PPI PARALLEL
4| PROGRAMMING
M| | ABORATORY

A Highly Scalable Graph Clustering Library based on

Parallel Union-Find

Karthik Senthil

Parallel Programming Laboratory
University of lllinois at Urbana-Champaign

12 April 2018

16" Annual Workshop on Charm++ and its Applications 2018

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 1/22

Problem Statement

Graph clustering or connectivity is the process of detecting connected
components in a given graph

o Connected component : Maximal-size subgraph where a path exists
between every pair of vertices in the subgraph

° ol Lo

Figure 1: Connected components in a graph

Two schools of algorithms :
@ Graph traversal algorithm
@ Union-Find based algorithm

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018

utline

© Related Work

© Parallel Union-Find in Charm++
© Path Compression

@ Implementation

© Performance Evaluation

© What's In Store

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 3/22

/

Outline

© Related Work

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018

Related Work

Connectivity in a graph is a well-studied problem
@ Shiloach, Yossi, and Uzi Vishkin. “An O (logn) parallel connectivity algorithm.”
Journal of Algorithms 3.1 (1982): 57-67.

@ Nassimi, David, and Sartaj Sahni. “Finding connected components and connected
ones on a mesh-connected parallel computer.” SIAM Journal on computing 9.4
(1980): 744-757.

@ Krishnamurthy, A., Lumetta, S., Culler, D. E., & Yelick, K. (1997). “Connected
components on distributed memory machines”. Third DIMACS Implementation
Challenge, 30, 1-21.

@ Manne, Fredrik, and Md Patwary. “A scalable parallel union-find algorithm for
distributed memory computers.” Parallel Processing and Applied Mathematics
(2010): 186-195.

Our motivation : A scalable parallel implementation using union-find data
structures in a distributed asynchronous environment

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 4/22

Outline

© Parallel Union-Find in Charm++

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018

Algorithm

o Given a graph G = (V, E), with n=|V| and m = |E|
@ An edge e = (vy, v2) represents a union operation
Our algorithm:
© Message v; for the operation find(v1)
@ v; messages parents till boss; = find(v1)
@ boss; messages v, for operation find(v2) and carries info of boss

@ When boss, = find(v2), align parent pointers of bosses

@ Effectively we are constructing a forest of inverted trees; each tree is a unique
connected component

@ Root of a tree (boss) = Representative of the component

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 5/22

Algorithm

Union bossz

N Set as parent

! /

‘~7 r-4 Find(v,)

Find(v
va) o parent(v,)
parent(v,)
\p)
Vi

Figure 2: Asynchronous union-find algorithm

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018

Solving Race Conditions

Consider 3 PEs, one chare on
each PE

union(1, 2) on chare 0

union(2, 3) on chare 1
union(3, 1) on chare 2

An example scenario

@ Enforce a strict ordering in the union operation based on vertex 1D
@ Brings in an additional min-heap like property to the inverted trees

o ID of a parent node is always lesser than IDs of its children
o A possible cycle edge can be detected if a node with lower ID is asked
to point to node with higher ID

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 7/22

High Level Pseudo-Code

union_request(vi, w») {
if (v1.ID > v,.ID)

union_request(va, v1)

else find_boss2(v>, boss) {
find_bossi(vi, w) if (vo.parent == -1) {
¥ if (bossi.ID > v,.ID)
Listing 1: union_request union_request(vz, boss)
else
vo.parent = boss
}
find_boss1(vi, wo) { else
if (vi.parent == -1) find_boss2(w».parent, boss)
find_boss2(v2, bossi) b
else Listing 3: find_boss2

find_boss1(vi.parent, v2)

Listing 2: find_bossl

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 8 /22

Outline

© Path Compression

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018

Local Path Compression

@ Make the local subtree constructed in every chare completely shallow
i.e. rooted star

@ During Find, if next parent on current path is on a different chare
then sequentially update parent pointer for all nodes on path

N\ / N

@ Increases amount of sequential work per chare but greatly boosts
speed of future Find operations

12 April 2018 9 /22

Karthik Senthil (PPL) Charm++ Workshop 2018

Global Path Compression

@ Pointer jumping operation to grandparent

@ Short circuits paths that are spanning across multiple chares

B

@ Increases communication due to more messages, but overhead is
reduced by aggregating messages using TRAM

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 10 / 22

Outline

@ Implementation

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018

Library Design

Library designed using bound-array concept
Connected components detection
o Phase 1 : Build the forest of inverted trees using our asynchronous
union-find algorithm
o Phase 2 : Identify the bosses of each component and label all vertices
in that component
o Phase 3 : Prune out insignificant components

Used TRAM to aggregate all messages in Phase 1 and Phase 2
Tested and verified with protein structures from RCSB PDB

Large scale testing with synthetic and real-world graphs

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 11 /22

Phase 3 - Discussion

@ Perform a global reduction to gather membership statistics for each
component from all the chares

@ Initially implemented using a custom reducer with each chare
contributing an std: :map

@ Reduced final map is broadcast and rebuilt on each PE (using a

group)

Figure 3: Overheads in map-based reducers for Phase 3

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 12 / 22

Library Design - Updated

@ Phase 1 : Build the forest of inverted trees using our asynchronous
union-find algorithm
o Phase 2 :

(a) Parallel prefix scan to get total boss count and relabel all bosses with
sequential identifiers

(b) Identify the bosses of each component and label all vertices in that
component

@ Phase 3 : Prune out insignificant components

o Use fixed size array based reduction for the counts
e Arrays can be sparse, but this implementation is very scalable and has
minimal overhead

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 13 / 22

Outline

© Performance Evaluation

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018

Experiments performed:

© Phase runtime evaluation

o Mesh configurations : 10242 (1M), 20482 (4M), 40962 (16M),
81922 (64M)

o Probabilities : 2D40, 2D60, 2D80
o Problem size per chare fixed at : 128x128 mesh piece

@ Strong scaling performance
o Mesh configuration : 81922 (64M), 163842 (256M), 2D60
o Number of cores : 64, 256, 1024, 4096

© Real world graphs

o com-Orkut : 3M vertices, 117M edges
o com-Amazon : 330K vertices, 925K edges

All experiments were performed on the Blue Waters (Cray XE)
supercomputer maintained by NCSA.

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 14 / 22

Results - Phase Runtime

0.24
[Phase 3
0214 =3 Phase 2
[Phase 1

Execution Time (s)

60%
Probability

Figure 4: Mesh size 1024x1024 on 64 cores

Karthik Senthil (PPL) Charm++ Workshop 2018

12 April 2018

Results - Phase Runtime

4.0
[Phase 3
361 3 Phase 2
[Phase 1

Execution Time (s)

60%
Probability

Figure 5: Mesh size 8192x8192 on 4096 cores

Karthik Senthil (PPL) Charm++ Workshop 2018

12 April 2018

16 / 22

Results - Strong Scaling

40 40
[Phase 3 B Phase 3
3 =1 Phase 2 [0 Phase 2
BB Phase | 20 B Phase |
30
100
z 25 =
g g 80
= =
520 s
H 3 60
g 5
40
10
5 20
0 0
64 256 1024 4096 64 256 1024 4096
Number of Cores Number of Cores

Mesh 8192x8192 Mesh 16384x16384

Figure 6: Strong scaling runs

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 17/

N
N

Comparison

Mesh Size | Last Workshop | Current Workshop
4096 113.730437 s 0.815045 s
8192° 195.767054 s 1.749127 s
163842 NA 0.178887 s

Table 1: Improvements in performance

Kudos to path compression optimizations and TRAM!

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 18 / 22

Results - Real World Graphs

93 0
9
89 8
87
H g6
E £
= 8 F
5 §
iw
¢ g4
81
el 2
7
75 [
64 128 256 512 1024 64 28 256 512 1024
Number of Cores Number of Cores
com-0rkut com—-Amazon

Figure 7: Experiments with real world graphs

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 19 /

Current lIssues

@ Potential bottlenecks at the
root of the biggest inverted tree

/<> for dense graphs with very few
Findfua) () number of components
OV\CD “““ O\Cﬁl:w @ Cases where component roots
’ Vet v are unevenly distributed among
component the chares leading to load

imbalance in Phase 2
Figure 8: Bottleneck will be observed at

boss; when edges (vi, v3) and (v, v2)
are processed during later stages of
Phase 1

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 20/ 22

Outline

© What's In Store

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 20 / 22

On the to-do list:

@ Optimizing Phase 1 to remove bottleneck and improve weak
scalability

@ Performance evaluation using large ChaNGa datasets

@ Implement a Python interface for library using Charmpy

Code and examples on Gerrit: users/karthik/unionFind

Acknowledgements: This material is based in part upon work supported
by the NSF, SI2-SSI: Collaborative Research: ParaTreet: Parallel Software
for Spatial Trees in Simulation and Analysis (NSF #1550554).

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 21 /22

Thank You

Karthik Senthil (PPL) Charm++ Workshop 2018 12 April 2018 22 /22

	Related Work
	Parallel Union-Find in Charm++
	Path Compression
	Implementation
	Performance Evaluation
	What's In Store

