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ABSTRACT
The fat-tree topology is one of the most commonly used network
topologies in HPC systems. Vendors support several options that
can be configured when deploying fat-tree networks on produc-
tion systems, such as link bandwidth, number of rails, number of
planes, and tapering. This paper showcases the use of simulations
to compare the impact of these design options on representative
production HPC applications, libraries, and multi-job workloads.
We present advances in the TraceR-CODES simulation framework
that enable this analysis and evaluate its prediction accuracy against
experiments on a production fat-tree network. In order to under-
stand the impact of different network configurations on various
anticipated scenarios, we study workloads with different communi-
cation patterns, computation-to-communication ratios, and scaling
characteristics. Using multi-job workloads, we also study the im-
pact of inter-job interference on performance and compare the
cost-performance tradeoffs.
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1 INTRODUCTION
The fat-tree topology [31] is expected to be used for building the
interconnection networks of many next-generation high perfor-
mance computing (HPC) systems, e.g. Sierra at Lawrence Liver-
more National Laboratory (LLNL) [8] and Summit at Oak Ridge
National Laboratory [10]. It is currently used in many production
systems, ranging from small clusters with a few hundred nodes to
multi-petaFlop/s supercomputers [9]. Such extensive use of fat-tree
networks is partly driven by their easily extensible construction
from off-the-shelf commodity hardware. The fat-tree topology also
provides high bisection bandwidth and a relatively low diameter
among the available alternatives for a given node count.

The capabilities of networks are typically improved commensu-
rately with the computational power of HPC systems to prevent net-
works from negatively impacting the performance of applications.
For fat-tree networks, this is currently being done by increasing
the bandwidth of links and by using multi-rail and multi-plane net-
works [20]. However, network improvements increase procurement
and operational costs.

Since the total budget available for procurement and operation
of supercomputers is typically fixed, HPC centers strive to strike a
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a) Single rail single plane (full)
8 nodes, 10 switches

b) Single rail single plane (tapered)
12 nodes, 7 switches

c) Dual rail single plane
4 nodes, 10 switches

d) Dual rail dual plane
8 nodes, 20 switches

Figure 1: Examples of design options for fat-tree networks.

balance between the computational and communication capabil-
ities of their systems. The increasing cost of networks presents a
challenge in this regard. On one hand, HPC centers want to mini-
mize the networking cost so that more computational resources can
be purchased and made available for the users. On the other hand,
reduced network capabilities can slow down some applications and
offset the gains provided by additional computational resources.
Thus, HPC centers are interested in understanding the impact of
reduced network capabilities on performance and mitigating the
risks of reducing those capabilities.

As a result, it is imperative to develop prediction methodologies
that can assist in evaluating the performance of applications and
multi-job workloads on available network alternatives. For typical
HPC data centers, a significant fraction of system time is spent
in running a few production applications (each using 5–30% of
total nodes in the system [32]). Thus, in this paper, we focus on
predicting the impact of alternative fat-tree configurations on a set
of such representative applications and libraries.

Several runtime characteristics are expected to have a signif-
icant effect on the performance of current applications on next-
generation systems. We focus on predicting the impact of: 1) com-
putation scaling of an application on its performance, 2) the commu-
nication pattern of an application on its scaling, and 3) the impact
of inter-job interference on performance.

A robust, reliable simulation framework can play an important
role in performing studies that can answer these questions. The
need for simulations arises because existing systems offer limited
options for studying future networks. This is because future net-
works will be inherently different from current networks. We also
cannot change the hardware and/or change the parameters of pro-
duction networks without disrupting existing production work-
loads.

The simulation framework used for prediction studies should be
able to simulate production applications and libraries running on
thousands of MPI processes. Use of production codes is critical be-
cause complex communication characteristics of many production
codes are hard to capture in simplified proxy applications. How-
ever, accurately simulating production applications is challenging
because the effects of millions of MPI communication calls and
low-level transient contention need to be captured.

TraceR-CODES [27, 35] is a scalable simulation framework for
predicting performance on HPC networks. In this paper, we extend
the TraceR-CODES framework with multiple capabilities required
to enable low-effort simulations of production applications and
libraries on fat-tree alternatives. The capabilities added include
support for OTF2 trace format [6], modeling MPI protocols and

collectives, and fat-tree network options such as tapered, multi-rail,
and multi-plane. We then use the extended framework to predict
the performance impact of different network configurations on
the following applications and libraries: Hypre [22], Atratus, Mer-
cury [16], MILC [15], ParaDiS [13], pF3D [39], and Qbox [23].

The primary contributions of this work are:

• Advances in the TraceR-CODES framework that enable low-
effort, accurate simulations of production applications.

• Validation of the TraceR-CODES framework for many parallel
codes including production applications.

• Performance and interference predictions for production ap-
plications, libraries, and multi-job workloads on a range of
potential future network designs.

We also assess the suitability of different fat-tree configurations
for the applications andworkloads simulated in this paper. Note that
the choice of input problems can potentially alter the characteristics
of many applications, and hence some of the results presented
may not apply to inputs that significantly alter the behavior of an
application.

2 FAT-TREE NETWORKS
The fat-tree topology is a tree-based topology in which bandwidth
of edges increases near the top (root) of the tree [30]. Practical de-
ployments of fat-tree in most supercomputers resemble the folded-
Clos topology as shown in Figure 1(a). In this set up, many routers
of same radix are grouped together to form core switches and pro-
vide high bandwidth. The fat-tree shown in Figure 1(a) is a full
fat-tree: the total bandwidth within a level does not decrease as
we move from nodes connected to the leaf switches toward higher
levels.

In order to reduce the cost of the network, tapering can be de-
ployed to connect more nodes per leaf switch (Figure 1(b)). This
reduces the total bandwidth at higher levels but also lowers the
number of switches and links required to connect the same number
of nodes in comparison to the full fat-tree.

On the other hand, when higher bandwidth is desired, each node
can be provided multiple ports (rails) to inject traffic at a higher rate
into the leaf switches. The multiple ports can either be connected
to switches in the same plane as shown in Figure 1(c) or to disjoint
planes as shown in Figure 1(d). In both cases, fewer nodes can
be connected using the same quantity of network resources in
comparison to the single rail fat-tree. Either of these configurations
can also be tapered to retain high injection bandwidth at the nodes,
but reduce cost by reducing the bandwidth at the higher levels.
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Table 1: Fat-tree configurations currently available.

Configuration Link b/w #rails #planes Tapering

SR-EDR 100 Gb/s 1 1 1:1
DRP-T-EDR 100 Gb/s 2 2 2:1
DRP-EDR 100 Gb/s 2 2 1:1
SR-HDR 200 Gb/s 1 1 1:1
DR-T-HDR 200 Gb/s 2 1 2:1
DR-HDR 200 Gb/s 2 1 1:1

Currently, all of the above configurations are offered by multiple
vendors including Mellanox and Intel. In addition, several options
are available for bandwidth of individual links – FDR (56 Gb/s),
EDR (100 Gb/s), HDR (200 Gb/s). The combinatorial choices offered
by these options make the task of finding the most suitable config-
uration for HPC centers and applications difficult. We address this
challenge by showing that simulations of applications on possible
configurations (Table 1) can provide key insights and reliable data
points critical to this decision-making process.

3 APPLICATION CHARACTERISTICS
In this section, we briefly describe the codes used in this study and
analyze their communication characteristics. The motivation for
this analysis is two-fold. First, it helps understand the performance
trends observed for various codes on different network configu-
rations. Second, it can be used to find generic trends in impact
of network configurations based on specific results observed for
different applications.

The codes used in this study include applications and libraries
that are either run in production at HPC centers (Hypre, Mercury,
MILC, ParaDiS, pF3D, Qbox), or represent codes run in production
(Atratus). These codes span a wide range of physics and mathe-
matical domains including Monte Carlo, first-principles molecular
dynamics, transport, plasma interactions, structured and unstruc-
tured grids, and sparse linear algebra.
Hypre [22] is a parallel linear solvers library developed at LLNL
and is used by many production applications. For this study, we use
the Algebraic Multigrid (AMG) Solver on a 2D diffusion problem
using structured Adaptive Mesh Refinement (AMR). We run a weak
scaling problem so the number of mesh points is proportional to
the number of MPI processes. The tests are set up within a larger
application code but tracing is limited to the operations taking place
during the Hypre setup and solve phases.
Atratus extends MULARD [5], a high order, finite element based
multigroup radiation diffusion code that uses a 3D unstructured
mesh, by including more advanced physics and discretizations. It is
used primarily as a research tool to explore future programming
paradigms with data flow and computations important to LLNL
applications. Atratus uses MFEM [4], which invokes Hypre solvers
but they are more specialized than the standard AMG solver we
run for the Hypre tests.
Mercury [16] is a production Monte Carlo application developed
at LLNL as a general-purpose particle transport code. For these
experiments, we run a 3D neutron transport eigenvalue problem

Table 2: Problem sizes run on 16K MPI processes.

App Description of input problem

Hypre Diffusion with tiled pattern, 34,320 unknowns per
process

Atratus CrookedPipe, 28,740 unknowns per process
Mercury 2500 particles per process
MILC su_rmd, 16,384 grid points per process
ParaDiS 5.2 million nodes total
pF3D 3.9M grid points per process
Qbox Gold benchmark, 512 atoms total

using realistic material properties and a load balancing scheme
based on domain replication. The number of particles are weak-
scaled with the number of MPI processes but the mesh geometry is
held constant.
MILC [15] is a widely used parallel application suite for studying
quantum chromodynamics (QCD), the theory of strong interactions
of subatomic physics. We have used the su3_rmd application in
which quark fields and MPI processes are defined as a 4D grid of
space time points.
ParaDiS [13] is a large-scale dislocation dynamics simulation code
used to study the fundamental mechanisms of plasticity at LLNL.
ParaDiS couples direct N 2 calculation of forces between disloca-
tion line segments with a fast multipole method (FMM) to capture
remote interactions. It uses a hierarchical decomposition scheme
where the simulation volume is recursively divided into slabs along
each physical direction.
pF3D [39] is used for simulating laser-plasma interactions in ex-
periments conducted at the National Ignition Facility at LLNL. It
solves coupled wave equations for the laser light, the scattered light,
and the plasma. pF3D uses a regular 3D Cartesian grid and spatial
decomposition with 2D FFTs in the planes and beam propagation
across the planes.
Qbox [23] is a first-principles molecular dynamics code that is used
to compute the electronic structure of atoms, molecules, solids, and
liquids within the Density Functional Theory (DFT) formalism.
It won the Gordon Bell award at SC 2006 and is widely used for
studying atomic properties of heavy metals. Qbox divides the atoms
and their states among a 2D grid of MPI processes, and makes heavy
use of FFTs and linear algebra libraries such as Scalapack and BLAS.

For each of the above codes, we worked with their developers
and/or frequent users to construct representative scientific input
problems for weak-scaled executions on 1K to 16K MPI processes.
These problems were run either on an Infiniband-Xeon cluster
(Quartz) [7] with 32 cores per node, or on an IBM Blue Gene/Q
system (rzUSeq, Vulcan) with 16 cores per node. Table 2 lists the
input problems that were run on 16KMPI processes. Using profiling
data collected from runs on 16K processes, we now summarize the
communication characteristics of these applications. The results
presented here do not includeMPI calls used in the initialization step
of applications. As mentioned before, the choice of input problems
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Figure 2: Communication characteristics for point-to-point operations across applications.
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Figure 3: MPI_Allreduce characteristics across applications.

Table 3: Collective operations usage across applications. Each cell entry (a/b/c) represents three data points: a - message size,
b - number of calls, and c - size of communicator.

Operation Hypre and Atratus Mercury MILC ParaDiS pF3D Qbox

Bcast Small/Medium/Large All/Large/Large × × Small/Medium/Large All/Large/Large
Reduce × All/Large/Large × × × All/Large/Medium
Alltoall × Small/Medium/Large × × Large/Large/Small Small/Large/Medium
Allgather × Small/Large/Large × Small/Small/Large Small/Small/Medium ×

can potentially alter the characteristics of many of these applica-
tions, and hence some of the results presented may not apply for
all problems run on the applications.
Point-to-point communication: Figure 2 presents the summary
for point-to-point send operations performed by all the applications.
Results for point-to-point receive operations are similar to the re-
sults for send operations, and thus not shown. Figure 2(a) shows the
minimum, average, and maximum across processes of the average
and maximum size of messages sent by individual processes. The
maximum size for most processes across all applications except
Hypre is greater than 100 KB. However, the average size is less than
1 KB for Hypre and Atratus, and greater than 1 MB for pF3D and
Qbox.

In Figures 2(b,c), the distribution of message sends is shown
based on their size. Messages with size less than 512 bytes are con-
sidered small, less than 64 KB are marked medium, and rest are
termed large. These cutoffs points are chosen as they are currently
the recommended values for switching from short to eager and
eager to rendezvous protocols on Performance Scaled Messaging 2
(PSM2) [1]. For several codes (Hypre, Atratus, Mercury, and Par-
aDiS), a large fraction of message sends are either small or medium.
The number of unique neighbors with which these messages are
communicated is high, especially for small messages. In contrast,

for MILC, pF3D, and Qbox, the number of large messages is high
and the number of neighbors to which these messages are sent is
small.

In summary, we can divide the applications into two sets: one
with predominantly small/medium sized messages and a large num-
ber of neighbors (Hypre, Atratus, and Mercury), and another with
many large message sends to a few neighbors (MILC, pF3D, and
Qbox). ParaDis does not fall in either category since it has many
small/medium sized messages and several large sized messages.
Collective communication: Figure 3 presents the summary for
MPI_Allreduce, which is themost commonly used collective opera-
tion across applications. In these results, the criterion for classifying
the operations based on their message size is the same as that for
point-to-point messages. Figure 3 shows that almost all applica-
tions make hundreds of MPI_Allreduce calls of small size over
all MPI processes. Mercury, ParaDiS, and Qbox also invoke many
large sized MPI_Allreduces. Among them, Qbox’s calls are over
medium-sized communicators, while Mercury’s and ParaDiS’s calls
are over large communicators.

Since most other collective calls are made by a subset of appli-
cations, they are succinctly presented in Table 3. Note that, for
MPI_Alltoall and MPI_Allgather, the message size considered
for marking calls as small, medium, or large is the amount of data
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Table 4: Simplified qualitative summary of applications’
communication characteristics.

App P2P Collectives

Hypre light light allreduce, bcast
Atratus light light allreduce, bcast
Mercury light light alltoall, allgather; heavy allre-

duce, bcast, reduce
MILC heavy light allreduce
ParaDiS medium light allgather; heavy allreduce
pF3D heavy light allreduce, bcast, allgather; heavy

alltoall
Qbox heavy light alltoall; heavy allreduce, bcast,

reduce

exchanged between a pair of MPI processes. In addition, if only
tens of calls are made or if only tens of processes are part of a
communicator, those calls are marked small. If the number of calls
or communicator size is a few hundreds, we term the calls medium,
and large otherwise.

Table 3 shows thatMercury andQboxmake heavy use of MPI_Bcast
and MPI_Reduce over medium and large communicators for all cat-
egories of message sizes. In contrast, Hypre, Atratus, and pF3D in-
voke small sized broadcast operations. ParaDiS only invokes small
sized MPI_Allgather a few times. MPI_Allgather is also used by
Mercury and pF3D for small messages. pF3D also makes heavy use
of MPI_Alltoall over small communicators, while Mercury and
Qbox invoke MPI_Alltoall with small messages over medium to
large communicators. Table 4 summarizes these findings.

4 SIMULATION FRAMEWORK
The TraceR-CODES framework [11, 35] provides trace-driven in-
frastructure for packet-level simulations of traffic flow on HPC
networks. It is built upon ROSS [14], a parallel discrete event simu-
lation (PDES) engine, and has been successfully deployed for study-
ing multi-job workloads on HPC networks [27, 43]. The optimistic
nature of the ROSS PDES engine drives the scalability of the TraceR-
CODES framework and enables fast simulation using large core
counts in comparison to other simulation frameworks.

CODES provides a unified API for simulating traffic flow on
many HPC networks, e.g. dragonfly, torus, express mesh, and fat-
tree. The network being simulated can be selected at runtime along
with other parameters such as the topology dimensions, link band-
width, routing scheme etc. The default fat-tree network in CODES
assumes a single rail, single plane topology. For this work, we have
augmented the default model with parameter-based instantiation
of various configuration options discussed in Section 2. In the new
model, a user can specify the number of rails and planes. Likewise,
tapering can be done at leaf switches.

4.1 Advances in TraceR
TraceR is a parallel execution trace simulator that replays the con-
trol and communication flow of HPC applications on top of CODES.
For multi-job workloads, each application is concurrently simu-
lated and shares network resources with other applications. Users

can also specify the job placement and task mapping for each ap-
plication. For compute regions of the application, TraceR allows
replacing and scaling the execution time recorded in the traces.
This enables predictions of likely scenarios on future systems with
different computational power.
Low-effort trace collection: A practically useful method for col-
lecting traces should require minimal changes to the application,
incur low overhead, and be memory efficient. While BigSim trace
collection using AMPI [25] incurs low overhead, it requires recom-
pilation of all the parallel libraries used by the application, and thus
can result in significant effort.

Recent support for the Open Trace Format (OTF2) [6] by MPI
tracing tools such as ScoreP [2] and TAU [37] provides an easy-to-
use alternative for collecting application traces. Since these tools
use the PMPI interface to intercept MPI calls, they can be added
at link time. Thus, we added the capability to use OTF2 traces for
simulating application’s flow in TraceR. Because of this addition,
we are able to work with application teams and obtain traces for
large applications with low effort.
MPI collectives: Section 3 showed that collective operations are
used in many applications for exchanging data among MPI pro-
cesses and synchronizing the processes. In the past, TraceR has sup-
ported tree-based implementations of three collectives: MPI_Bcast,
MPI_Reduce, and MPI_Barrier.

We have added the following collectives that are also used in
many applications:MPI_Allreduce,MPI_Alltoall(v), andMPI_Allgather.
For each of these operations, we have implemented several differ-
ent algorithms that are used in MPI libraries based on the size of
messages and that of the communicators [40]. For example, the
Bruck algorithm, multi-pair send-recv, and ring algorithms have
been implemented for MPI_Alltoall using small, medium, and large
message sizes, respectively. To the best of our knowledge, such
detailed modeling of collective algorithms is not supported in any
other simulator.
Eager-Rendezvous protocol: Different protocols are used by MPI
to perform communication among individual processes based on
the size of messages. This not only impacts the amount of active
communication on the network, but can also affect the way different
MPI processes are synchronized [17]. To this end, we have added
support for eager and rendezvous protocols in TraceR.

The addition of these features, alongwith the existing capabilities
viz. parallel scalability, packet-level traffic flow, and support for
multi-job workloads, makes the TraceR-CODES framework highly
suitable for application simulations with low effort.

4.2 Validation
The TraceR-CODES simulation framework has been verified and
validated in several past publications [27, 35]. In this study, for all
configurations of fat-tree, we have conducted controlled simulations
of micro-benchmarks, e.g. ping-pong, to verify that the simulations
behave as expected. We have also compared predicted performance
with observed performance for several micro-benchmarks and appli-
cations. Due to lack to space, we present results for a representative
set in Figures 4 & 5. These results span a wide range of message sizes
and scenarios of interest viz. latency-bound and bandwidth-bound
executions.
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In the validation experiments, observed performancewas recorded
from executions using MPI versions of different codes on Quartz, a
2:1 tapered fat-tree system with 100 Gb/s link bandwidth [7]. The
radix of each switch is 48, with 32 nodes connected to each switch
at the leaf level. Quartz was used for collecting traces of codes
with computation (3D Stencil, Atratus, pF3D) to prevent mispre-
dictions due to differences in compute time while another system
(Catalyst [3]) was used for traces of communication-only micro
benchmarks.

Figures 4(a)-(c) present the prediction accuracy for ping-pong
and all-to-all micro-benchmarks. In the ping-pong benchmark, two
MPI processes are run on two nodes (one per node) and messages
are exchanged among them. In the all-to-all experiments, 512 MPI
processes running on 16 nodes invoke MPI_Alltoall calls repeat-
edly. For a wide range of message sizes (4 bytes to 4 MB), we find
that the predicted execution time is similar to the observed time.
Higher error in comparison to MPI is observed at medium message
sizes where the performance of the MPI implementation is erratic.
However, for the same data points, predictions are much closer to
results obtained for PSM2, the communication layer directly used
by MPI on Quartz.

In 3D Stencil, MPI processes are arranged in a three-dimensional
grid. In every iteration, each MPI process exchanges messages with
six nearest-neighbors and performs a 7-point stencil update on the
data it owns. For 3D Stencil, the predicted execution time closely
follows the trend of the observed time as the core count is increased.
Figure 4(d) shows accuracy results for two versions of 3D Stencil –
with and without computation.

Figure 5(a) shows that for a latency-bound application such as
Atratus (Section 3), high prediction accuracy is observed for a strong
scaling run. Up to 256 cores, MPI time for different processes in

Atratus is between 11% and 34% of the total run time, while it is
between 31% and 63% on 512 and 1024 cores.

Results for bandwidth-bound pF3D (Section 3) are shown in Fig-
ure 5(b). It spends 20–25% of its execution time in communication.
Predictions for pF3D are within 4% of the observed time for various
configurations that differ in task mapping and number of processes
per node. To the best of our knowledge, validation results for such
applications have not been shown for any other simulator.

Along with past studies [27, 35], these results demonstrate that
the TraceR-CODES framework predicts trends of the execution
time of benchmarks and production applications accurately for the
fat-tree topology.

5 COMPARATIVE ANALYSIS
In this section, we use TraceR to understand the performance trade-
offs of different design options (Section 2) that represent future
networks. In order to do so, we design prototype systems with
∼4,500 nodes, which is similar to the expected node count of Sum-
mit and Sierra.

The six prototype systems used in this study are based on the
configurations in Table 1, which are currently offered by network
vendors: 1) SR-EDR: single rail single plane EDR, 2) DRP-T-EDR:
dual rail dual plane tapered EDR, 3) DRP-EDR: dual rail dual plane
EDR, 4) SR-HDR: single rail single plane HDR, 5) DR-T-HDR: dual
rail single plane tapered HDR, 6) DR-HDR: dual rail single plane
HDR. SR and DR refer to single rail and dual rail respectively. If ‘P’
appears in the configuration name, it suggests dual plane and if ‘T’
appears, it reflects tapering of the network.

The application traces used in these simulations are generated
on 16,384 MPI processes using the same input problems that were
used in the results shown in Section 3. PMPI-based ScoreP library is
used for collecting OTF2 traces, which leads to less than 5% tracing
overhead. In all simulations, a 3-level fat-tree is constructed using
routers with 36 ports and 90 ns router delay. The packet size is fixed
at 4 KB and FTREE static routing scheme is used. These parameter
choices have been made because they resemble the settings used
on current production systems.

5.1 Communication-only Simulations
The first set of results we present are for communication-only sce-
narios, i.e. application traces are simulated with all the computation
regions ignored (not simulated). These results help understand the
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Figure 6: Comparing communication-only scenario for applications using 16,384 processes and 1,024 nodes. % performance
gains in comparison to SR-EDR are shown. Table 1 lists the network configurations.

direct effect of network configurations on application communi-
cation patterns and provide an upper bound on the performance
benefits of different configurations. In these runs, 16,384 processes
are simulated on 1,024 nodes (∼23% of system size) with 16 pro-
cesses per node allocated using a linear placement policy. Figure 6
presents the results for all the applications along with performance
improvements relative to single rail single plane EDR (SR-EDR).
Hypre andAtratus: For these applications that predominantly use
small and medium sized messages for point-to-point and collective
communication, the performance impact of changing the network
configuration is low (< 17%). For Atratus, providing additional
bandwidth at the lower levels of fat-tree either via use of dual
rail (e.g. SR-EDR vs. DRP-T-EDR) or via use of links with higher
bandwidth (e.g. DRP-T-EDR vs. DR-T-HDR) improves performance
because of itsmedium sizemessages. However, since thesemessages
are mostly communicated with processes that are close in MPI rank
space, tapering does not affect performance when linear mapping
is used (e.g. DRP-T-EDR vs. DRP-EDR).

For Hypre, only when HDR links are used, we observe a per-
formance impact of network configurations. This is because the
average and maximummessage sizes of Hypre are lowest among all
the applications and thus Hypre is bound by per message overheads
on EDR networks.

Overall, we find the potential gains of using higher capability
fat-tree configurations limited for relatively light communication
patterns in Hypre and Atratus.
Mercury,MILC, andParaDiS: All these applications are impacted
in a similar way by varying network configurations: significant
improvement is obtained by adding more bandwidth and tapering
leads to a noticeable loss in performance. For Mercury, this is ex-
pected since it makes heavy use of collectives such as MPI_Allreduce,
MPI_Bcast, and MPI_Reduce with large message sizes over large
communicators. In addition, processes far away in MPI rank space
also exchange many medium size messages.

For MILC, every MPI process communicates with very few MPI
processes. However, these exchanges are typically over medium to
large sizedmessages. Due to the 4D layout ofMPI processes, some of
the communicating pairs are far apart in the MPI rank space. These
reasons account for the performance impact observed for MILC.
An interesting observation for these results is marginally lower
performance of single rail HDR (SR-HDR) in comparison to dual
rail dual plane EDR (DRP-EDR), although they offer similar total
bandwidth. We suspect this is because MILC sends very few large

sized messages, and thus delays caused by routers and links can
add up. Since, DRP-EDR has more routers and links in comparison
to SR-HDR, fewer packets traverse per router/link and thus the
impact of those delays is lower.

ParaDiS generates many small and medium sized message sends,
but it also performs many large sized message exchanges, and calls
MPI_Allreduce. As a result, the network configuration has a larger
impact on the performance of ParaDiS than Hypre and Atratus.
pF3D and Qbox: These applications make heavy use of collec-
tives and thus show up to 68% improvement with the best fat-
tree configuration as shown in Figure 6(right). For pF3D, both the
MPI_Alltoall calls and the point-to-point calls are among pro-
cesses relatively close to one another in the MPI rank space. Thus,
tapering the network does not impact performance significantly
(e.g. DRP-T-EDR vs. DRP-EDR).

For Qbox, while the MPI_Alltoall communication is among
“nearby” processes, other collectives with large message sizes occur
over processes spread all over the MPI rank space. Thus, it not only
benefits from higher bandwidth at the lower levels, but also shows
better performance with full fat-tree configurations. An interesting
data point for Qbox is the transition from SR-HDR to DR-T-HDR.
Since in dual rail single plane HDR, fewer nodes are connected per
leaf switch (12 nodes per switch) in comparison to SR-HDR (18
nodes per switch), more data has to traverse through higher levels
in the tree when processes communicate with far away processes
in MPI rank space. This negatively impacts the gains provided by
DR-T-HDR, and results in lower performance.

In summary, with communication patterns that include large
message sized exchanges among even few pairs of far away neigh-
bors or include large sized collectives, significant gains are observed
with higher network bandwidth (dual rail and/or HDR links) and
full fat-tree configurations (DRP-EDR, DR-HDR).

5.2 Varying Computation Scaling
In the previous section, we studied the impact of network config-
urations on executions with the computation turned off. We now
study cases in which computation is also considered alongside com-
munication. These cases are important because the performance
of an application can change significantly due to the interplay of
computation and communication. Hence, such an analysis can help
find the right balance between computational and communication
resources.
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Figure 7: Analyzing the effect of network configurations on scenarios with different computation scaling. % difference between
the best and the worst configuration is shown.

In our simulation framework, cores (or logically equivalent com-
putational resources) are separate entities that interact with the
NIC/network as is the case on real systems. Thus, if communication-
computation overlap is possible, it is simulated appropriately. Note
that TraceR does not simulate or model computation, it only fast-
forwards the clock when a computation region is encountered.

In these experiments, the computational capability and execution
time on an Intel Xeon CPU E5-2695v4 operating at 2.1 GHz with
one socket is taken as the base value. This CPU has a peak flop/s
rating of 600 GFlop/s. The execution time of compute regions is
scaled by 2×, 10×, 25×, and 50× relative to this CPU to conduct the
analysis for future systems. This implies that the 2× scaling results
assume that on a future node, the computation can be performed
twice as fast compared to this CPU.

We use the 2× case to represent systems similar to current clus-
ters but with additional CPU sockets, while the 10× case is used as
representative of future systems with accelerators. The remaining
cases represent either more compute-intensive systems or applica-
tions that can exploit most of the computational power of future
nodes.

Figure 7 shows the predicted impact of network configurations
with different levels of computation scaling. Results on Hypre are
omitted because the impact of network configurations on relative
gains is similar to that on Atratus. With 50× scaling, the predicted
results are similar to the results obtained for communication-only
scenarios. Hypre and Atratus have minimal gains, pF3D gains from
increased bandwidth at the lower level of the fat-tree but is not
impacted by tapering, and Mercury, MILC, and Qbox improve with
most changes in configurations. For ParaDiS though, even at 50×
scaling, the potential impact of network configurations is much
lower in comparison to the communication-only scenario.

The biggest difference for 50× scaling in comparison to the
communication-only scenario is for ParaDiS where load imbal-
ance among processes and similar time spent in computation and
communication reduces the best predicted improvement from 51%

to 21%. For both Atratus and pF3D, similar reduction in benefits
from a better network configuration is observed due to the presence
of relatively significant computation time. This trend continues for
the case with 25× scaling.

As the computation scaling is decreased further to 10×, for many
applications we observe a significant change in the impact of net-
work configurations. For Hypre, Atratus, and ParaDiS, the compu-
tation time begins to dominate the total execution time and the
impact of network configuration is limited. For MILC and pF3D,
only the SR-EDR configuration is now significantly worse than
other configurations, and the performance improvement due to a
more capable network is at most 25%. For both these applications,
the change in absolute time between various network configura-
tions (from DRP-T-EDR to DR-HDR) is similar to the 50× scenario.
However, with 10× scaling, since the time spent in computation is
twenty times the time spent in communication, the net effect of
these improvements is marginal.

For Mercury and Qbox, even at 10× scaling, the time spent in
communication is dominant. The impact of adding more bandwidth
and using full fat-tree systems instead of a tapered one is similar to
earlier cases, and the gains are proportionate. Finally, at 2× scaling,
Mercury is the only application whose time spent in computation
is not significantly greater than the communication time.

5.3 Effect on Strong Scaling
In these last sets of results for single job simulations, we study the
impact of network configurations on strong scaling. While system
capabilities continue to grow, the size of input problems is not
increasing proportionately in some domains. Hence, strong scaling
is an important characteristic to consider for future systems.

In our experiments, strong scaling is achieved by simulating
execution of jobs with 16,384 MPI processes (used earlier) on three
different node counts: 256, 1,024, and 4,096. This results in allo-
cation of 64, 16, and 4 MPI processes per node. As before, we fol-
low a simple model of linearly scaling the computation assuming
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Figure 8: Impact of network configuration on strong scaling a problem by simulating 16,384 MPI processes on different node
counts. For each configuration, improvement shown for an application is speed up relative to the application’s performance
on 256 nodes using that network configuration.

within-node parallelization. We study these cases for two different
computational scaling scenarios from the previous section: 2× and
10×.

For any given node count, we find that the impact of network
configurations on different applications is similar to the results
described in the previous section. This is not unexpected because
strong scaling a problem with linear scaling of computation does
not change its computation-to-communication ratio. Thus, in this
section, we focus on comparing predicted speedups when appli-
cations are scaled from 256 to 1,024 nodes as shown in Figure 8.
The y-axis in this figure plots the predicted speedup for individual
applications relative to their performance on 256 nodes for the same
network configuration. The height of each bar shows the additional
speedup over the data point right below it.

For the set with 2× scaling of compute regions relative to cur-
rent systems (Figure 8(a)), we observe that the impact of network
configurations on speedup for many applications is minimal. Only
for pF3D and Qbox, dual rail/plane and HDR configurations lead
to better scaling in comparison to the scaling on the single rail
single plane EDR system (up to 27% gain in speedup). These results
also show that communication bottlenecks do not prevent efficient
scaling of most applications.

For the case with 10× computation scaling as shown in Fig-
ure 8(b), the impact of network configurations on scaling is sig-
nificantly higher. First, the speedups are relatively lower for all
network configurations, especially SR-EDR. Second, many appli-
cations (Hypre, MILC, pF3D, and Qbox) show better scaling with
more capable network configurations. Third, for Qbox and Mercury,
scaling is better for full fat-tree configurations in comparison to
tapered configurations.

In summary, our predictions suggest that with 2× computation
scaling, network performance has limited impact on scaling of ap-
plications, but with 10× computation scaling, careful consideration
of network configurations is needed to obtain good strong scaling
behavior.

6 ANALYZING MULTI-JOB WORKLOADS
Simultaneous execution of multiple large jobs that share network
resources is a common production scenario. In this section, we study
the impact of such workloads on performance of individual jobs
on different fat-tree configurations. We also compare the overall
performance of workloads across different configurations.

The multi-job workloads used in these experiments consist of
17 jobs of 4,096 processes each running on 256 nodes. Each job is
arbitrarily assigned one of the applications described earlier. Since
the simulations of Hypre and Atratus have shown similar behavior
so far, we do not use Hypre in these experiments in order to focus
on a diverse set. Trace generation was done on Quartz by running
weak-scaled versions of the input problems (Table 2) on 4K MPI
processes. We simulate three such randomly generated workloads,
in which each application is assigned to ∼8 jobs in total.

In the first set of simulations of multi-job workloads, we use
2× computation scaling. Nodes are allocated to jobs using a “ran-
domized clusters” policy: jobs are assigned nodes in small clusters
spread throughout the system. For these experiments, we find that
the average performance of most applications (except Mercury)
across different network configurations is similar (<5% difference).
This is expected since the time spent in computation is >90% for all
these applications. For Mercury, we observe up to 33% gains; these
results are similar to the results observed for Mercury in the previ-
ous section. We also find that the impact of inter-job interference
is minimal given the computation-heavy nature of the workloads.

Figure 9(a) presents the average time spent in executing a time
step of different applications when running in a multi-job workload.
For these results, 10× computation scaling is used, and the job place-
ment policy is the same as before. Both Atratus and ParaDiS are
not significantly impacted by changes in network configurations,
even when part of a multi-job workload.

Mercury and Qbox show performance gains with every improve-
ment in network configuration. The trends and impact of individual
configuration changes are similar to the single-job scenarios studied
earlier in Figure 7. Note that for Qbox, DRP-T-HDR configuration
performs better than SR-HDR in this case because the random-
ized clusters job placement eliminates the benefit of having more
nodes per leaf switch. With nodes spread throughout the system,
more traffic has to traverse to higher level links for the SR-HDR
configuration in comparison to the single job scenario with linear
placement.

For MILC and pF3D, we observe higher gains (31% and 51%)
when better network configurations are used in comparison to the
gains predicted for single-job scenarios (21% and 25%). The other
difference from single-job results in Figure 7 is that in addition
to the use of dual rail EDR, using a full fat-tree configuration and
increasing link bandwidth (EDR to HDR) also helps. This is because
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Figure 9: Analyzing the performance of applications in amulti-jobworkloads. Eachworkload consists of 17 jobs, each allocated
256 nodes and is simulated with 10× computation scaling. For (b), the percentage slow down shown in relative to predictions
without interference.

communicating pairs that are nearby in the linear placement are
spread out in the randomized clusters placement and hence these
applications also make use of links at higher levels of the fat-tree.

Figure 9(b) presents the average percentage slow down that is
observed for individual applications relative to their performance
for 256 nodes interference-free single-job runs. For the two config-
urations with lower total bandwidth (SR-EDR and DRP-T-EDR), the
effect of inter-job interference is higher. We also find that pF3D and
Qbox are impacted more by inter-job interference than other appli-
cations. This is most likely due to their heavy use of tightly-coupled
MPI_Alltoall(v) operations. For some applications, the tapered
configurations show higher impact of inter-job interference.

In Figure 10, we compare the impact of network configuration
on total performance of the multi-job workloads. The values shown
here are an average over the three multi-job workloads we have
run. The total performance of a workload with n jobs is computed
as Pw =

∑n−1
i=0 Pnormi , where Pnormi is the normalized execution rate

(number of steps completed per unit time) for an application across
different network configurations. The rates are normalized based
on the rate observed for the best performing network configuration
for a given job. This implies that Pnormi for job i is always less than
or equal to one, and the total performance of a workload is bounded
by the number of jobs in the workload.

Figure 10 shows that for the multi-job workloads simulated us-
ing the randomized clusters job allocation policy, higher gains are
observed when transitioning from dual rail dual plane tapered EDR
(DRP-T-EDR) to dual rail dual plane EDR (DRP-EDR). We notice a
similar transition in dual rail HDR-based configurations. We find
improvements to be marginal when transitioning from single rail
HDR to dual rail tapered HDR for the input problems simulated in
these multi-job workloads.
Cost-performance tradeoffs: From a procurement point of view,
the performance improvements discussed above should be com-
bined with the expected dollar costs to analyze the performance-
cost tradeoffs. Consider a scenario in which the normalized costs
(w.r.t. SR-EDR) of the network configurations and the total cost
of the system are as shown in Table 5. Here, we assume network
cost is 10% of the total system cost for SR-EDR. These estimates are
based on past procurements and the best data currently available
to us.
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Figure 10: Comparing the total normalized performance
of workloads executed on different network configurations
with 10× computation scaling.

Table 5 also combines the cost estimates with the results in Fig-
ure 10 and computes the predicted cost to performance value of dif-
ferent fat-tree configurations. We find that the cost-to-performance
ratio drops rapidly from SR-EDR to DRP-T-EDR to DRP-EDR, i.e.
dual rail EDR configurations provide better returns for their cost
in comparison to the single rail EDR configuration. Further, the
cost-to-performance ratio of all HDR configurations is lower (i.e.
better) than the EDR configurations. In particular, the SR-HDR con-
figuration provides similar performance as DRP-EDR at a much
better cost to performance ratio.

7 RELATEDWORK
Several topologies have been proposed and used in HPC networks,
e.g. hypercube [24], fat-tree [30], torus [19, 33], dragonfly [21, 29].
Among these topologies, variations of the fat-tree and dragonfly
topologies are currently being used in many systems. This paper
focuses on fat-tree because of the multiplicity of design options
available for it [20, 34].

For analysis and prediction of performance on HPC networks,
several approaches ranging from analytical modeling [12, 26, 36, 38]
to flit and packet-level simulations [18, 28, 35, 41] have been pro-
posed. We deploy trace-driven packet-level simulations because
they allow for use of existing codes for simulating their communi-
cation complexity.
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Table 5: Cost and performance summary for different fat-
tree configurations. Total cost is computed assume network
cost is 10% of the total cost for SR-EDR. Lower cost/perfor-
mance is better.

Configuration Network Total Total Total cost/
cost cost performance Performance

SR-EDR 1 1 1 1
DRP-T-EDR 1.1 1.01 1.14 .89
DRP-EDR 1.79 1.08 1.34 .81
SR-HDR 1.4 1.04 1.35 .77

DR-T-HDR 1.67 1.07 1.37 .78
DR-HDR 2.81 1.18 1.54 .77

Existing work most closely related to our work includes [42],
[32], [34], and [27]. Wolfe et al. use simulations to study the im-
pact of multiple rails and planes on communication-only traces of
miniapplications [42]. In [32], Leon et al. study the impact of taper-
ing a production fat-tree network on applications by turning off half
the core switches in the network. Michelogiannakis et al. [34] study
the impact of task mapping on performance of miniapplications on
a tapered fat-tree system. In [27], simulations are used to compare
different topologies for several miniapplications based workloads.

The work presented in this paper differs from existing work in
several ways. First, we use traces generated from production appli-
cations and libraries. Second, computation and its interplay with
communication is considered using simple modeling of compute
time. Third, a number of fat-tree configurations (with different link
bandwidths, rails, planes, and tapering) are compared. Finally, we
present MPI-specific extensions (support for collective operations
and messaging protocols) to a current simulation framework that
reduces the gap between simulation and real world executions.

8 CONCLUSION
The decision making process for system procurement in HPC cen-
ters is of critical importance due to the magnitude of investment
required for acquiring and operating supercomputers. Increasing
dollar cost of networks presents a challenge in this regard as it can
impact the available budget for buying other components of the
system such as nodes and memory. As a result, HPC centers can
benefit from methodologies that can help understand the impact of
reduced network capabilities to mitigate the risks posed by it.

In this paper, we have demonstrated that predictions derived
from a reliable simulation framework can assist in estimating the
performance impact of design options available in networks. In
particular, we have shown that the TraceR-CODES framework is
capable of simulating complex applications and their workloads.
Accuracy of predictions made using these simulations has been
evaluated using micro-benchmarks and applications.

Using the TraceR-CODES framework, we presented results on
the potential impact of different fat-tree configurations on pro-
duction applications and libraries. In Section 5.1, we learned that
increasing total bandwidth using dual rails/planes and high band-
width links significantly reduces the time spent in communication

for many applications if computation is ignored. But, if the com-
munication pattern of an application consists only of small sized
messages, higher bandwidth is unused.

When computation is also considered in simulations (Section 5.2),
the impact of network configurations on overall application per-
formance varies. For future systems with computation capabilities
similar to the systems of today, limited gains are predicted for most
applications (even those with high communication volume). For
applications simulated in this paper, results on systems with higher
computational capabilities indicate that significant gains can be
obtained by use of dual rail/plane EDR networks for communication-
intensive applications. The benefits of dual rail HDR networks were
found to be significant only when computation can be scaled by
50× for the input problems simulated in this paper.

For multi-job workloads simulated in this paper (Section 6), we
found that dual rail/plane EDR network can significantly reduce
the impact of inter-job interference in comparison to single rail
EDR network. The additional impact of dual rail tapered HDR
system is predicted to be much lower. Figure 10, which summarizes
our findings for expected total throughput of workloads, shows a
similar trend. Overall, we find that the HDR-based networks are
expected to provide high performance with a relatively low and
better cost-to-performance ratio (Table 5).

In the future, we plan to extend this work in two directions. First,
we plan to study the role of sophisticated job placement and task
mapping schemes for different network configurations. While cur-
rently not commonly deployed in production, especially on fat-tree
networks, we anticipate that topology-aware job placement and
task mapping can help mitigate the impact of reduced network
capabilities. Second, we will study the impact of changing the num-
ber of MPI end-points per node on the performance observed on
different network configurations.
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A ARTIFACT DESCRIPTION: [PREDICTING
THE PERFORMANCE IMPACT OF
DIFFERENT FAT-TREE CONFIGURATIONS]

A.1 Abstract
In this work, traces collected for several applications have been
simulated using open source tools TraceR and CODES. We are cur-
rently working towards releasing the traces, network configuration
files, and mapping files used in this work. For early access, please
contact the lead author.

A.2 Description
A.2.1 Check-list.

• Program: TraceR
• Compilation: using default options; compilation options do
not affect the results.

• Data set: high level details are in the paper; we are currently
working towards releasing the traces.

• Run-time environment: does not affect the results; needsMPI.
• Hardware: Catalyst (does not affect the results); needs MPI.
• Output: standard output from TraceR.
• Experimentworkflow: collect traces, generatemappings, sim-
ulate.

• Experiment customization: none
• Publicly available: yes.

A.2.2 How software can be obtained. All the features developed
as part of this work are available in the current versions of TraceR
and CODES, and can be obtained from the following locations:

• https://github.com/LLNL/tracer
• https://xgitlab.cels.anl.gov/codes/codes
• https://github.com/carothersc/ROSS
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A.2.3 Hardware dependencies. None.

A.2.4 Software dependencies. TraceR, CODES, ROSS, MPI.

A.3 Installation
Standard installation process described in the documentation of
ROSS, CODES, and TraceR have been followed.

A.4 Experiment workflow
The experiments in this paper follow a three step workflow:

• Design network prototype and identify required traces for
simulations.

• Collect traces for described application.
• Generate mapping files and simulate using TraceR.

A.5 Evaluation and expected result
All the results used in this paper are based on the timing output from
executions of TraceR. The users should be able to use the released
traces, mapping files, and network configurations to reproduce
them.
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