
Distributed Garbage Collection for 
General Graphs



Basic Approaches to Garbage Collection

●
○
○

●
○
○

●
○



The Brownbridge Collector

●
●

○
○

●

●



SWP Collector 

●
●

●
●

○
○
○

●



Distributed Garbage Collection, 
The Problem...

●
●
●

○
○
○

●
●

●



Distributed Garbage Collection: Prior Work

●
●

●
●



Introducing the SWPR Collection Algorithm
●
●
●
●
●
●
●
●
●



SWP Collector, an Example

S

S

W

W

S S
W

S

W

W

S S
W

The 
strong 
edge is 
removed

Starting 
graph



SWP Collector, an Example

P

W

S

P S
W

Phantomization 
occurs P

S

S

P P
S

Phantomization 
spreads



SWP Collector, an Example

P

S

S

P P
P

… and spreads a 
final time

P

S

S

P P
P

These nodes 
have strong 
edges at the
end



SWP Collector, an Example

S

S

S

W S
P

And so we rebuild 
their outgoing 
edges S

S

S

W S
W

Rebuilding 
propagates, too

And we’re 
done!



SWP Collector: A Similar Example

W

S

S

S

W S
W

Starting 
graph

W

S

P

S P
S

As before, when we pull a 
strong edge away, the node 
toggles and phantomizes.



SWP Collector: A Similar Example

S

P

P

P P
S

S

P

P

P P
P

Phantomization spreads, 
causing another node to toggle.

Phantomization spreads to the last node. 
All nodes phantomized. The initial node 
has all incoming phantom edges.



SWP Collector: A Similar Example

S

P

P

P P
P

?

S

S

P

S P
P

We cannot rebuild the 
graph from the initial 
node.

We can, however, “recover” from one 
of the other nodes in the graph 
because it has a strong edge.



SWP Collector: A Similar Example

S

S

W

S W
W

The recovery spreads, and all 
the edges of the graph are 
rebuilt.

The Phases of Collection:
● Phantomization
● Build - If the initiator has a strong edge
● Recover - If the initiator does not have a 

strong edge. Recover can lead to 
building.

● Delete - If Recover fails.



SWP Collector, Collecting a Simple Cycle

S

S

W

P

S

P

P

P

P

A simple 
cycle

Remove the 
incoming edge,
Convert incoming 
edge and 
phantomize.

Phantomization 
spreads Everything is 

phantomized. 
Recovery fails. 
The cycle is 
garbage.



SWP Collector: One Last Example

SS

SS

S

S S

S

W

S

PS

S S

S

S

S

WS

S

S S

S

S

This kind of graph stabilizes quickly!



The Multi-Collection Algorithm

●
○
○

●
●
●



Does it work?
●
●

○
○
○
○
○

●
●



Details
●

●

●
● →
●

●



Performance



Performance



Performance



Thanks!



Appendix



Collecting With SWPR
Reference counts are written like this: [2,1,0], it means strong count=2,
weak count=1, phantom count=0. Weights are written like this (2/3), it
means weight=2, max weight=3.

[1,0,0]
(3/2) [1,1,0]

(2/3)

[1,0,0]
(1/2)

[1,0,0]
(3/2)



Collecting With SWPR
We now delete one of the edges. The central node now has strong
count=0, and weak count=1. This violates our requirement that all nodes
have strong support.

[1,0,0]
(3/2) [1,1,0]

(2/3)

[1,0,0]
(1/2)

[1,0,0]
(3/2)



Collecting With SWPR
The central node toggles, increasing its weight so that its weak edges become strong. It now 
phantomizes, sending phantomize messages along its outgoing edges. It sets its wait count to 3. 
The node will take no further action until wait=0. This central node is called the “initiator” and it 
coordintes the collection.

[1,0,0]
(3/2) [1,0,0]

(4/3)
wait=3

[1,0,0]
(1/2)

[1,0,0]
(3/2)

Phantomize



Collecting With SWPR
When phantomize reaches the node on the right, its strong edge is converted to phantom. 
Because it loses strong support, it, too, phantomizes. Note that it remembers the node it must 
send Return to after phantomization with a parent edge (dashed arrow). All nodes have storage 
for a single parent edge.

[1,0,0]
(3/2) [1,0,0]

(4/3)
wait=3

[1,0,0]
(1/2)

[0,0,1]
(3/4)
wait=1

Phantomize



Collecting With SWPR
Eventually, a return message comes back to the node on the right.

[1,0,0]
(3/2) [1,0,0]

(4/3)
wait=3

[1,0,0]
(1/2)

[0,0,1]
(3/4)
wait=1

Return



Collecting With SWPR
It’s wait count is now zero, so it sends return to its parent and unsets the
parent edge.

[1,0,0]
(3/2) [1,0,0]

(4/3)
wait=3

[1,0,0]
(1/2)

[0,0,1]
(3/4)
wait=0

Return



Collecting With SWPR
The wait count on the central node drops to 2. That’s not zero, so it doesn’t do anything.

[1,0,0]
(3/2) [1,0,0]

(4/3)
wait=2

[1,0,0]
(1/2)

[0,0,1]
(3/4)
wait=0



Collecting With SWPR
Finally, the other return messages come back.

[1,0,0]
(3/2) [1,0,0]

(4/3)
wait=2

[1,0,0]
(1/2)

[0,0,1]
(3/4)
wait=0

Return



Collecting With SWPR
The wait count is now zero, so an action can be taken...

[1,0,0]
(3/2) [1,0,0]

(4/3)
wait=0

[1,0,0]
(1/2)

[0,0,1]
(3/4)
wait=0



Collecting With SWPR
Because our strong count is positive, the next action is to build, i.e. to clear the phantomized 
state. Note that this increases the wait count back to 3.

[1,0,0]
(3/2) [1,0,0]

(4/3)
wait=3

[1,0,0]
(1/2)

[0,0,1]
(3/4)
wait=0

Build



Collecting With SWPR
The node on the right now has a weight of 5 and a max weight of 4. Accordingly, it sets its strong 
count to 1, its phantom count to zero, and propagates the build message.

[1,0,0]
(3/2) [1,0,0]

(4/3)
wait=3

[1,0,0]
(1/2)

[1,0,0]
(5/4)
wait=1

Build



Collecting With SWPR
The build message returns.

[1,0,0]
(3/2) [1,0,0]

(4/3)
wait=3

[1,0,0]
(1/2)

[1,0,0]
(5/4)
wait=1

Return



Collecting With SWPR
The node on the right now has a wait of 0, so it sends return. When the central node receives it, 
its wait will be zero, and the collector will be done.

[1,0,0]
(3/2) [1,0,0]

(4/3)
wait=3

[1,0,0]
(1/2)

[1,0,0]
(5/4)
wait=0

Return



Collecting With SWPR
A quiet state is achieved.

[1,0,0]
(3/2) [1,0,0]

(4/3)
wait=0

[1,0,0]
(1/2)

[1,0,0]
(5/4)
wait=0



The Phantomization Process
● A possible set of parent edges for 

a Phantomizing graph is pictured 
at left.

● The Initiator node (Node I) does 
not have a parent edge

● There is only one outgoing parent 
edge per node

● Connects all nodes in the 
Phantomizing graph with edges 
back to the initiator

● Parent edge cannot form a cycle

I



Another Example...



Collecting With SWPR
Reference counts are written like this: [2,1,0], it means strong count=2,
weak count=1, phantom count=0. Weights are written like this (2/3), it
means weight=2, max weight=3.

[1,1,0]
(3/5) [1,1,0]

(1/3)

[1,0,0]
(2/1)

[1,0,0]
(5/4)

[1,1,0]
(3/5) [1,0,0]

(4/3)

[1,0,0]
(2/1)

[1,0,0]
(5/4)

Phantomize



Collecting With SWPR

[1,1,0]
(3/5) [1,0,0]

(4/3)
wait=1

[1,0,0]
(2/1)

[1,0,0]
(5/4)

Phantomize

[1,1,0]
(3/5) [1,0,0]

(4/3)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Phantomize



Collecting With SWPR

[1,1,0]
(3/5) [1,0,0]

(4/3)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Phantomize

[1,0,1]
(6/5)
wait=1 [1,0,0]

(4/3)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Phantomize



Collecting With SWPR
[1,0,1]
(6/5)
wait=1 [1,0,0]

(4/3)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Phantomize
[1,0,1]
(6/5)
wait=1 [0,0,1]

(4/3)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Return



Collecting With SWPR
[1,0,1]
(6/5)
wait=1 [0,0,1]

(4/3)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Return [1,0,1]
(6/5)

[0,0,1]
(4/3)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Return



Collecting With SWPR
[1,0,1]
(6/5)

[0,0,1]
(4/3)
wait=1

[0,0,1]
(2/1)

[1,0,0]
(5/4)

[1,0,1]
(6/5)

[0,0,1]
(4/3)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Return

Return



Collecting With SWPR
[1,0,1]
(6/5)

[0,0,1]
(4/3)
wait=1

[0,0,1]
(2/1)

[1,0,0]
(5/4)

[1,0,1]
(6/5)

[0,0,1]
(4/3)
wait=1

[0,0,1]
(2/1)

[1,0,0]
(5/4)

Return
Recover



Collecting With SWPR
[1,0,1]
(6/5)

[0,0,1]
(4/3)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Recover

[1,0,1]
(6/5)

[0,0,1]
(4/3)
wait=1

[0,0,1]
(2/1)

[1,0,0]
(5/4)

Recover



Collecting With SWPR
[1,0,1]
(6/5)
wait=1 [0,0,1]

(4/3)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Recover
[1,0,1]
(6/5)

[0,0,1]
(4/3)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Recover



Collecting With SWPR
[1,0,1]
(6/5)
wait=1 [1,0,0]

(7/6)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Return
[1,0,1]
(6/5)
wait=1 [0,0,1]

(4/3)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Build



Collecting With SWPR
[1,0,1]
(6/5)

[1,0,0]
(7/6)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

[1,0,1]
(6/5)
wait=1 [1,0,0]

(7/6)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Return

Return



Collecting With SWPR
[1,0,1]
(6/5)

[1,0,0]
(7/6)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Return

[1,0,1]
(6/5)

[1,0,0]
(7/6)
wait=1

[0,0,1]
(2/1)
wait=1

[1,0,0]
(5/4)

Return



Collecting With SWPR
[1,0,1]
(6/5)

[1,0,0]
(7/6)
wait=1

[0,0,1]
(2/1)

[1,0,0]
(5/4)

Build

[1,0,1]
(6/5)

[1,0,0]
(7/6)
wait=1

[0,0,1]
(2/1)

[1,0,0]
(5/4)

Return



Collecting With SWPR
[1,0,1]
(6/5)

[1,0,0]
(7/6)
wait=1

[1,0,0]
(8/7)
wait=1

[1,0,0]
(5/4)

Build

[1,0,1]
(6/5)

[1,0,0]
(7/6)
wait=1

[0,0,1]
(2/1)

[1,0,0]
(5/4)

Build



Collecting With SWPR
[1,1,0]
(6/5)

[1,0,0]
(7/6)
wait=1

[1,0,0]
(8/7)
wait=1

[1,0,0]
(5/4)

Return

[1,0,1]
(6/5)

[1,0,0]
(7/6)
wait=1

[1,0,0]
(8/7)
wait=1

[1,0,0]
(5/4)

Build



Collecting With SWPR
[1,1,0]
(6/5)

[1,0,0]
(7/6)
wait=1

[1,0,0]
(8/7)

[1,0,0]
(5/4)

Return

[1,1,0]
(6/5)

[1,0,0]
(7/6)
wait=1

[1,0,0]
(8/7)
wait=1

[1,0,0]
(5/4)

Return



Collecting With SWPR
[1,1,0]
(6/5)

[1,0,0]
(7/6)

[1,0,0]
(8/7)

[1,0,0]
(5/4)

[1,1,0]
(6/5)

[1,0,0]
(7/6)
wait=1

[1,0,0]
(8/7)

[1,0,0]
(5/4)

Return



Collecting a Two Node Cycle...



Another Example with SWPR

[1,1,0]
(1/2)

[1,0,0]
(2/1)

[0,1,0]
(1/2)

[1,0,0]
(2/1)

Node A Node B Node A Node B

Root
Remove root from the cycle.



Another Example with SWPR

[0,1,0]
(1/2)

[1,0,0]
(2/1)

[1,0,0]
(3/2)
wait=1

[1,0,0]
(2/1)

PhantomizeNode A Node B

Node A Node B

Node A phantomizes.



Another Example with SWPR

[1,0,0]
(3/2)
wait=1

[1,0,0]
(2/1)

Phantomize

[1,0,0]
(3/2)
wait=1

[0,0,1]
(2/1)
wait=1

Node A Node B

Node A Node B

Phantomize

Node B propagates the 
phantomization.



Another Example with SWPR

[1,0,0]
(3/2)
wait=1

[0,0,1]
(2/1)
wait=1

Node A Node B

Phantomize

[0,0,1]
(3/2)
wait=1

[0,0,1]
(2/1)
wait=1

Node A Node B

Return

Node A is already phantomized, so it sends Return back.



Another Example with SWPR

[0,0,1]
(3/2)
wait=1

[0,0,1]
(2/1)
wait=1

Node A Node B

Return

[0,0,1]
(3/2)
wait=1

[0,0,1]
(2/1)

Node A Node B
Return

Node B’s wait count is now zero, so it sends Return to its parent, A, and 
clears its parent edge.



A Simple Example With SWPR

[0,0,1]
(3/2)
wait=1

[0,0,1]
(2/1)

Return

[0,0,1]
(3/2)
wait=0

[0,0,1]
(2/1)

Node A Node B

Node A Node B

Node A’s wait counter drops to zero. Phantomization is complete.



A Simple Example With SWPR

[0,0,1]
(3/2)
wait=0

[0,0,1]
(2/1)

Node A Node B

[0,0,1]
(3/2)
wait=1

[0,0,1]
(2/1)

Node A Node B

Recover

Node A has no strong count, so it might be garbage. It attemps to Recover, i.e. to look 
for phantomized nodes which have strong incoming edges from which it can rebuild the 
subgraph.



A Simple Example With SWPR

[0,0,1]
(3/2)
wait=1

[0,0,1]
(2/1)

Node A Node B

Recover

[0,0,1]
(3/2)
wait=1

[0,0,1]
(2/1)
wait=1

Node A Node B

Recover

Node B receives recover. It has no strong edges, so it propagates the 
Recover.



A Simple Example With SWPR

[0,0,1]
(3/2)
wait=1

[0,0,1]
(2/1)
wait=1

Node A Node B

Recover

[0,0,1]
(3/2)
wait=1

[0,0,1]
(2/1)
wait=1

Node A Node B

Return

Node A is already recovering, so it sends Return.



A Simple Example With SWPR

[0,0,1]
(3/2)
wait=1

[0,0,1]
(2/1)
wait=1

Node A Node B

Return

[0,0,1]
(3/2)
wait=1

[0,0,1]
(2/1)
wait=0

Node A Node B

Return

Node B’s wait count is zero, so it returns and clears its parent edge.



A Simple Example With SWPR

[0,0,1]
(3/2)
wait=1

[0,0,1]
(2/1)
wait=0

Node A Node B

Return

[0,0,1]
(3/2)
wait=0

[0,0,1]
(2/1)
wait=0

Node A Node B

At the end of recovery, Node A still has no strong nodes...



A Simple Example With SWPR

[0,0,1]
(3/2)
wait=0

[0,0,1]
(2/1)
wait=0

Node A Node B

[0,0,1]
(3/2)
wait=0

[0,0,1]
(2/1)
wait=0

Node A Node B
Delete

Node A knows it’s garbage. It sends Delete along all its 
outgoing edges, then deletes those same edges. It does not 
set its wait count.



A Simple Example With SWPR

[0,0,1]
(3/2)
wait=0

[0,0,1]
(2/1)
wait=0

Node A Node B
Delete

[0,0,1]
(3/2)
wait=0

[0,0,0]
(2/1)
wait=0

Node A Node B

Delete

After Node B receives Delete, it propagates the message and deletes itself. 
Node A cannot be reclaimed until it receives Delete from B. Once it does, it 
deletes itself.



The Multicollector
●
●

○
○

●

○
○
○
○



The Claim Message

{0,1,0}
[0,0,1]
(2/1)

{0,1,0}
[1,0,1]
(3/2)

[1,0,0]
(2/1)

● The tuples {0,1,0} and 
{0,2,0} are collection id’s. 
For now, the first and last 
tuple element are zero.

● The middle value is the 
main id, and must be 
unique. It can be the 
node id.

{0,1,0}
[0,0,1]
(4/3)

Phantomize



The Claim Message

{0,1,0}
[0,0,1]
(2/1)

{0,1,0}
[1,0,1]
(3/2)

{0,2,0}
[1,0,0]
(2/1)

The Phantomize 
message is traveling 
toward an already 
phantomized node. 
Normally this would 
immediately return. If the 
sending tuple were 
smaller or equal to the 
receiving, it still would 
return.

{0,1,0}
[0,0,1]
(4/3)

Phantomize



The Claim Message

{0,1,0}
[0,0,1]
(2/1)

{0,2,0}
[0,0,2]
(3/2)
wait=3

{0,2,0}
[1,0,0]
(2/1)
wait=1

However, in this case, 
the Phantomize comes 
from a higher collection 
id, namely {0,2,0}. So 
instead of returning 
immediately, it marks the 
receiving node with its id 
and sends Claim along 
its outward edges..

{0,1,0}
[0,0,1]
(4/3)

Claim



The Claim Message

{0,1,0}
[0,0,1]
(2/1)

{0,2,0}
[0,0,2]
(3/2)
wait=3

{0,2,0}
[1,0,0]
(2/1)

Claim propagates in the 
same way Phantomize 
does.

{0,2,0}
[0,0,1]
(4/3)
wait=1

Claim



The Recovery Count

{0,1,0}
[0,0,1,1]
(2/1)

{0,2,0}
[1,0,2,1]
(2/1)

{0,2,0}
[0,0,1,1]
(2/1)

● When a node receives a 
recovery from a node with the 
same collection id, the recovery 
count is incremented.

● Unless the phantom and 
recovery count are equal, nodes 
cannot send return messages or 
decide to start deleting.



The Return and Start Over Mechanism

{0,1,0}
[0,0,1]
(2/1)

{0,1,0}
[1,0,1]
(3/2)
wait=3

{0,2,0}
[1,0,0]
(2/1)

{0,1,0}
[0,0,1]
(4/3)
wait=1

Phantomize

Consider this scenario...



The Return and Start Over Mechanism

{0,1,0}
[0,0,1]
(2/1)

{0,2,0}
[0,0,2]
(3/2)
wait=3

{0,2,0}
[1,0,0]
(2/1)

{0,1,0}
[0,0,1]
(4/3)
wait=1

Return And 
Start Over 
(RSO)

The new collection has to 
take over, but we can only 
have a single parent 
edge, so we send Return 
And Start Over to the 
current parent and set a 
new parent. 



The Return and Start Over Mechanism

{0,1,1}
[0,0,1]
(2/1)

{0,2,0}
[0,0,2]
(3/2)
wait=3

{0,2,0}
[1,0,0]
(2/1)

{0,1,0}
[0,0,1]
(4/3)
wait=1

Pink node starts over with 
a slightly higher collection 
id (incremented minor id)

Claim or 
Recover



How These Mechanisms Work Together

Collection 
{0,1,0}

Collection 
{0,2,0}

Collection {0,2,0} takes over the collection of the two nodes at right.



How These Mechanisms Work Together, 
Take 2

Collection 
{0,2,0}

Collection 
{0,1,0}

Collection {0,2,0} waits for {0,1,0} to finish, then collects its two nodes.



How These Mechanisms Work Together, 
Take 3

Collection 
{0,1,0}

Collection {0,1,0} starts...

Init

{0,1,0}

{0,1,0}

Recover



How These Mechanisms Work Together, 
Take 3

Collection 
{0,1,0}

The red edge is removed

Init

{0,1,0}

{0,1,0}

Recover



How These Mechanisms Work Together, 
Take 3

Collection 
{0,1,0}

Init

Return {0,2,0}

{0,1,0}

Danger: If we didn’t 
increment the minor id, the 
blue “Init” could finish and 
clean up, but it should be 
kept alive by red “Init.”

Init

Recover



How These Mechanisms Work Together, 
Take 3

Collection 
{0,1,1}

Collection {0,1,1} stalls and waits to be taken over by {0,2,0}

Init

{0,2,0}

{0,1,0}

Init

Recover



Working with a Mutator

● …
●
●


