing State-of-the-art
– cuDNN, cuBLAS, NCCL --> scale-up performance

– NCCL2, CUDA-Aware MPI -->  scale-out performance
• For small and medium message sizes only!

• Proposed: Can we co-design the MPI runtime (MVAPICH2-
GDR) and the DL framework (Caffe) to achieve both?

– Efficient Overlap of Computation and Communication

– Efficient Large-Message Communication (Reductions)

– What application co-designs are needed to exploit 
communication-runtime co-designs?

Deep Learning: New Challenges for MPI Runtimes

Sc
al

e-
up

 P
er

fo
rm

an
ce

Scale-out Performance

cuDNN

NCCL

gRPC

Hadoop

Proposed
Co-

Designs

MPI
cuBLAS

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern GPU 
Clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP '17)

NCCL2



Charm++ Workshop (April ’18) 72Network Based Computing Laboratory

• To address the limitations of Caffe and existing MPI runtimes, we propose 
the OSU-Caffe (S-Caffe) framework

• At the application (DL framework) level

– Develop a fine-grain workflow – i.e. layer-wise communication instead 
of communicating the entire model

• At the runtime (MPI) level

– Develop support to perform reduction of very-large GPU buffers

– Perform reduction using GPU kernels 

OSU-Caffe: Proposed Co-Design Overview

OSU-Caffe is available from the HiDL project page
http://hidl.cse.ohio-state.edu

http://hidl.cse.ohio-state.edu/


Charm++ Workshop (April ’18) 73Network Based Computing Laboratory

• Exploit Non-Blocking Collective (NBC) operations in MPI-3

– Divide communication into fine-grain steps

– Overlap computation of layer “i” with communication of layer “i+1”

– MPI_Ibcast to post all communication in advance

• Wait in an on-demand fashion

– Allow for runtime selection of data propagation design

• Based on message (DL model) size, number of GPUs, and number of nodes

• Co-design gradient aggregation at application level

– Helper thread based approach to realize a non-blocking MPI_Reduce

Optimized Data Propagation and Gradient Aggregation using NBC Designs

A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda, S-Caffe: Co-designing MPI 
Runtimes and Caffe for Scalable Deep Learning on Modern GPU Clusters, PPoPP ’17



Charm++ Workshop (April ’18) 74Network Based Computing Laboratory

S-Caffe vs. Inspur-Caffe and Microsoft CNTK
• AlexNet: Notoriously hard to scale-out on 

multiple nodes due to comm. overhead!
• Large number of parameters ~ 64 Million 

(comm. buffer size = 256 MB)

S-Caffe delivers better or comparable performance with
other multi-node capable DL frameworks

Up to 14% improvement (Scale-up)

Impact of HR

• GoogLeNet is a popular DNN
• 13 million parameters (comm. buffer 

size = ~50 MB)



Charm++ Workshop (April ’18) 75Network Based Computing Laboratory

• Exploiting overlap between computation and communication is significant in 
HPC 

• Presented some of the approaches and results along these directions taken by 
the MVAPICH2 and MVAPICH2-GDR Libraries

• Allows applications to take advantage of the overlap capabilities 

• As exascale systems are getting more complicated in their architectures, 
solutions exploiting overlap capabilities will be important

Concluding Remarks



Charm++ Workshop (April ’18) 76Network Based Computing Laboratory

Funding Acknowledgments

Funding Support by

Equipment Support by



Charm++ Workshop (April ’18) 77Network Based Computing Laboratory

Personnel Acknowledgments
Current Students (Graduate)

– A. Awan (Ph.D.)

– R. Biswas (M.S.)

– M. Bayatpour (Ph.D.)

– S. Chakraborthy  (Ph.D.)
– C.-H. Chu (Ph.D.)

– S. Guganani (Ph.D.)

Past Students 
– A. Augustine (M.S.)

– P. Balaji (Ph.D.)

– S. Bhagvat (M.S.)

– A. Bhat (M.S.) 

– D. Buntinas (Ph.D.)

– L. Chai (Ph.D.)

– B. Chandrasekharan (M.S.)

– N. Dandapanthula (M.S.)

– V. Dhanraj (M.S.)

– T. Gangadharappa (M.S.)

– K. Gopalakrishnan (M.S.)

– R. Rajachandrasekar (Ph.D.)

– G. Santhanaraman (Ph.D.)

– A. Singh (Ph.D.)

– J. Sridhar (M.S.)

– S. Sur (Ph.D.)

– H. Subramoni (Ph.D.)

– K. Vaidyanathan (Ph.D.)

– A. Vishnu (Ph.D.)

– J. Wu (Ph.D.)

– W. Yu (Ph.D.)

Past Research Scientist
– K. Hamidouche

– S. Sur

Past Post-Docs
– D. Banerjee

– X. Besseron

– H.-W. Jin

– W. Huang (Ph.D.)

– W. Jiang (M.S.)

– J. Jose (Ph.D.)

– S. Kini (M.S.)

– M. Koop (Ph.D.)

– K. Kulkarni (M.S.)

– R. Kumar (M.S.)

– S. Krishnamoorthy (M.S.)

– K. Kandalla (Ph.D.)

– M. Li (Ph.D.)

– P. Lai (M.S.)

– J. Liu (Ph.D.)

– M. Luo (Ph.D.)

– A. Mamidala (Ph.D.)

– G. Marsh (M.S.)

– V. Meshram (M.S.)

– A. Moody (M.S.)

– S. Naravula (Ph.D.)

– R. Noronha (Ph.D.)

– X. Ouyang (Ph.D.)

– S. Pai (M.S.)

– S. Potluri (Ph.D.)

– J. Hashmi (Ph.D.)

– H. Javed (Ph.D.)
– P. Kousha (Ph.D.)

– D. Shankar (Ph.D.)

– H. Shi (Ph.D.)

– J. Zhang (Ph.D.)

– J. Lin

– M. Luo 

– E. Mancini

Current Research Scientists
– X. Lu

– H. Subramoni

Past Programmers
– D. Bureddy

– J. Perkins

Current Research Specialist
– J. Smith

– M. Arnold

– S. Marcarelli

– J. Vienne

– H. Wang

Current Post-doc
– A. Ruhela

– K. Manian

Current Students (Undergraduate)
– N. Sarkauskas (B.S.)



Charm++ Workshop (April ’18) 78Network Based Computing Laboratory

Upcoming 6th Annual MVAPICH User Group (MUG) Meeting

• August 6-8, 2018; Columbus, Ohio, USA

• Keynote Talks, Invited Talks, Contributed Presentations, Tutorials on 
MVAPICH2, MVAPICH2-X, MVAPICH2-GDR, MVAPICH2-Virt, OSU-
INAM, and High-Performance Deep Learning optimization and tuning

• Student Travel Award

• More details at: 

http://mug.mvapich.cse.ohio-state.edu

http://mug.mvapich.cse.ohio-state.edu/


Charm++ Workshop (April ’18) 79Network Based Computing Laboratory

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

panda@cse.ohio-state.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu

	Exploiting Computation and Communication Overlap in MVAPICH2 MPI Library
	High-End Computing (HEC): Towards Exascale
	Parallel Programming Models Overview
	Supporting  Programming Models for Multi-Petaflop and Exaflop Systems: Challenges 
	Basic Concept of Overlapping Communication with Computation
	Overview of the MVAPICH2 Project
	MVAPICH2 Release Timeline and Downloads
	Architecture of MVAPICH2 Software Family
	MVAPICH2 Software Family 
	Presentation Outline
	Slide Number 11
	Towards High Performance and Scalable Startup at Exascale
	Startup Performance on KNL + Omni-Path
	Process Management Interface (PMI) over Shared Memory (SHMEMPMI)
	On-demand Connection Management for OpenSHMEM+MPI
	Presentation Outline
	Communication Costs of Point-to-point Protocols - Eager
	Communication Costs of Point-to-point Protocols - Rendezvous
	Analyzing Overlap Potential of Eager Protocol
	Analyzing Overlap Potential of Rendezvous Protocol
	Impact of Tuning Rendezvous Threshold on 3D-Stencil
	Impact of Tuning Rendezvous Protocol on 3D-Stencil
	Dynamic and Adaptive MPI Point-to-point Communication Protocols
	Dynamic and Adaptive MPI Point-to-point Communication Protocols (Cont.)
	Presentation Outline
	MPI-3 RMA: Communication and synchronization  Primitives
	Slide Number 27
	Graph Processing Framework with Optimized MPI RMA
	Graph Processing Framework with Optimized MPI RMA
	Presentation Outline
	Collective Communication in MVAPICH2
	Hardware Multicast-aware MPI_Bcast on TACC Stampede
	Optimized CMA-based Collectives for Large Messages
	Shared Address Space (XPMEM)-based Collectives Design
	Application-Level Benefits of XPMEM-Based Collectives
	Problems with Blocking Collective Operations
	Concept of Non-blocking Collectives
	Non-blocking Collective (NBC) Operations
	How do I write applications with NBC?
	P3DFFT Performance with Non-Blocking Alltoall using RDMA Primitives
	Offloading with Scalable Hierarchical Aggregation Protocol (SHArP)
	Evaluation of SHArP based Non Blocking Allreduce
	Collective Offload in ConnectX-2, ConnectX-3, Connect-IB and ConnectX-4, ConnectX-5
	Collective Offload Support in ConnectX InfiniBand Adapter (Recv followed by Multi-Send)
	Co-designing HPL with Core-Direct and Performance Benefits
	Pre-conditioned Conjugate Gradient (PCG) Solver Performance with Non-Blocking Allreduce based on CX-2 Collective Offload
	Presentation Outline
	GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU 
	CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.3 Releases
	GPU-Direct RDMA (GDR) with CUDA 
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Presentation Outline
	Motivation: Exploiting CORE-Direct and GPUDirect RDMA
	Overview of Core-Direct + GPUDirect Designs
	Latency Comparison with Blocking Collectives
	Effect of Compute Location on Overlap/Latency
	Presentation Outline
	GPU-kernel based Reduction
	Evaluation - MPI_Reduce @ CSCS (96 GPUs)
	Evaluation - MPI_Allreduce
	Presentation Outline
	Slide Number 65
	MPI Datatype support in MVAPICH2
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Presentation Outline
	Deep Learning: New Challenges for MPI Runtimes
	OSU-Caffe: Proposed Co-Design Overview
	Optimized Data Propagation and Gradient Aggregation using NBC Designs
	S-Caffe vs. Inspur-Caffe and Microsoft CNTK
	Concluding Remarks
	Funding Acknowledgments
	Personnel Acknowledgments
	Upcoming 6th Annual MVAPICH User Group (MUG) Meeting
	Thank You!

