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Abstract—Understanding the characteristics and requirements
of applications that run on commodity clusters is key to properly
configuring current machines and, more importantly, procuring
future systems effectively. There are only a few studies, however,
that are current and characterize realistic workloads. For HPC
practitioners and researchers, this limits our ability to design
solutions that will have an impact on real systems.

We present a systematic study that characterizes applications
with an emphasis on communication requirements. It includes
cluster utilization data, identifying a representative set of ap-
plications from a U.S. Department of Energy laboratory, and
characterizing their communication requirements. The driver for
this work is understanding application sensitivity to a tapered
fat-tree network. These results provided key insights into the
procurement of our next generation commodity systems. We
believe this investigation can provide valuable input to the
HPC community in terms of workload characterization and
requirements from a large supercomputing center.

Index Terms—High performance computing, high-speed net-
works, network topology, computer performance, scientific com-
puting.

I. INTRODUCTION

Understanding the characteristics and requirements of appli-
cations that run on high performance computing (HPC) sys-
tems is an important component in the design, configuration,
and optimization of current and future machines. Hardware
architects and system administrators, for example, can use
this information to tune machine parameters and software
libraries to meet a specific power budget, improve application
performance, or maximize throughput. At the same time,
those responsible for future hardware procurements can make
informed decisions regarding a range of available options
with respect to the performance and reliability of processor,
memory, and network components. A question one may ask is
whether doubling the network bandwidth is worth sacrificing
upgrades in processor speed, given a fixed capital budget.
The right balance depends on the suite of applications that
will execute on such a system. The more we understand the
characteristics and requirements of applications, the better
decisions we can make to provide the best performance within
a given capital or power budget.

The interconnection network is a key component that dis-
tinguishes HPC systems from more loosely coupled clusters.
Many HPC application workloads require both local and
global communication, and are therefore, sensitive to network
bandwidth, message latency, message injection rate, and im-
plementations of collective operations. While much emphasis
is placed on HPC networks, it is just as crucial not to over-
provision a network. For example, some applications may be
dominated by local communication or may involve a large
number of smaller ensemble runs. Systems dominated by such
workloads may or may not require a powerful global network.
Therefore, studies that provide insights into the network re-
quirements of application workloads can be extremely useful
in designing and procuring future systems. This is particularly
important since HPC networks are typically 15-25% of the
overall machine cost.

In this work, we provide a detailed characterization study
of several applications that run on commodity clusters at
Lawrence Livermore National Laboratory (LLNL), a U.S. De-
partment of Energy (DOE) laboratory. We focus on two
aspects: identifying a set of workloads, input problems, and
problem sizes that are representative of day-to-day simulation
needs of DOE’s Advanced Simulation and Computing (ASC)
program; and characterizing these workloads from an HPC
network perspective. The goal of this study is to provide
a meaningful and detailed characterization that researchers,
system developers, and domain scientists can use to understand
real workloads in high-end scientific applications with an
emphasis on DOE needs. Although benchmarks and micro-
benchmarks are helpful in a number of ways, having an
informed understanding of the characteristics of real work-
loads can greatly improve the effectiveness and accuracy of
proposed approaches to improve performance, scalability, and
throughput.

This paper focuses on three areas. First, we present detailed
information about jobs that are executed on LLNL’s commod-
ity systems with a particular emphasis on job size and comple-
tion time (Section II). Second, we identify a representative set
of applications, and for each application, describe the physics
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involved, input problems, and problem sizes (Section III). And,
finally, we describe in detail the communication characteristics
of these applications and present a case study on how this
characterization work has been used to evaluate performance
sensitivity to a tapered fat-tree network (Sections IV and V).

We undertook this case study to inform the procurement
of new commodity systems at LLNL. From a procurement
perspective, this investigation enables a better evaluation of
the tradeoffs presented by various machine features, their cost,
and their impact on application performance. For example, is
it worth purchasing additional network bandwidth for a given
capital cost? Or, can these funds be used more effectively
from an application throughput perspective, by purchasing
additional compute nodes? We summarize the contributions
of this study as follows:

• A workload characterization of scientific applications on
commodity clusters that is current and representative
of a large supercomputing center at a DOE laboratory.
This characterization includes the physics involved, job
sizes, network bandwidth utilization, and communication
characteristics of applications.

• An experimental study on a large cluster demonstrating
the impact of a tapered fat-tree on application perfor-
mance. This investigation is guiding the procurement of a
next-generation commodity cluster to increase application
throughput and productivity.

We believe the methodology used in this work can be used
by other supercomputing centers to understand the charac-
teristics of their own applications. Further, our representative
workload characterization can be used as a reference by HPC
practitioners and researchers to understand the impact of their
techniques on real applications.

II. CLUSTER UTILIZATION IN PRODUCTION

In this section, we describe the production usage of two
of LLNL’s commodity systems focusing on two aspects: the
types of jobs and their sizes, and the network utilization.

A. Execution Environment

We used two Linux clusters at LLNL: Cab and Zin. The
Cab machine is comprised of 1,296 compute nodes, while
Zin is larger and has 2,916 nodes. Both systems have the
same architecture and run the same software stack as described
here. Each node has two Intel Sandy Bridge (Xeon E5-2670)
processors and 32 GB of memory. Each processor has eight
cores with two hardware threads per core (Hyper-Threading).
The nodes are connected via an InfiniBand QDR (QLogic)
single-rail network and the routing algorithm employed is
FTREE, a fat-tree optimized routing with no credit loops.

The machines run the Tri-lab Operating System Software
(TOSS). At the time of the experiments, Cab and Zin were
running TOSS version 2.3, which is based on Red Hat Enter-
prise Linux Server release 6.6. Each processor has a theoretical
peak memory bandwidth of 51.2 GB/s using 1.6 GHz DDR3.
With the exception of Section II-C, where we use both Cab
and Zin, all other experiments were executed on Cab.

B. Network Utilization

In order to understand how the network is being exercised
in production, we recorded the utilization of every inter-switch
link on Cab for a period of two weeks. Measurements were
taken every three minutes. We captured a week of data for
the full fat-tree in August 2015. In September 2015, we
reconfigured the network to a tapered fat-tree (as explained
in Section IV) and captured similar data for a week.

Figure 1 shows the maximum and average link utilization
over all links in the fat-tree. The full fat-tree graph shows that
most of the links utilized less than 50% of their maximum
capacity based on the average utilization during three-minute
recording intervals. Furthermore, the average link utilization is
significantly low–at most 2.4%. This large difference between
the average and maximum link utilization indicates that net-
work traffic is not distributed evenly over all links. We also
verified this with a heat map of the utilization of all the links.
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Fig. 1. Network link utilization over one week during production runs. We
recorded the average utilization of each inter-switch link over three-minute
intervals. The Y-axis shows the average and maximum link utilization across
all links in the fat-tree for each three-minute interval.

We observe a similar behavior for the tapered fat-tree,
except for several data points where a few links were utilized at
50 to 90% of their maximum capacity. After further analysis,
we attributed these data points to two jobs from a single
user. Each of these jobs used 48 nodes (less than 4% of
the cluster size) for four hours. Although a few links were
exercised significantly by a single user, most of them were
not, the average link utilization reached no more than 3.9%.
The tapered fat-tree does show an increase in network link
utilization compared to the full fat-tree but still we did not
observe a noticeable increase in maximum link utilization over
time other than a few outliers.

It is important to note that, on an average, 95.8% of the
nodes in the cluster were allocated to jobs during the week of
interest in August and 96.0% during the week of interest in
September 2015. This indicates that even though the machine
was mostly full in both fat-tree setups, the running jobs did not
fully exercise the network. This is an important observation to



consider as we procure future systems, but we need to verify
that the performance of individual applications is not degraded
when switching to the tapered fat-tree. We therefore analyze
the types of jobs, their sizes, their communication characteris-
tics, and their required network bandwidth for a representative
suite of applications. This will help us understand why the
network is not being fully utilized and identify opportunities
to optimize investments without affecting job throughput.

C. Workload Characterization

In this section, we describe the characteristics of the jobs
running on Cab and Zin at LLNL. We focus on two aspects: the
number of jobs of a given size and the time consumed by these
jobs. Our commodity systems record information about every
submitted job such as time to completion, number of nodes
allocated, and number of processes per node. We collected this
information on Cab and Zin for four months to understand how
users utilize these systems.

We start with the Cab system. First, we show the overall
machine time consumed by jobs of a given size ranging from
1-node jobs to 1,050-node jobs. The time consumed by a given
job j is weighed according to the number of nodes it employs:

WeightedTime(j) = AbsoluteTime(j)×NumNodes(j)

%TimeUsed(j) =
WeightedTime(j)∑
i WeightedTime(i)

× 100

The left graph of Figure 2 shows the cumulative sum of the
machine time consumed by job size. We observe that a large
percentage of the time is consumed by small jobs. Jobs using
64 or fewer nodes consume 75% of the time. Jobs using 128
or fewer nodes use almost 90% of the total time. Jobs using
256 or more nodes use only 3.4% of the time.
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Fig. 2. Machine time consumed by jobs of a given size.

The right graph of Figure 2 shows the time consumed
by each job grouped by power-of-two and non-power-of-two
nodes. For powers of two, the graph shows all of the jobs in
this category. We note that power-of-two node jobs occupy a
disproportionately large amount of time: 58.1% of the time

is spent on 11 job sizes, while 41.9% is consumed by the
remaining 67 job sizes. From all of the sizes, jobs of size 32
and 64 nodes are the ones that accumulate the most time.

Second, we do a similar analysis for the number of jobs
of a specified size relative to the total number of jobs during
the time period mentioned above. The left graph of Figure 3
shows most of the executed jobs are very small: 80.8% of the
jobs are of size 4 nodes or smaller, while 95% of the jobs
are of size 16 or smaller. This is because 76% of the jobs are
1-node jobs, followed by 16-node jobs representing another
4% of all jobs, as shown in the graph on the right.
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TABLE I
JOB CHARACTERISTICS OF ZIN AND CAB. JOB SIZE REFERS TO THE

NUMBER OF NODES USED BY THAT JOB.

Cab Zin

Machine comprises Y nodes 1,296 2,916

Jobs of size ≤ 64 use Y% of the overall machine time 75 69

X power-of-two job sizes occupy Y% of the machine
time 11, 59 11, 82

X non-power-of-two job sizes occupy Y% of the
machine time 67, 41 46, 18

Jobs of size ≤ 16 comprise Y% of all jobs 95 91

Jobs of size X comprise Y% of all jobs 1, 76 8, 19

X% of jobs are of power-of-two size 90 76

We performed a similar analysis for the Zin system and
created Table I to compare the two machines. It is important
to note that Zin, a classified machine, is 2.25 times larger than
Cab, while Cab, an unclassified machine, has a more diverse
mix of jobs and more users. Even with these differences, Zin
shows similar patterns: a large percentage of time (69%) is
consumed by 64-node and smaller jobs; power-of-two job sizes
are even more salient on Zin occupying 82% of the overall
time (compared to 59% on Cab) and comprising 76% of all
the jobs. Because of the larger mix of jobs on Cab, Zin presents



a smaller number of job sizes: 11 power-of-two sizes and 46
otherwise. A significant difference between the two system is
that the most frequent job size on Zin is 8 nodes (19% of all
jobs) while for Cab it is 1 node (76% of all jobs).

From these experiments, it is evident that power-of-two
node jobs of small size are extremely important to understand,
characterize, and optimize the utilization of a cluster not
only in terms of performance but also for power and energy
concerns as we move to future systems.

III. REPRESENTATIVE APPLICATIONS

We provide an empirical study of the sensitivity of ap-
plications to a tapered fat-tree by employing a representa-
tive suite of HPC parallel codes. These codes include five
MPI production applications that are often run at LLNL
and two MPI+OpenMP proxy applications from the CORAL
benchmarks1. The CORAL suite, used to procure three 100+
Petaflop/s computers, represents U.S. Department of Energy
workloads and technical requirements. The chosen codes rep-
resent diverse physics and application areas including hydro-
dynamics simulations, Monte Carlo particle transport, nuclear
reactor criticality, and laser-plasma interactions.

The rest of this section provides a brief description of each
application and the problems used in this study. Each input
problem and size was carefully selected with the guidance
of the application developers that regularly run and maintain
these codes to ensure the problems tested were representative
of production-class configurations. We discuss how our codes
are changing to adapt to new architectures in Section VI.

ALE3D is an unstructured mesh Arbitrary Lagrange Eulerian
(ALE) hydrodynamics code [1]. It runs a diverse set of
application use cases, including, but not limited to fracture
and fragmentation, magneto-hydrodynamics and fluid struc-
ture interaction. ALE3D is used by various U.S. government
agencies including LLNL, the DOD and NASA. For ALE3D,
we tested a penetrator problem, which is representative of
problems that have a mixing of materials. In this problem,
a moving penetrator impacts a stationary target material. The
problem size used is typical of 3D runs in ALE3D that use
10,000 to 15,000 zones per processor.

Mercury is a production Monte Carlo particle transport
code [2]. MPI parallelism in Mercury is over spatial domains.
Since some domains will have more particles than others, the
code is typically run with more MPI tasks than domains so that
the code can replicate expensive domains onto multiple tasks
handling different sets of particles to better balance the load.
We ran a 3D neutron transport test problem called Godiva-in-
water. A sphere of uranium is immersed in a water moderator
which in turn is surrounded by air; we ran an alpha eigenvalue
calculation on this system which required 40 cycles (pseudo-
timesteps) of the Monte Carlo algorithm. Though the geometry
is relatively simple, this problem uses real materials and relies
on domain replication for load balancing since the particle

1https://asc.llnl.gov/CORAL-benchmarks

densities vary dramatically in different spatial regions. These
properties and the 15,000 particles used per MPI task make the
problem representative of typical Mercury production runs. All
tests used a 48×48×48 spatial mesh divided into 64 domains
(independent of the number of MPI tasks).

Ardra is a discrete ordinates (Sn) neutron transport code
used for various engineering problems [3]. Ardra solves the
Boltzmann transport equation on a structured grid. In this
paper, we focus on the 2D time dependent problem. We focus
on this problem because Ardra usually runs 2D problems on
commodity clusters and the time dependent problem highlights
the sweep communication patterns. The other communication
pattern in Ardra is when it calls AMG for eigenvalue compu-
tations used in reactor criticality problems, but AMG is tested
on its own. Our test problem has 200 zones per task, with 192
angles and 48 groups per zone and is representative of typical
production sizes.

Miranda is a radiation hydrodynamics code designed for
direct numerical solution (DNS) or large-eddy simulation
(LES) of multicomponent flows with turbulent mixing [4]. It is
often used for simulating Rayleigh-Taylor [4] and Richtmyer-
Meshkov [5] instability growth. For experiments in this paper,
we used a 2D Noh problem that is decomposed into sub-
domains of size 48× 48 grid points per MPI task. MPI tasks
are arranged in a logical 2D grid and each process is assigned
a sub-domain.

AMG2013 is an algebraic multigrid benchmark derived from
the BoomerAMG solver in Hypre [6]. The Hypre linear solvers
library is used in a variety of multi-physics applications at
LLNL including KULL [7], BLAST [8], and ALE3D [1].
We use AMG to test two common problems. The first is a
standard 7-point stencil, Laplace problem in 3D with grid and
anisotropy (1.0 in each direction). The second is a Laplacian
in 3D with a 27-point stencil. The solver we employ uses
algebraic multigrid as a preconditioner for GMRES (Gener-
alized Minimum Residual) with 10 Krylov vectors. Unlike
CG (Conjugate Gradient), GMRES works for more general
non-symmetric matrices. We ran both problems and obtained
similar results. Thus, we only focus on the Laplacian with
7-point stencil for the reminder of the paper.

pF3D simulates laser-plasma interactions (LPI) in National
Ignition Facility (NIF) [9] experiments. It solves coupled LPI
equations for the propagation and interaction of the laser light,
the scattered light, and the plasma. Some terms in the LPI
equations are treated using 2D FFTs in planes transverse to the
laser direction and others are treated using finite differences.
pF3D also simulates the hydrodynamic response of the plasma
to heating by the laser. pF3D uses a regular 3D Cartesian
grid with a 3D spatial decomposition into equal-sized MPI
domains. The laser beam propagates in the z-direction. A set
of MPI domains spanning the full grid in the x and y directions
and one domain thick in z is referred to as an xy-slab. We ran
a test problem, typical of runs on x86 64 clusters, comprised
of 384k zones per domain and 4×16 domains per xy-slab. We



ran a weak scaling study using this test problem. Weak scaling
is achieved by keeping the height, width, and thickness of an
xy-slab constant and adding more slabs in the z-direction.

UMT2013 is a deterministic transport (Sn) proxy applica-
tion [10]. It solves 3D radiation transport equations on an
unstructured grid. UMT uses both threads and MPI to increase
available parallelism and scalability. A typical run has around
1,000 zones per MPI task to allow arrays to fit in memory.
Problems with 3,000 zones per task can be run when more
memory per MPI process is available. UMT is typically run
with 15 groups, although some runs use up to 200 groups. For
Sn order, S6 is standard and S16 is extreme. For problems with
high angular and energy resolution, the number of zones can
be reduced down to 100 per task. For this work, we used the
Su-Olson test with the following parameters: 12 × 12 × 12
zones per MPI task, 15 groups, order 6, 8 polar angles, and 4
azimuthal angles.

A. Summary of Application Areas and Inputs

The applications we selected represent a diverse set of
physics, solver methods, and grid types. While it is not
practical to highlight all the areas within scientific computing
these applications belong to, we summarize the key high-level
characteristics described in this section in Table II. We also
summarize the input problems and their sizes in Table III.

TABLE II
PHYSICS AND MATHEMATICS DOMAINS OF APPLICATIONS AT A GLANCE.
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IV. A TAPERED FAT-TREE

The Cab system at LLNL uses a fully provisioned fat-
tree network with two logical tiers of switches. As Figure 4
shows there are two core switches at the top, each with 648
InfiniBand 4X QDR (4x10 Gb/s) ports. Each core switch is
constructed using 54 36-port switches arranged in two levels.
Each core switch is connected down to eight scalable units
(SU), each comprising nine second-level switches and 162
compute nodes. Each second-level switch or edge switch has
36 ports: 18 of which connect down to compute nodes (one
port per node), nine up to core switch 1, and nine up to
core switch 2. The total number of ports at the top level
are calculated as follows: 8 SUs × 9 edge switches × 9 ×
2 ports up to core switches = 648× 2 top-level ports.

TABLE III
APPLICATION INPUT PROBLEMS AND SIZES. ALL CODES WERE EXECUTED

USING 16 MPI TASKS PER NODE, WHICH RESULTS IN 1 TASK PER CORE.

Problem Size

ALE3D Penetrator 10 K – 15 K zones per task

Mercury Godiva-in-water eigenvalue 15 K particles per task

Ardra
Time dependent 200 zones per task, 192 an-

gles, 48 groupsEigenvalue

Miranda 2D Noh 48× 48 grid points per task

AMG2013
Laplace, 27-point stencil

40×40×40 grid points per
taskLaplace, 7-point stencil

with grid and anisotropy

pF3D Laser-plasma interaction 384 K zones per domain, 4×
16 domains per XY-plane

UMT2013 Su-Olson test
12×12×12 zones per task,
order 6, 15 groups

Fig. 4. A fully provisioned fat-tree.

We created a 2:1 over-subscribed fat-tree by cutting net-
work bandwidth at the top level of the fat-tree in half. We
accomplish this by turning off one core switch as shown
in Figure 5. This results in a tapered fat-tree with half as
many links at the top level: 8 SUs × 9 edge switches ×
9 ports up to core switches = 648 top-level ports.

Fig. 5. A 2:1 tapered fat-tree.

A. Evaluation using Micro-benchmarks

We measured network performance differences between
the full and tapered fat-tree setups to empirically validate
the tapered fat-tree configuration on Cab. We used the OSU
micro-benchmarks2 to measure network latency and message
injection rate (in million messages per second or MM/s) over
the entire system. Table IV shows the results. The latency is
the same for both fat-tree configurations. This is also the case
for the message injection rate of small messages. However,
injection rate of messages greater than 4 KB starts to differ.

2http://mvapich.cse.ohio-state.edu/benchmarks



TABLE IV
BENCHMARK RESULTS CONFIRM A REDUCTION IN AGGREGATE

BISECTION BANDWIDTH.

Full Tapered

Latency (µs) 2.31 2.31
Message injection rate (MM/s for 1 byte) 6509 6657
Aggregate near-neighbor bandwidth (GB/s) 3577 3586
Aggregate bisection bandwidth (GB/s) 3088 1866

Using the Phloem MPI benchmarks3, we measured two
types of aggregate bandwidth: near-neighbor traffic between
nodes on the same edge switch and bisection bandwidth across
the top-level switches. As expected, the aggregate bandwidth
for nodes on the same edge switch was the same while the
bisection bandwidth was reduced by roughly half. As Figure 6
shows, we also observed that the full fat-tree did not provide
a significant bandwidth increase for small messages. The
bandwidth increase is significantly larger for messages greater
than 32 KB.
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Fig. 6. Aggregate bandwidth for the full and tapered fat-trees. Based on
the bandwidth changes, we consider 2 KB and 32 KB the thresholds for
classifying messages into small, medium, and large.

The over-subscribed bisection results are not precisely half
of the full fat-tree bisection results due to differences in
node allocation by the resource manager and total node count
between runs: 1,164 for full and 1,180 for tapered.

To summarize, the results of the micro-benchmarks demon-
strated the expected reduction in bisection bandwidth and
showed no significant impact on latency, injection rate of small
messages, and near-neighbor bandwidth.

V. CHARACTERIZING APPLICATIONS

In this section, we describe the communication charac-
teristics of the applications we tested. This characterization
includes an analysis of their sensitivity to a tapered fat-tree as

3https://asc.llnl.gov/sequoia/benchmarks

described in Section IV. The results presented in this section
were collected in a dedicated system reservation on Cab over
a period of two days. The machine was run in the tapered
fat-tree setup on the first day and the full fat-tree setup on the
second day. Each application was run in both setups. For each
application, problem size, and node count, we executed at least
five runs. The number of nodes used ranges between 8 and
1024 depending on the application. All experiments were run
using 16 MPI tasks per node. In addition, we used the mpiP
profiling library4 to break down the MPI time into individual
communication operations and their message sizes.

Based on the full and tapered fat-tree results, we have
grouped the applications depending on their sensitivity to net-
work bandwidth and their runtime variability. ALE3D (Group
I) shows no sensitivity to network bandwidth or runtime
variability. Group II, comprising Mercury, Ardra, Miranda,
and AMG, demonstrates no sensitivity to network bandwidth
but has significant run-to-run variability due to system noise.
pF3D (Group III) is similar to Group II, except the runtime
variability comes from a different unidentified source. UMT
(Group IV) shows sensitivity to network bandwidth but no
variability.

We also present a high-level overview of the size and type of
messaging found in our applications in Table V. We classified
messages into small, medium, and large with thresholds of
2 KB and 32 KB. These thresholds were chosen based on
the network bandwidth changes observed when measuring the
aggregate bandwidth for the full and tapered fat-trees as shown
in Figure 6. Note that pF3D does not have significant global
communication. It has significant collective communication
because all-to-all operations on sub-communicators account
for the majority of message passing time and bytes transferred.

TABLE V
MESSAGE SIZES AND TYPE OF COMMUNICATION OPERATIONS AT A

GLANCE. THE THRESHOLDS FOR SMALL, MEDIUM, AND LARGE
POINT-TO-POINT MESSAGES ARE 2 KB AND 32 KB.

Small Medium Large Collectives

ALE3D
Mercury
Ardra
Miranda
AMG2013
pF3D
UMT2013

For the rest of this section, we use three graphs to sum-
marize our results across all applications. Figure 7 shows the
breakdown of execution time into computation and individual
communication operations. Figure 8 shows the average mes-
sage sizes weighted over the different call-sites of each com-
munication operation. Finally, Figure 9 shows the execution
time of the applications under the full and tapered fat-tree.

4http://mpip.sourceforge.net
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A. Group I: ALE3D

Applications in Group I had little or no run-to-run perfor-
mance variability and were not impacted by tapered bandwidth
reductions. The only application we ran that fit into this cate-
gory was ALE3D. Figure 7 shows most of the messaging time
in ALE3D is in global communication (Barrier, Allreduce) or
wait functions. Time spent in global communication is driven
by load imbalance. Physics timers in the code show the longest
domain takes 1.5-2× longer than the shortest and this grows to
2-2.5× for domains with slide surfaces. This imbalance leads
to significant waiting at global synchronization points and for
asynchronous messages leading to most of the MPI time.

Figure 8 shows that messages in ALE3D are mostly of
medium size. The average Allreduce is large but this is affected
by initialization, and over 99% of the bytes in ALE3D are from
Isends in halo exchanges or other point-to-point messages. In
addition, most of the Allreduce time is for 8 byte messages.
What is not shown on the graph is that the average size for
the point-to-point messages decreases with scale from about
13 KB at 8 nodes to 8.7 KB shown at 128 nodes.

Figure 9 shows that ALE3D’s runtime is identical for both
network configurations. In addition, ALE3D’s runtime was
repeatable from run to run. Tapering did not impact ALE3D
because it sends mostly medium size messages and does not
communicate much data. If all of its communication was off
node at maximum line rate it would take just 5% of the total
execution time. In practice, a significant number of messages
stay within a node and ALE3D overlaps significant amounts
of its communication with computation. Therefore, ALE3D
is not sensitive to network bandwidth on our test cluster. In
addition, system noise from collectives likely does not have
an effect due to load imbalance. Since most processors are
waiting at a collective, only a few stragglers need to arrive
before it can be completed and jitter impacts are minimized.
Overall, the data shows that ALE3D is not very sensitive to
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percentage of data sent. Dotted horizontal lines mark the thresholds between
small, medium, and large message sizes.

the network, but would benefit from better load balance.

B. Group II: Mercury, Ardra, Miranda, and AMG2013

Group II consists of four applications that were sensitive
to system noise, but not affected by bandwidth tapering. In
this section we first present their messaging characteristics
individually followed by a combined description of their
sensitivity to tapering.

Mercury uses Isends to communicate particles that cross into
neighboring spatial domains, and collective operations such as
AllReduce and Reduce. Two point-to-point message call sites
account for over 90% of all messages and 80% of all bytes
sent. The larger one with message sizes averaging 16 KB is
about 80% of the messages and 78% of the bytes regardless
of scale (see Figures 7 and 8). Most of the remaining data
is transferred in Reduce and Allreduce operations. The MPI
runtime is mostly spent in Test and collective operations. Test
takes 75% of the MPI time at 8 nodes and drops to 50%
at 256 nodes, with collective operations taking the remaining
MPI runtime.

Communication load imbalance is prominent in Mercury
with the minimum and maximum MPI times differing by a
factor of 3 to 5. The load imbalance is due to the fact that
particle generation and interaction differ greatly in different
materials. In addition, Mercury needs frequent testing to
determine whether all particle transport for a phase of the
computation is complete [2]. Although this check is done with
Iallreduce, the synchronization point leads to load imbalance.

Ardra has two main communication patterns. One pattern
is small-message wavefront sweeps that occur concurrently
from all corners (four in 2D and eight in 3D) of the mesh.
These sweeps are typically pipelined with one angle at a time
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Fig. 9. Application execution time for the full and tapered fat-tree configurations. The Y-axis maximum value is different for each application since they
have significantly different runtimes. All applications were run in a weak scaling mode.

traversing each zone. For some problems, Hypre is used to
speed up the convergence of the solve. When Hypre is used,
messaging occurs in a multigrid solver with similar properties
to AMG [3], but it passes fewer bytes than the sweeps.

Figure 7 shows that most of the runtime is spent in Testany
at small scale and Allreduce at large scale. This is due to
the serial dependence of the sweep causing processors to wait
on data to propagate through the mesh to begin their work.
Figure 8 shows the message sizes for Ardra. Although the
synchronous operations on average are large, they account for
less than 3% of the total bytes sent over the network. Isend
operations used in the sweep account for 97% or more of the
bytes communicated and are always 168 bytes.

Miranda transposes data to perform sparse linear (penta-
diagonal) solves and FFTs, which require a lot of MPI
communication. Weak scaling of the 2D Noh problem puts
a small amount of computation on each processor. Even
on eight nodes, the code spends nearly 54% of its time in
communication (Figure 7). At this scale, a significant amount
of the MPI time is spent in Allgather and Sendrecv. As we
scale up, the time spent in MPI increases rapidly to 84% on
64 nodes and 94% on 512 nodes, respectively. All messages
in Miranda are smaller than 1.5 KB.

The MPI time increase is attributed, primarily, to the All-
gather operation. This could be due to a number of reasons
including an inefficient implementation of this operation in the
MPI library, load imbalance, which manifests as time spent in
Allgather, and OS noise. Since all messages are around 1.5
KB in size, it is unlikely that network congestion is a factor.

AMG2013 has two primary message patterns, halo exchange
of local data for sparse matrix-vector multiplication and Allre-
duce operations to compute inner products. The relative costs
of these operations are shown in Figure 7. The Allreduces are
always 8 bytes in size and account for just 0.01% of all bytes
sent, but can consume over one-fourth of the MPI time. The
halo exchanges communicate the rest of the data and message

sizes vary with the communication pattern and the level of
the multigrid hierarchy. Message sizes shown in Figure 8 are
small, but vary throughout the run. The initial input problem
level has the largest messages and messages become smaller
as AMG moves to coarser levels.

As we weak scale, more multigrid levels are added that
require smaller messages on average. This results in the
average point-to-point message size shrinking from 1,090 to
884 bytes as we scale from 8 to 1,024 nodes. In addition,
more Allreduce operations are needed with point-to-point and
collective messages increasing by O(log(N)) where N is the
number of processors.

AMG also exhibits load imbalance at its coarsest grid levels
because there are not enough degrees of freedom for all
processors to participate. This can result in a load imbalance
of 2× in the number of messages sent per processor. Despite
these imbalances, the amount of time spent in the MPI library
only differs by 25%. The smaller differences are due to the
coarsest levels being faster than the finest.

Impact of tapered fat-tree: None of the applications in Group
II saw a noticeable performance impact from the tapered setup
as shown in Figure 9. Their run-to-run variability shows that
they are more adversely affected by system noise or jitter at
scale. A previous study documented this for Mercury, Ardra,
and AMG [11] and Miranda shares many similar charac-
teristics with these applications. It is possible that tapering
adversely impacted run time but with jitter causing significant
run-to-run variations, we were unable to run enough tests to
statistically rule out a small negative impact from tapering.

Ardra, AMG, and Miranda all send mostly small messages
and spend a significant amount of time in collectives. These
messages are small enough that they are message injection
limited and unable to drive the full bandwidth of either
network configuration as shown in Section IV. Therefore, we
do not expect their performance to be affected significantly
from the reduced bandwidth.

Mercury is different from the other three applications with



medium sized messages on average. However, this hides
significant details. A domain in Mercury batches up particles
before sending them to a neighboring domain to increase the
average message size. Communication of these large messages
is overlapped with computation with the receiving domain only
looking at received particles when it has completed work on
its current batch. Overall, these messages use about 10% of the
available bandwidth assuming the worst case of all off-node
traffic. Only at the end of a phase when there are few active
particles is it likely that messages will not be overlapped. At
this point particles are sent in smaller batches, or even one at a
time. Therefore, most of the bandwidth-heavy communication
is overlapped and the latency-heavy communication is on the
critical path and subject to system noise. The overlap of the
big messages and small messages (Isend and Iallreduce) at
the end of a phase explain why Mercury is not sensitive to
tapering of bandwidth, but is sensitive to system noise.

C. Group III: pF3D

pF3D is the only application in group III, which is charac-
terized by applications that have runtime variability not caused
by system noise but are insensitive to bandwidth tapering. As
shown in Figure 7, most of the communication time in pF3D
is spent on Alltoall operations, which are used to perform
2D FFTs on xy-slabs of the problem. These FFTs occur
simultaneously and account for the bulk of the communicated
bytes (see Figure 8). The simultaneous FFTs and the large
message sizes, of about 40 KB, can cause network congestion
and runtime variability. Furthermore, other work has shown
that network contention with other applications or pF3D itself
is an important source of variability on systems with toroidal
interconnects [12], [13]. We suspect that contention for shared
links is also important on InfiniBand machines such as Cab.
In addition, we do not attribute runtime variability to system
noise on account of related work [11].

The halo exchange during light advection sends the second
highest number of bytes, but uses significantly less time
than the FFT message exchange. Send, Recv, and Barrier
operations are used in this phase. pF3D predominantly sends
large messages and spends a significant fraction of its runtime
in communication, so we would expect some sensitivity to
network bandwidth. Surprisingly, however, Figure 9 shows no
significant differences between the full and tapered fat-tree
setups. The performance differences (if any) are smaller than
the run-to-run variability and more tests, including network-
aware mapping of tasks, are needed to determine the cause of
performance degradation at scale and its network bandwidth
sensitivity. Finally, we note that production runs of pF3D
scale better because they have more zones per domain in the
z-direction, but otherwise these results are representative of
production runs.

D. Group IV: UMT2013

Group IV includes only UMT and shows no significant
variation in execution time between runs but demonstrates
sensitivity to the tapered network. In UMT each task solves

a full radiative transfer problem on its portion of the mesh.
Boundary exchanges, using non-blocking point-to-point oper-
ations, are performed to exchange fluxes across neighboring
faces. Synchronization points, which are implemented with
Allreduce and Barrier operations, are used to monitor for
convergence and calculate a new time step.

The average point-to-point message in UMT is large, greater
than 148 KB, and its most frequent Allreduce operations are
64, 240, and 8 bytes in size (110.2 bytes weighted average),
as shown in Figure 8. Although this figure only shows data for
the large problem size, its message sizes are representative of
other configurations since they remain fairly constant across
different node counts. Figure 7 shows the amount of time UMT
spends in MPI and that it increases from 9% at 8 nodes to
15% at 128 nodes. This increase can be attributed to Allreduce
operations, whose percentage of runtime increases from 1.4%
to 5.69% and, to a lesser extent, the amount of time waiting
(Wait) for point-to-point messages.

UMT, like pF3D, has the potential to use a significant
amount of network bandwidth with its large point-to-point
messages. When analyzing the impact of the tapered fat-tree
on the performance of UMT (see Figure 9), we observed a
performance slowdown of 1-2% at larger node counts (≥ 512),
but no impact at smaller configurations. Since the slowdown
is small, it is hardly visible in the graph. UMT spends 85-
90% of its time computing and only a small fraction of
its time communicating. Examining the communication time
exclusively revealed a 6-7.5% slowdown with the tapered fat-
tree. However, since UMT spends only a small fraction of its
time sending large messages, the tapered fat-tree has a small
effect on its overall execution time but does have a significant
impact on communication.

VI. IMPACT AND LESSONS LEARNED

The results of this study allow us to quantitatively document
the impact of tapering bandwidth on a set of applications
representative of day-to-day workloads at LLNL. These find-
ings have had a significant impact on system procurement and
configuration at LLNL. The National Nuclear Security Admin-
istration’s (NNSA) Commodity Technology Systems (CTS-
1) procurement will provide production cycles to Lawrence
Livermore, Los Alamos, and Sandia National Laboratories.
The presented study provides evidence that representative
workloads would not be impacted severely by reducing the
network bandwidth from a full fat-tree to a 2:1 tapered fat-
tree. Within a fixed procurement budget, reducing the network
investment allows increasing the number of nodes, memory,
or storage with the additional funds.

The savings from our tapered network configuration are
worth 6-7% of the overall machine cost. For a typical 2,000-
3,000 node procurement, we can buy approximately 200
additional nodes. At our laboratory these findings influenced
two procured systems in this size range.

While this is a point-in-time study on a moderate number of
applications, we believe the techniques we used are generally
applicable to other centers in determining their networking



needs. In particular, by combining measurements of current
usage, experiments on key applications, and discussions with
users of the applications, we now understand when and how
the networks on LLNL clusters are exercised. We can now
estimate the impact of the network on application performance
without running all possible applications.

One important lesson is that applications sending only
small or medium-sized messages are not affected by tapering.
These results are consistent with our benchmark data that
shows tapering only changes the delivered bandwidth for large
messages (Figure 6). UMT, which sends large point-to-point
messages, was slightly impacted by the reduced bandwidth.
While the amount of time UMT spends in communication
increased by 6-7.5%, the overall impact on runtime was only
1-2% because messaging time is small (9-15%). This data
suggests that message sizes coupled with benchmarking data
are a good proxy for application sensitivity to decreased
bandwidth. Only if the application is likely to be affected are
runs necessary to determine the overall runtime impact.

A. Considerations for Future Systems

As mentioned earlier, the data presented here is a point-
in-time snapshot for current workloads on existing machines.
Future hardware and application changes will impact our
bandwidth needs in various ways. In this section, we briefly
mention implications for Ardra and pF3D, and continue with
hardware trends for next generation systems.

The Ardra team is developing a GPU version of their code
targeted at a CORAL system comprised of IBM Power proces-
sors coupled with NVIDIA GPUs. The GPUs are motivating
a different design that will increase the message sizes by 10-
1000×, depending on choices made for performance tuning.
At the lower end, messages would still be very small and the
findings in this paper would continue to apply. However, at
the higher end, message sizes would be similar to UMT and
more benchmarking would be needed.

The pF3D test problem we ran on Cab used 4×16 domains
per xy-slab, so a slab was split amongst 4 nodes. The Trinity
system at Los Alamos National Laboratory5 has two 16-core
Intel Haswell processors per node. pF3D could be run using
4 × 8 domains per xy-slab on Trinity so that FFT messages
would remain within a node and be passed via fast shared
memory. The larger node thus reduces the network bandwidth
required for good pF3D performance.

In next generation systems, the total compute performance
in flop/s is growing faster than network bandwidth. For the
procurement discussed in this study, we were considering
a transition from Intel Sandy Bridge processors with QDR
at 40 Gb/s to Intel Broadwell processors with a 100 Gb/s
network. The total compute performance per node increases
by about 4×, total network bandwidth by 2.5×, and memory
bandwidth by about 1.5×. Most of the applications we ana-
lyzed, which are representative of real workloads, are either
memory bandwidth bound or memory latency bound. For these

5http://www.lanl.gov/projects/trinity

applications, on-node performance is expected to increase
slower than off-node bandwidth. Benchmarking experiments
showed we should expect about a 2× throughput gain per
node as our workloads are not completely memory bandwidth
bound. In addition, larger nodes may present opportunities to
take advantage of surface to volume gains (more processes and
memory per node) to reduce the amount of communication
needed per unit of computation.

Processors such as Intel Knights Landing (KNL) and
NVIDIA GPUs provide a large memory bandwidth and flop/s
increase relative to a Sandy Bridge processor. Fast stacked or
in-package memory, when used effectively, will significantly
increase the ratio of memory to network performance. KNL
with its advertised 400+ GB/s peak bandwidth [14] could pro-
vide 5-6× the memory bandwidth and about 10× the compute
performance. With fast in-package memory, codes may strong
scale to reduce time to solution, resulting in a larger number
of smaller messages. Alternatively, they may use fewer MPI
ranks and add threading. This will lead to larger messages (as
in the case of Ardra) for the same per-node memory footprint.
Since network bandwidth is increasing faster than latency is
decreasing, the size cutoff for latency dominated messages
will increase and may reduce the sensitivity of applications to
network bandwidth. If real problems cannot be strong scaled,
they will spend significant amounts of time staging between
DDR and fast memory (or directly accessing DDR) and our
conclusions should hold for our applications.

Whatever the future holds in terms of application and
hardware changes, we believe the techniques we have used
and our quantitative approach will allow us to optimize the use
of our future procurement dollars for application productivity.

VII. RELATED LITERATURE

Micro-benchmarks, proxy applications, and full applica-
tions are often used to compare and contrast the behavior
and performance of different supercomputing platforms [15]–
[18]. In particular, researchers from Sandia and Los Alamos
National Laboratories have studied the performance of DOE
applications on commodity machines [19]–[21] to compare the
performance of different system generations. We build on these
studies by combining machine monitoring with application
experiments to quantify cost-benefit tradeoffs for current and
future machines.

Vetter and Mueller [22] and Raponi et al. [23] quantify the
communication characteristics of a set of scientific applica-
tions highlighting common patterns and operations between
them. Alam et al. [24] study the balance between CPU,
memory, network and I/O requirements for different applica-
tions. Pedretti et al. [25] study the sensitivity of application
performance to injection and link bandwidth on a Cray XT4
system, while Rosenthal and León [26] focus on the impact
of dual-rail networking. Kamil et al. [27] use several scientific
applications to understand their communication requirements
and present designs for a new network.

Our findings extend this previous work by contributing
new observations to the communication requirements of real,



contemporary scientific applications including a surprising
tolerance to a tapered fat-tree, which is consistent across
different types of applications even those using large messages
to communicate. We also corroborate previous results on the
importance of collective operations with small payloads among
several applications but not all of our codes. In addition, we
relate the characteristics of applications to other factors such
as run-to-run variability. Finally, we highlight the importance
of this study on the procurement of future systems, which
had key implications on the configuration and capital cost of
LLNL’s upcoming commodity clusters to be delivered in 2016.

VIII. CONCLUSION AND FUTURE WORK

We present an empirical study characterizing a represen-
tative set of applications on a commodity cluster. We focus
on the communication aspect of applications to inform the
procurement of NNSA’s new commodity technology systems.
The results of a tapered fat-tree investigation reveal that
a tapered network would have minimal to no performance
impact on the applications of interest.

This work includes a detailed analysis of production jobs
and cluster network monitoring data. This data shows how
machine cycles are distributed among different job sizes and
that the network is typically under-utilized even when we
reduce its bisection bandwidth by turning off one “core”
network switch. For a more detailed study, we selected five
production applications and two proxy applications that are
representative of day-to-day workloads at LLNL. When run
at typical job sizes and larger, only one application (UMT)
showed any runtime sensitivity to a tapered fat-tree network
and that sensitivity was small. Informed by the results of
this study we procured a system with a tapered network for
next-generation commodity technology systems that will be
installed in 2016. In addition, we have shared these results
with laboratory partners who are performing their own studies
to determine appropriate configurations for their own needs
and applications.

While the results presented here have had a significant im-
pact on current procurements, we need to continue monitoring
the evolution of systems and applications to provide the most
computing capability per dollar to the user community. Future
work includes determining how our results map to a 2017
CORAL system comprised of IBM Power processors coupled
with NVIDIA GPUs. Significant differences from existing
systems include multiple levels of memory, the presence of
accelerators, and significantly more memory and compute
capability per node. These changes will affect how applica-
tions are developed and run. For example, Ardra developers
expect message sizes to increase by 10-1,000× depending
on how tuning parameters best map to GPUs. Also, while
more memory per node will result in a better surface to
volume ratio, more compute relative to network bandwidth can
increase the rate of messages leaving a node. Starting with the
data analyzed in this paper and working closely with vendor
partners, we are assessing the implications of this work and

identifying additional experiments needed to prepare for this
new system.
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