
Recent Developments in
Adaptive MPI

Sam White & Evan Ramos

Charm++ Workshop 2019

Overview

● Introduction to AMPI
● Recent Work

○ Communication Optimizations (Sam)
○ Automatic Global Variable Privatization (Evan)

2

3

Introduction

Motivation

● Variability in various forms (SW and HW) is a challenge for
applications moving toward exascale
○ Task-based programming models address these issues

○

● How to adopt task-based programming models?
○ Develop new codes from scratch
○ Rewrite existing codes, libraries, or modules (and interoperate)
○ Implement other programming APIs on top of tasking runtimes

4

Background
● AMPI virtualizes the ranks of MPI_COMM_WORLD

○ AMPI ranks are user-level threads (ULTs), not OS processes

5

Background
● AMPI virtualizes the ranks of MPI_COMM_WORLD

○ AMPI ranks are user-level threads (ULTs), not OS processes
○ Cost: virtual ranks in each process share global/static variables
○ Benefits:

■ Overdecomposition: run with more ranks than cores
■ Asynchrony: overlap one rank’s communication with another

rank’s computation
■ Migratability: ULTs are migratable at runtime across address

spaces

6

AMPI Benefits
● Communication Optimizations

○ Overlap of computation and communication
○ Communication locality of virtual ranks in shared address space

● Dynamic Load Balancing
○ Balance achieved by migrating AMPI virtual ranks
○ Many different strategies built-in, customizable
○ Isomalloc memory allocator serializes all of a rank’s state

● Fault Tolerance
○ Automatic checkpoint-restart within the same job

7

AMPI Benefits: LULESH-v2.0

8

No overdecomposition or load balancing (8 VPs on 8 PEs):

With 8x overdecomposition, after load balancing (7 VPs on 1 PE shown):

Migratability

● Isomalloc memory allocator reserves a
globally unique slice of virtual memory
space in each process for each virtual rank

●

● Benefit: no user-specific serialization code
○ Handles the user-level thread stack and

all user heap allocations
○ Works everywhere except BGQ and

Windows
○ Enables dynamic load balancing and

fault tolerance
9

Communication Optimizations

10

Communication Optimizations

● AMPI exposes opportunities to optimize for communication locality:
○ Multiple ranks on the same PE
○ Many ranks in the same OS process

11

Communication Optimizations

● Recent work: optimize for point-to-point messaging within a process
○ No need for kernel-assisted interprocess copy mechanism
○ Motivated the Charm++ Zero Copy communication APIs

12

Communication Optimizations

● Application study: XPACC’s PlasCom2 code
○ Now seeing AMPI outperform MPI (+OMP) even without LB

13

Communication Optimizations

● New virtualization-aware collective implementations avoid O(VP)
message creation and copies
○ Next: further shared-memory awareness

14

Communication Optimizations

● Recent study of memory usage by AMPI applications
○ Led to hoisting AMPI’s read-only memory storage to node-level
○ Future work: support for in-place rank migration via RDMA

15

16

Automatic Privatization

Privatization Problem
Illustration of unsafe global/static variable accesses:

17

int rank_global;

void func(void)
{
 MPI_Comm_rank(MPI_COMM_WORLD, &rank_global);

 MPI_Barrier(MPI_COMM_WORLD);

 printf("rank: %d\n", rank_global);
}

Privatization Goals
● Fully automatic privatization, or at least semi-automated
● Portable across OSes, compilers
● User-level: no changes to OS, compiler, or system libraries preferably
● Handling of both global and static variables
● Support for static and shared linking
● Ability to share read-only state across virtual ranks
● Support for runtime migration of virtual processes (achieved with

Isomalloc)

18

Privatization Methods
● Existing Methods

○ Manual refactoring
■ Developer encapsulates mutable global state
■ Can take days/weeks of developer effort
■ Portable

○ Refactoring tools (Photran)
○ GOT (global offset table) swapping (Swapglobals)

■ Doesn’t handle statics
■ Requires ELF and old GNU ld linker version (< 2.24 w/o patch, < ~2.29 w/ patch)

○ Thread-local storage segment pointer swapping (TLSglobals)
■ Need to tag variable declarations (but not accesses)
■ Linux: Only works with GCC and new Clang
■ macOS: Works with Apple Clang and GCC (newly implemented in AMPI)

19

Privatization Methods
● In-Development Methods

○ Process-in-Process (PiPglobals): user-level library by Atsushi Hori
(RIKEN R-CCS)

○ File-system Globals (FSglobals)
○ Clang/Libtooling-based source-to-source transformation

●

● Proposed Methods
○ MPC (Multi-Processor Computing) -fmpc-privatize: requires

compiler and linker support
○ ROSE tool for source-to-source transformation

20

AMPI + PiP: Implementation Details
1. Compile MPI user binary as PIE (Position Independent Executable)
2. For each rank, call dlmopen with a unique namespace index (lmid)

○ void *dlmopen (Lmid_t lmid, const char *filename, int flags);

3. Use dlsym to look up and call each namespaced handle’s entry point
4. Global variables will be privatized with no modification to user

program code
○ PIE binaries locate .data immediately following .text in memory
○ PIE global variables are accessed relative to the instruction pointer
○ dlmopen creates a separate copy of the binary in memory for each namespace

21

AMPI + PiP
Implementation Hurdles:

● dlmopen fails after 11 virtual ranks per process due to glibc limits
○ Requires patched glibc: PiP-glibc

● Runtime migration of virtual processes is difficult
○ Will require patched ld-linux.so to intercept mmap allocations of

.data (and .text) segments
○ Allocations would be redirected through Isomalloc

22

AMPI + PiP Details
Implementation Hurdles:

● Cannot simply compile AMPI
programs as PIE and call dlmopen

○ Depending on approach, would either
■ Privatize entire Charm++/AMPI

runtime system
● Runtime would not function
● Waste of memory

■ Prevent dlmopen’ed binary from
seeing launcher’s AMPI symbols

○ Instead, restructure headers and link
with a function pointer shim

○ Only user program needs to be PIE
23

ampi_functions.h:
AMPI_FUNC(int, MPI_Send, const void *msg, int count,
 MPI_Datatype type , int dest, int tag, MPI_Comm comm)

mpi.h:
#ifdef AMPI_USE_FUNCPTR
 #define AMPI_FUNC(return_type, function_name, ...) \
 extern return_type (* function_name)(__VA_ARGS__);
#else
 #define AMPI_FUNC(return_type, function_name, ...) \
 extern return_type function_name(__VA_ARGS__);
#endif
#include "ampi_functions.h"

ampi_funcptr.h:
struct AMPI_FuncPtr_Transport {
 #define AMPI_FUNC(return_type, function_name, ...) \
 return_type (* function_name)(__VA_ARGS__);
 #include "ampi_functions.h"
};

ampi_funcptr_loader.C (linked with AMPI runtime):
void AMPI_FuncPtr_Pack (struct AMPI_FuncPtr_Transport * x) {
 #define AMPI_FUNC(return_type, function_name, ...) \
 x->function_name = function_name;
 #include "ampi_functions.h"
}

ampi_funcptr_shim.C (linked with MPI user program):
void AMPI_FuncPtr_Unpack (struct AMPI_FuncPtr_Transport * x) {
 #define AMPI_FUNC(return_type, function_name, ...) \
 function_name = x->function_name;
 #include "ampi_functions.h"
}

AMPI + Filesystem Globals
Similar to PiPglobals, but copies PIE binary on filesystem per-rank, then dlopen

+ Does not depend on GNU/Linux-specific dlmopen extension

+ Does not have 11-rank per-process limit in the absence of patched glibc

+ Like PiPglobals, requires no modification of user program code

− Wasteful, slow use of filesystem at startup

− Same migration limitation as PiPglobals

24

Conclusion

● AMPI is increasingly valuable for a growing set of applications
○ Not just those with load imbalance

○

● Recent work spans the full stack of AMPI
○ Conformance to the MPI-3.1 standard
○ Communication performance improvements in

AMPI/Charm++/LRTS
○ More automated tooling for conversion of legacy code
○ Working closely with more application developers

25

Questions?

26

27

AMPI Standard Compliance

