Distributed Garbage Collection for
General Graphs

Steven R. Brandt, Hari Krishnan, Costas Busch, Gokarna Sharma

Basic Approaches to Garbage Collection

e Tracing Collectors
o Collect Cycles
o May not free objects quickly
e Reference Counting
o Can’t collect cycles
o Frees objects quickly

e Hybrids

o Trace when decrementing and the ref count does not become zero

The Brownbridge Collector

Two kinds of edge, strong and weak

Two invariants
o Strong edges connect all the nodes
o Strong edges contain no cycles

® Trace (i.e. do work) when decrementing the strong ref count gives zero, but the
weak doesn’t.
Original algorithm collected prematurely. Efforts to fix it failed in various ways.

SWP Collector

Our ISMM 2014 Paper
An additional kind of edge called “Phantom” was introduced. It represents an
indeterminate and temporary state, neither strong nor weak.

SWP stands for “Strong, Weak, Phantom.”

e Nodes that lost their last strong edge...
o Convert incoming weak edges to strong
o Phantomize outgoing edges
o Phantomization may spread if it causes other nodes to lose their last strong edge

If a subgraph contains only phantom edges, it is garbage.

Distributed Garbage Collection,
The Problem...

High-end calculations spanning hundreds or thousands of nodes are commonplace

New codes have adaptive meshes and multi-physics
To meet this challenge, new frameworks use Asynchronous Multi-Tasking (AMT) -
reliable but out of order messages, e.g.

o HPX
o Charm++
o Uintah

e Almost all C++/C or Fortran with no garbage collection

All present distributed garbage collectors require global barriers, stop-the-world,
centralization, or sweeping all of memory on all computational nodes. Unscalable.
A significant problem for developers

Distributed Garbage Collection: Prior Work

Laden and Liskov 2015 used a centralized data store
Tel 1993 and Blackburn 2001: There is a strong relation between distributed
termination detection (DTD) and garbage collection, and a DTD algorithm can be
derived from any distributed garbage collector. Examples are all, in some fashion,
based on mark and sweep.

Liskov 1995 used migrating objects to move the garbage cycle to a single machine.
Bevan 1987 used distributed reference counting, but could not claim cycles (used
by HPX currently)

Introducing the SWPR Collection Algorithm

Decentralized, works on isolated areas of the graph independently
No dedicated collector threads

Linear time complexity, collection is O(N)

No stop-the-world

Built-in generational effect

Minimal tracing

Actor Model, only one object synchronized at a time.

Message size is log(N) where N is the size of the graph.

Overhead per node is log(N) where N is the size of the graph.

SWP Collector, an Example

S
grap S strong

S edge is
removed

SWP Collector, an Example

Phantomization
spreads

Phantomization
occurs

SWP Collector, an Example

... and spreads a
final time

These nodes
have strong

edges at the
end

SWP Collector, an Example

And so we rebuild Rebuilding
their outgoing propagates, too
S S
edges
P w
S S
S S

And we're
done!

SWP Collector: A Similar Example

Starting
graph S

S As before, when we pull a
strong edge away, the node
toggles and phantomizes.

SWP Collector: A Similar Example

Phantomization spreads to the last node.
All nodes phantomized. The initial node
has all incoming phantom edges.

Phantomization spreads,
causing another node to toggle.

SWP Collector: A Similar Example

We cannot rebu.ilq.the We can, however, “recover” from one
graph from the initial of the other nodes in the graph
node. because it has a strong edge.

SWP Collector: A Similar Example

The Phases of Collection:
e Phantomization
e Build - If the initiator has a strong edge

S e Recover - If the initiator does not have a
strong edge. Recover can lead to
S building.
W e Delete - If Recover fails.
W

The recovery spreads, and all
the edges of the graph are
rebuilt.

SWP Collector, Collecting a Simple Cycle

S

W

A simple
cycle

Remove the
incoming edge,
Convert incoming
edge and
phantomize.

Phantomization
spreads

Everything is
phantomized.
Recovery fails.
The cycle is
garbage.

SWP Collector: One Last Example

This kind of graph stabilizes quickly!

The Multi-Collection Algorithm

More complex
o An additional counter, the R
o Rollback of recovery operation is possible

e Collection ID tuple

e Handles deletion of edges during collection

Handles collections starting in different places and meeting

Does it work?

“Proof” arguments in ISMM18 paper
e Hundreds of thousands of tests
Doubly linked lists

Cycles

Random graphs
Grids of nodes

O O O O O

Cliques

e Millions of nodes / collections

e Try the Java simulator:
https://github.com/stevenrbrandt/DistributedGarbageCollectorSimulator

Details

SWPR uses “weights” to identify strong edges. Edges that go from lower to higher
weight are strong, all others are weak.
e Each node tracks a weight (w) and a “max weight” (mw), i.e. the largest weight

from any incoming node.
Roots have a weight of O.
e “Toggling” now means increasing the weight: w — mw + 1.
As before, toggling phantomizes outgoing edges. In SWPR, however, the state of
the node is phantomized, not the edges. When the node is phantomized, all the
edges are, too.
e Based on Actor Model: Since no nodes have any shared state and only
communicate by messages, we can simulate with a sequential code that processes
messages in random order.

Performance

Scaling for Test: dlink, CONGEST

Scaling for Test: dlink, CONGEST

18 : . - 10t : :
--- Experimental Result --- Experimental Result
o 16/ +— Fit: a*log(x)**(1./3.),a=6.06 | o +~— Fit: 2,a=3.90
By - S T
Ll
g’ ’ -g III] |4 I WEEWS
i | S T
E [~ /k ;‘ : N
Y lk‘“ o |
(o] \q-, ” 1
o 10t / Qo
Q £
£ =
Z 8¢
: . . 10? T "2 ~ 7 5
ot T TE 70 705 10 10 10 10 10
Number of Edges Number of Edges

Performance

Scaling for Test: dlink, CONGEST

[= = [=
o N H (o)) (o]

Number of Messages/Edge

(o]

--- Experimental Result

=o
o
-

+~— Fit: a*log(x)**(1./3.),a=6.06 |1
A I
|| ALLLF -
lk‘“
102 10° 107

Number of Edges

10°

Number of Rounds/Edge

10?!

Scaling for Test: highly-connected, CONGEST

100}

1071}

1072}

103

--- Experimental Result
+~— Fit: a/x,a=17.22

10*

102 10°
Number of Edges

10°

Performance

Scaling for Test: grid, CONGEST

N
o

--- Experimental Result
Fit: a*log(x)**(1./2.),a=4.79 ||

=
(00]

=
(*)]

=
H

[
N

=
o

Number of Messages/Edge
Number of Rounds/Edge

oo

o
-

Number of Edges

Scaling for Test: grid, CONGEST

10! . . ;
--- Experimental Result
+~— Fit: a/x**(5./9.),a=10.14
10°}
1071}
-2 , . R
10101 10° 10° 10°

Number of Edges

Appendix

The remaining slides describe details in implementing the
parallel collector. This is too much for a 2 hour talk, but
are provided for reference purpose.

Take a look if there’s time.

Collecting With SWPR

Reference counts are written like this: [2,1,0], it means strong count=2,
weak count=1, phantom count=0. Weights are written like this (2/3), it
means weight=2, max weight=3.

Collecting With SWPR

We now delete one of the edges. The central node now has strong
count=0, and weak count=1. This violates our requirement that all nodes
have strong support.

Collecting With SWPR

The central node toggles, increasing its weight so that its weak edges become strong. It now
phantomizes, sending phantomize messages along its outgoing edges. It sets its wait count to 3.
The node will take no further action until wait=0. This central node is called the “initiator” and it
coordintes the collection.

Phantomize

N

Collecting With SWPR

When phantomize reaches the node on the right, its strong edge is converted to phantom.
Because it loses strong support, it, too, phantomizes. Note that it remembers the node it must
send Return to after phantomization with a parent edge (dashed arrow). All nodes have storage
for a single parent edge.

Collecting With SWPR

Eventually, a return message comes back to the node on the right.

Collecting With SWPR

I's wait count is now zero, so it sends return to its parent and unsets the
parent edge.

3

Return

Collecting With SWPR

The wait count on the central node drops to 2. That’s not zero, so it doesn’t do anything.

Collecting With SWPR

Finally, the other return messages come back.

Return

Collecting With SWPR

The wait count is now zero, so an action can be taken...

Collecting With SWPR

Because our strong count is positive, the next action is to build, i.e. to clear the phantomized
state. Note that this increases the wait count back to 3.

Collecting With SWPR

The node on the right now has a weight of 5 and a max weight of 4. Accordingly, it sets its strong
count to 1, its phantom count to zero, and propagates the build message.

Collecting With SWPR

The build message returns.

. Return /

Collecting With SWPR

The node on the right now has a wait of 0, so it sends return. When the central node receives it,
its wait will be zero, and the collector will be done.

Collecting With SWPR

A quiet state is achieved.

The Phantomization Process

A possible set of parent edges for

a Phantomizing graph is pictured

at left.

e The Initiator node (Node I) does
not have a parent edge

e There is only one outgoing parent
edge per node

e Connects all nodes in the
Phantomizing graph with edges
back to the initiator

Parent edge cannot form a cycle

Another Example...

Collecting With SWPR

Reference counts are written like this: [2,1,0], it means strong count=2,
weak count=1, phantom count=0. Weights are written like this (2/3), it
means weight=2, max weight=3.

/

Phantomize

Collecting With SWPR

Phantomize

Collecting With SWPR

Phantomize

Collecting With SWPR

Phantomize

Collecting With SWPR

Collecting With SWPR

/

Return

Collecting With SWPR

,/Recover

Collecting With SWPR

Recover

,/Recover

Collecting With SWPR

Recover

Recover

Collecting With SWPR

Build
\

Return

\

Collecting With SWPR

Return

Collecting With SWPR

Collecting With SWPR

Collecting With SWPR

Collecting With SWPR

Return

Collecting With SWPR

Return

Collecting With SWPR

Collecting a Two Node Cycle...

Another Example with SWPR

Reference counts are written like this: [2,1,0], it means strong count=2, weak count=1, phantom count=0.
Weights are written like this (2/3), it means weight=2, max weight=3.

Node A Node B Node A Node B

Remove root from the cycle.

Another Example with SWPR

Node A Node B
Phantomize

—

Node A Node B

Node A phantomizes.

Another Example with SWPR

Node A Node B
Phantomize

—

Node A Node B

Phantomize

Node B propagates the
phantomization.

Another Example with SWPR

Node A Node B

Phantomize Return

Node A is already phantomized, so it sends Return back.

Another Example with SWPR

Node A Node B

Return

Node A Node B

—_—

Return

Node B’s wait count is now zero, so it sends Return to its parent, A, and
clears its parent edge.

A Simple Example With SWPR

Node A Node B

Return
Node A Node B

Node A's wait counter drops to zero. Phantomization is complete.

A Simple Example With SWPR

Node A Node B

Node A Node B Recover

—_—

Node A has no strong count, so it might be garbage. It attemps to Recover, i.e. to look
for phantomized nodes which have strong incoming edges from which it can rebuild the
subgraph.

A Simple Example With SWPR

Node A Node B

Recover Node A Node B

_—

Recover

Node B receives recover. It has no strong edges, so it propagates the
Recover.

A Simple Example With SWPR

Node A Node B Node A

—_—

Return

Recover

Node A is already recovering, so it sends Return.

A Simple Example With SWPR

Node A Node B

Node A Node B Return

-~

—_—

Return

Node B’s wait count is zero, so it returns and clears its parent edge.

A Simple Example With SWPR

Node A Node B

Return
\

At the end of recovery, Node A still has no strong nodes...

A Simple Example With SWPR

Node A

Node B Node B

Delete

—_—

Node A knows it's garbage. It sends Delete along all its
outgoing edges, then deletes those same edges. It does not
set its wait count.

A Simple Example With SWPR

Node A Node B Node A Node B

Delete

—_—

~—

Delete

After Node B receives Delete, it propagates the message and deletes itself.
Node A cannot be reclaimed until it receives Delete from B. Once it does, it
deletes itself.

The Multicollector

You now know the basic method

e Works if there’s no interference
© No other collector
o No mutating process

e Multicollector Mechansims - Enforce global ordering among collections with no

cycles

o Aidentifier tuple [major id, id, minor id]

o A“Claim” message

o Start Over flag

o Recovery Count (the “R” in SWPR)

The Claim Message/

Phantomize

/'

The tuples {0,1,0} and
{0,2,0} are collection id’s.
For now, the first and last
tuple element are zero.
The middle value is the
main id, and must be
unique. It can be the
node id.

The Claim Message/

{0,1,0}

Phantomize

/

The Phantomize
message is traveling
toward an already
phantomized node.
Normally this would
immediately return. If the
sending tuple were
smaller or equal to the
receiving, it still would
return.

The Claim Message
e

However, in this case,
the Phantomize comes
from a higher collection
id, namely {0,2,0}. So
instead of returning
immediately, it marks the
receiving node with its id
and sends Claim along
its outward edges..

The Claim Message/

Claim propagates in the
same way Phantomize
does.

Ylaim

{0,1,0}
[0,0,1,1]
(2/1)

{0,2,0}
[0,0,1,1]
(2/1)

The Recovery Count/

When a node receives a
recovery from a node with the
same collection id, the recovery
count is incremented.

Unless the phantom and
recovery count are equal, nodes
cannot send return messages or
decide to start deleting.

The Return and Start Over Mechanism

/ Consider this scenario...

Phantomize \ wait=3

The Return and Start Over Mechanism

The new collection has to

Return And
Start Over take over, but we can only
(RSO) have a single parent

edge, so we send Return
And Start Over to the
current parent and set a
new parent.

The Return and Start Over Mechanism

Pink node starts over with
a slightly higher collection
id (incremented minor id)

Claim or
Recover

How These Mechanisms Work Together

Collection
— {0,1,0}

Collection
{0,2,0}

Collection {0,2,0} takes over the collection of the two nodes at right.

How These Mechanisms Work Together,
Take 2

Collection
— {0,2,0}

Collection
{0,1,0}

Collection {0,2,0} waits for {0,1,0} to finish, then collects its two nodes.

How These Mechanisms Work Together,
Take 3

Collection

{0,1,0} Recover (01,0}

Collection {0,1,0} starts...

How These Mechanisms Work Together,
Take 3

Collection

{0,1,0} Recover (01,0}

The red edge is removed

How These Mechanisms Work Together,
Take 3

Danger: If we didn't
increment the minor id, the
blue “Init” could finish and
clean up, but it should be
kept alive by red “Init.”

Collection
{0,1,0}

Recover {0.1,0}

How These Mechanisms Work Together,
Take 3

Collection — {0,1,0}
{0,1,1} Recover

Collection {0,1,1} stalls and waits to be taken over by {0,2,0}

Working with a Mutator

Easier than you might expect...
A new edge from a phantomized node is a phantom edge

If we delete a phantomized edge, create a new collection with an
incremented major id.

