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Abstract—On most high performance computing platforms,
concurrently executing jobs share network resources. This shar-
ing can lead to inter-job network interference, which can have
a significant impact on the performance of communication-
intensive applications. No satisfactory solutions yet exist for
mitigating such performance degradation on systems that allow
jobs to share the network for the sake of higher utilization.
In this paper, we analyze network congestion caused by multi-
job workloads on two production systems that use popular
network topologies—fat-tree and dragonfly. For each system,
we establish a regression model to relate network hotspots to
application performance degradation. The models show that
current routing strategies are ineffective at balancing network
traffic and mitigating interference on production systems. We
propose an alternative adaptive routing strategy, which we call
adaptive flow-aware routing. We implement our strategy on a
fat-tree system, and tests on the system show up to a 46%
improvement in job run time when compared to the default
routing.

Index Terms—fat-tree, congestion, performance degradation,
adaptive routing

I. INTRODUCTION

Scientists developing and optimizing high performance
computing (HPC) software usually do not focus on the effects
of external interference on the performance of their jobs. This
approach works well when optimizing single node perfor-
mance because compute nodes on most HPC systems are not
shared between multiple jobs. However, not all resources are
dedicated—in particular, the network and filesystem are shared
among all jobs running on a cluster, and this sharing can
lead to poor performance. For example, previous performance
studies on production systems have found that jobs can suffer
significant performance degradation when contending for the
shared network [1], [2]. Moreover, it is extremely difficult, if
not impossible, for users to develop applications that are fully
tolerant of shared resource contention.

HPC systems are expensive investments, both in terms of
initial hardware cost and operational cost, and hence the
decreased system throughput caused by interference wastes
significant time and money. Variation in job performance
makes it difficult for users to estimate how much time their
jobs will need to run as well as to effectively optimize their
codes. This variation also complicates decisions that must be

made by system administrators as to how much compute time
to award to projects. Thus, mitigating inter-job interference is
an important goal for both administrators and scientists using
the supercomputer.

One approach to reducing inter-job network interference
is to develop routing techniques that minimize hotspots by
spreading traffic evenly across the machine. In general, routing
strategies fall into two categories: static routing, in which each
hop is deterministically decided by an algorithm in advance;
and adaptive routing [3], in which current congestion is taken
into account in selecting the next hop from several possible
alternatives. Static routing algorithms can attempt to load bal-
ance traffic—for example, the popular D-mod-k [4] algorithm
optimizes load balance under the worst-case assumption of all-
to-all traffic. Adaptive routing is also intended to load balance
traffic—for example, the scheme proposed by Dally et al. for
dragonfly [5] considers congestion at each intermediate router
as the message proceeds from source to destination. We use
the term traditional adaptive routing to describe this type of
adaptive routing throughout the paper, to contrast it with the
new adaptive approach we develop in this paper.

In practice, however, applications on HPC systems can
suffer degradation due to network contention regardless of
whether static or traditional adaptive routing is used. Figure 1
shows the performance variability of different applications on
two production machines: Cab, a fat-tree cluster at LLNL
(left), and Edison, a dragonfly-based supercomputer at NERSC
(right). The former uses static routing, and the latter uses
traditional adaptive routing. Clearly, neither of these is always
able to mitigate congestion arising from network sharing, as
run times can inflate by over a factor of two. The adaptive rout-
ing mechanism on Edison is sophisticated in that it considers
global congestion (in addition to next-hop information) at each
intermediate router [5], and it has been engineered by Cray
for the Aries interconnect [6]—yet considerable performance
degradation still occurs.

In this paper we show conclusively that applications can
experience significant performance degradation due to conges-
tion on two modern systems with different styles of routing.
On the statically-routed fat-tree system, congestion arises
because static routing is oblivious to network traffic state. In
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Fig. 1: Inter-job interference can slow down both benchmarks and production applications. Left: Performance of two benchmarks
on a fat-tree cluster (Cab at LLNL). The benchmarks spend 75% of their best-case execution time performing computation.
Solid points are runs under contention; hollow points are baselines with no contention. Right: Performance of a production
application, MILC, on a dragonfly machine (Edison at NERSC).

this work, as an alternative to static routing on fat-trees, we
design and implement an algorithm which we call adaptive
flow-aware routing (AFAR). AFAR uses flow information
for each communicating source and destination node pair
to re-route data that cross network hotspots. We show that
with such global information, much of the slowdown due
to congestion can be alleviated. Specifically, we make the
following contributions:

1) We present the results of experiments on two large-scale,
production machines with InfiniBand-based fat-tree and
Cray dragonfly interconnects, respectively. These two
topologies are used on many machines in the Top500
list. We find that there are significant slowdowns due
to congestion—over a factor of two—on both intercon-
nects.

2) We show that this slowdown is due to network hotspots
that are not alleviated by either static or traditional
adaptive routing.

3) Based on the observation of hotspots, we develop the
AFAR algorithm for the fat-tree interconnect that re-
lieves hotspots using global flow information (unlike
traditional adaptive routing or the per-job re-routing
proposed in previous work [7]). We implement the
algorithm and test it on Cab by modifying OpenSM,
the InfiniBand subnet management software.

Results with AFAR show up to 46% improvement in execu-
tion time when compared to the default routing algorithm; the
median performance improvement across a range of workloads
is 25% and 13% for the bisection and nearest neighbors
benchmarks from Figure 1, respectively. In general, the per-
formance of all benchmarks in a given workload improves,
with the exception of occasional small degradations. While
AFAR requires more runtime information than existing routing
strategies, these results suggest that it is likely worth the data
collection effort, and similar techniques should be explored in
more depth in the future.
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Fig. 2: Connectivity of an example three-level fat-tree.

II. BACKGROUND

In this section, we discuss the fat-tree topology, the drag-
onfly topology, and inter-job network interference.

A. Fat-Tree Topology and Static Routing

A popular choice for connecting compute nodes of HPC
systems is the fat-tree topology [8]. Conceptually, a fat-tree is
a k-ary tree whose bandwidth increases at each level from the
leaves of the tree up to the root, so that the links near the root
do not form a bottleneck. In practice, however, fat-trees are
typically constructed as folded Clos networks, allowing them
to be built out of off-the-shelf switches with uniform radix
and links with uniform bandwidth.

Here, we describe a typical fat-tree topology that is currently
deployed in several HPC systems, illustrated in Figure 2. The
fat-tree is constructed using many radix-k switches. At the
leaf level, half the ports of each switch connect downwards
to k

2 compute nodes, and half the ports connect upwards to
switches in the next level. Depending on the number of leaf
switches, the fat-tree contains either two or three levels for
current systems with tens of ports per switch and several
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Fig. 3: Example of a Cray Cascade (XC30) installation with four groups and 96 Aries routers per group. Within a group, a
message is routed in at most two hops (on the black and/or green links) if congestion does not exist; between groups, the
inter-group blue links are used leading to a shortest path of at most five hops.

thousand nodes. In either case, the top-level switches only have
downward connections from their ports to other switches (thus
if there are n leaf-level switches, only n

2 top-level switches are
needed).

Traffic in current fat-tree networks is usually forwarded
using a static routing algorithm, meaning that all messages
between a given pair of nodes take the same (shortest)
path through the fat-tree every time. Each path consists of
a sequence of links going up from the source node to a
nearest common ancestor, followed by a sequence of links
going down to the destination node. A commonly-used static
routing algorithm is the “destination mod k” or D-mod-k
algorithm [4], which load balances routes across links on a
fat-tree and is believed to have good performance. In this
scheme, the next upward link in the path is chosen at each
level based on the destination node’s ID, until the common
ancestor is reached. After that, downward links that lead to
the destination are selected.

B. Dragonfly Topology and Adaptive Routing

The dragonfly topology is becoming another popular choice
for interconnection networks in post-petascale supercomput-
ers [5]. In this paper, we focus on Cray Cascade [6] (or Cray
XC30), one of the implementations of the dragonfly topology.
Figure 3 illustrates a four-group Cray Cascade installation.
Ninety-six routers are connected together to form a group,
arranged in a 6 × 16 grid. Sixteen routers in each row
are connected in an all-to-all manner by green links, and
six routers in each column are also connected in an all-to-
all configuration by sets of three black links per router-pair.
Routers in different groups are connected together via blue
links.

In contrast to fat-trees, the Cray Cascade uses adaptive
routing to minimize hotspots [6]. In adaptive routing schemes,
each router can dynamically choose between multiple paths for
any given message. Some paths are minimal in the number
of hops and others go indirectly through a randomly selected
third group. Based on the amount of load on the minimal paths,
the router may randomly select one of the other non-minimal
paths along which to send messages. This random scheme is
expected to help mitigate real-time congestion.

C. Inter-Job Network Interference

As mentioned in Section I, jobs in HPC systems typically
execute concurrently and contend for shared resources. In this
work, we focus on network congestion that arises when jobs
compete for the shared system interconnect, degrading com-
munication performance. In certain architectures, for example
the IBM Blue Gene machines, jobs are always placed so that
they have an isolated partition of the network [9]. However,
such placements might lead to system fragmentation and hence
lowered system utilization, and most modern machines are
configured to let jobs share the interconnect.

The effects of network contention may manifest differently
on each machine based on its link bandwidth and topology. In
this work we study the effects of network contention on fat-
tree and dragonfly machines. While the fat-tree topology has
good properties in terms of total available bandwidth across
the system, congestion can still be a problem [10]. Under the
D-mod-k routing scheme, the next upgoing link in a message’s
path is selected based on a modulo of its destination ID.
Therefore, inter-switch traffic belonging to different jobs may
contend at a switch if their destination IDs have the same
modulo. In a typical fat-tree installation, multiple many-node
jobs are likely to contend for network links and interfere with
each other’s communication performance.

As mentioned above, dragonfly machines typically use
adaptive routing to attempt to load balance traffic, but inter-job
network contention can occur regardless. For example, con-
tention can occur for the global links if multiple applications
are using non-local communication patterns. Worse, multiple
applications can be assigned to the same routers within a
group, and even if both have localized (e.g., nearest-neighbor)
patterns, they can conflict on row and column links. Outside
traffic that is routed indirectly through a given group can also
conflict with jobs scheduled to that group on the local links.
If the amount of traffic is high enough, congestion will occur
in any or all of these locations even with adaptive routing.

III. EXPERIMENTAL SETUP

Below, we describe the machines, benchmarks, and produc-
tion applications used in the experiments for this paper.



A. Descriptions of Machines and Network Counters

Fat-Tree Installation: We ran our fat-tree experiments on
Cab, an Intel Sandy Bridge based commodity cluster at
Lawrence Livermore National Laboratory (LLNL), connected
together using QLogic’s QDR InfiniBand network. Cab has
1296 16-core nodes, and is a three-level fat-tree built with
radix-36 switches. There are 18 nodes per leaf-level switch,
and 72 leaf-level switches on Cab. The link bandwidth on Cab
is 40 Gbit/s.

Our fat-tree experiments were run during several Dedicated
Application Time (DAT) periods on Cab, meaning that the
entire machine was reserved for us and no other users’ jobs
were running during the experiments. This gave us complete
control over all inter-job interference during the runs, and
allowed us to select our own job placements. Services such
as the Lustre daemon, which run on all compute nodes, were
turned off to minimize operating system (OS) noise. We had
a total of five DAT sessions over 8 months, with each session
lasting either eight, 24, or 48 hours.

Dragonfly Installation: We ran our dragonfly experiments
on Edison, which is an Intel Ivy Bridge based Cray XC30
installation at NERSC in Lawrence Berkeley National Labo-
ratory. Edison has 15 groups with 384 nodes each. Since there
are more ports available than actually needed for inter-group
connections on Edison, six four-link bundles of blue links are
used between each pair of groups to provide additional global
bandwidth. Edison has a total of 5576 compute nodes, each
containing 24 hyperthreaded cores. The total global bandwidth
of Edison’s dragonfly is 23 TB/s, and its link bandwidth is 4.7
and 5.25 GB/s for global and local links, respectively.

Our dragonfly experiments were run via the batch queue
alongside jobs of other Edison users. We ran our target
application on the nodes assigned to our jobs by the job
scheduler and had no control over inter-job interference. The
jobs were always assigned nodes spread across two to 14
groups in our experiments, and our job always shared some
group(s) with other jobs. Our dragonfly experiments were
executed over the course of six months.

Network Performance Counters: In this work, we show
via analysis of network performance counters that hotspots
exist and cause performance degradation with current routing
algorithms used on production installations. In our fat-tree
experiments, we collected global network counters via the
subnet management software, OpenSM. The data collected
consists of counts of bytes sent on every port in the system
every 90 seconds.

In our dragonfly experiments, we periodically collected
network performance counters from Edison’s Aries routers.
The data collected consists of the number of flits (fixed-sized
network packets) on each virtual channel of each port as well
as the number of stalls incurred while waiting to forward flits
from each port. Because a job on Edison only has access to
the counters on the router(s) it is attached to, we were only
able to collect counters from our application’s routers.

B. Descriptions of Benchmarks and Applications
We perform our study with a set of production applications

and additional communication benchmarks that we designed.
Understanding the performance of a full application can be
challenging, so we perform a significant part of our study with
the simpler benchmarks. In order to make our study represen-
tative of real world scenarios, we designed our benchmarks
to be as realistic as possible. In particular, we created our
benchmarks to perform communication patterns common in
HPC workloads, send reasonable amounts of data, and spend
a realistic amount of time in computation.

Each benchmark spends 70-80% of its execution time in
computation and 20-30% in communication when run in an
interference-free scenario (in isolation). This choice is based
on profiles of production applications on Cab. Our communi-
cation patterns are chosen based on both patterns from our
production applications and congestion-prone patterns from
prior work [11]. We chose a message size of 64 KB for all
the communication benchmarks. Each benchmark is divided
into equal-length time steps (composed of several iterations)
with a barrier at the end of each step. Within an iteration, the
benchmark performs computation and then communication.
We chose this structure because it mimics the popular bulk
synchronous model for HPC applications [12]. Our benchmark
communication patterns are:

Bisection bandwidth (bis): Adapted from the ALCF MPI
benchmark suite [13], bis pairs the first N

2 processes with the
latter N

2 processes, such that process k for k = 0, ..., N
2 −1 ex-

changes messages with process k+N
2 . Each process repeatedly

computes and then exchanges one message with its partner. It
is a common pattern considered when testing communication
throughput for a system.

Nearest neighbors (NN): NN lays out the processes in row-
major order on a 2D Cartesian grid with configurable number
of rows. Each process repeatedly computes and then exchanges
a message with each of its four neighbors in the 2D grid. It
is a commonly occurring pattern in HPC applications.

Random pairs (pairs): pairs is similar to bis except
that processes are paired randomly such that each process has
a distinct partner. Each of the first N

2 processes repeatedly
computes and then sends one message to its partner. In bis,
all processes on a node communicate with corresponding
processes on one other node; but in pairs, processes on one
node may all communicate with processes on different nodes.
This leads to traffic that is distributed across more links in the
system than traffic from bis and is noted as a difficult-to-
handle pattern in the theoretical work of Jyothi et al. [11].

FFT proxy (fft-proxy): fft-proxy lays out the pro-
cesses in a 3D Cartesian grid with configurable x, y, and
z dimensions. Processes are divided into subcommunicators
along the y-axis and repeatedly compute and then perform a
single all-to-all communication within each subcommunicator.
This mimics one of the communication phases in a production
application, pF3D (described next).



TABLE I: Details of benchmarks used in experiments. Com-
putation accounts for about 75% of run time. Message volume
is the average data sent per process in each iteration.

Application Iterations Computation Message volume
per step per iter (ms) per iter (KB)

bis 1800 0.56 64

NN 1200 0.83 256

pairs 2500 0.40 32

fft-proxy 150 10.0 960

We avoid performing actual computation in our bench-
marks because it would be susceptible to variability from
OS noise and memory contention. Instead, our benchmarks
mimic computation via calls to nanosleep, which we found
to have low variability in our experiments (see the Artifact
Evaluation appendix for more details). Table I details the exact
configurations of the benchmarks used in the experiments.

In addition to benchmarks, we ran three production applica-
tions, namely MILC [14], pF3D [15], and Qbox [16]. MILC
stands for MIMD Lattice Computation and is used to study
quantum chromodynamics using numerical simulations. We
use the MILC application su3_rmd [17], which performs
a 4D stencil computation, with many point-to-point commu-
nications among neighbors and periodic global reductions.
pF3D is a communication-heavy laser-plasma interaction code
that performs both point-to-point communication and all-to-all
communication over subcommunicators in the x and y direc-
tions of its 3D Cartesian grid. Qbox is a quantum chemistry
application that performs large-sized collective communication
and point-to-point messaging over subcommunicators in a 2D
Cartesian grid.

We ran experiments with different job sizes varying from
1024 processes (64 nodes) to 6144 processes (384 nodes). All
applications and benchmarks were run with 16 MPI processes
per node (all cores were used on Cab and 16 out of 24
cores were used on Edison, with no threading). In this study
we restrict to running flat MPI programs. The input problem
dimensions for each job size are detailed in the Artifact
Description appendix.

IV. ANALYZING PERFORMANCE & NETWORK HOTSPOTS

This section focuses on analyzing the performance of bench-
marks and applications on both Cab and Edison and relating
performance to network hotspots that arise with the current
routing.

A. Performance on the Fat-Tree Topology

On Cab, we ran experiments during DAT periods with
several different workloads, where each workload is defined
by the mix of jobs to be run. We study each workload
in several different placements, or allocations of nodes to
jobs. Specifically, we ran four, eight, and 16-job workloads
consisting of either benchmarks or production applications. In
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this section, we focus on the benchmarks, and the production
applications are discussed in Section V.

For our benchmark workloads, we used a total of 1152 of the
available 1200 nodes, divided evenly among the jobs. We tried
three different randomly-generated placements. In each case,
we split the workload evenly between the four benchmarks,
e.g., for our 16-job benchmark workload, we ran four bis,
four NN, four pairs, and four fft-proxy jobs. We used
different uniformly-distributed random node assignments for
our placements, which is close to the typical case on Cab
based on our observation of the job queue.

Figure 4 gives an overview of the slowdown results for
all benchmarks at all job counts across the three random
placements. Slowdown is calculated with respect to the run
time of the benchmark in the same placement when executed
in isolation on the machine. The isolated run time is an unre-
alistic, best-case scenario for a fixed (random) job placement,
because no scheduler will leave most of a machine unused
just to avoid inter-job interference. In the figure, we see that
both bis and NN are sensitive to inter-job interference, with
up to 114% run time increase in the worst case. Additionally,
the slowdown for each benchmark varies significantly across
placements.

B. Analysis of Fat-Tree Network Counters

Figure 5 shows histograms of link loads across the system
for three placements of the 16-job workload. We obtained
the link loads from system-wide network counters collected
via OpenSM. The load on each link is given in total GB
transmitted over the link for the entire duration that the
workload was run. Not included in the histogram are links
that are not being utilized at all (roughly a third of the
available links in the system). Such idle links have been noted
previously by Domke et al. and termed “dark fiber” [7].

We can see in the histogram for each of the random
placements that the largest bin has links with a load between
15 and 20 GB, and only a handful of links have loads of 60 GB
or more. The bins for the highest loads contain just one or two
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Fig. 5: Histograms of loads on all links of the system for three random placements of a 16-job workload (on Cab). The y-axis
is shown in log scale; completely idle links are omitted.
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links each for the first and second placements; these links are
hotspots. The third placement shows no hotspots, and resulted
in far less performance degradation than the others. The second
placement resulted in the most performance degradation—
114%, the largest slowdown seen in Figure 4.

We quantify the load on a given path through the network
by considering the most heavily-loaded link in the path—
the bottleneck link. We then test if the relationship between
per-process run time and network load holds across all three
random placements by plotting per-process run times in bis
from every workload versus the load on the bottleneck link
for the path taken by messages for that process. The result is
shown in Figure 6. We fit a piecewise regression model to this
data, finding that the model has an R2 value of 0.93 with the
breakpoint occurring around 58 GB. This point corresponds
to a throughput of roughly 3.9 GB/s on average over the
course of the workload, which is about 78% of the advertised
maximum bandwidth. We conclude that overall job slowdown
of bis is largely a function of network hotspots that randomly
occur with varying placements. Thus, placements that happen
to create some heavily loaded links under the static routing
scheme (e.g., the first and second placements) result in large
slowdowns; those that do not create such hotspots (e.g., the
third placement) result in more modest slowdowns.

These results illustrate the fact that network hotspots are
to be expected on a statically-routed system, because even
well-balanced static routing tables do not take into account
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Fig. 7: Time per step for one execution of MILC (on Edison).

the placements and communication patterns of the particular
applications running at a given time. The hotspots can cause
significant performance degradation and lead to inter-job in-
terference. This suggests that routing needs to adapt to the
particular workload on the system. Next, we examine results
from a dragonfly system that uses the adaptive routing policy
proposed in the work of Dally et al. [5].

C. Performance on the Dragonfly Topology

Unlike on Cab, we could not gain exclusive access to
Edison. Therefore, we ran experiments via the batch queue
alongside other jobs, using the production application MILC.
We ran MILC on 384 nodes with 6144 MPI processes several
times over a six-month period and observed its performance
while monitoring network hardware counters on routers allo-
cated to our job. Figure 1 shows the execution time of MILC
for the different runs. All runs used the same number of nodes
and the same input size, yet the variation in performance over
different dates is over a factor of two.

Figure 7 shows an execution of MILC broken into its
constituent time steps (warmup time steps are omitted for
clarity). Each time step of MILC does a uniform amount
of work and should take a uniform amount of time, with
the exception of every 15th time step, in which MILC does
extra computation. However, in many executions, we see
highly varying run time per step—performance degradation
is occurring during some time steps but not others.
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D. Analysis of Dragonfly Network Counters

We collected network counters for each time step of each
MILC execution and fit a regression model relating these coun-
ters to the variability we observed in MILC’s performance.
This task is more complicated than it was for the fat-tree
for several reasons. First, we only have counters for routers
allocated to our MILC job, but MILC’s traffic is also sent
through outside routers along non-deterministic paths. Second,
adaptive routing makes it impossible to separate out the traffic
on a port into its constituent jobs. Finally, MILC occupies
approximately 100 routers in a typical allocation, with 48
ports per router, so we have counter values for thousands of
links over time that must be aggregated without losing critical
information.

To help overcome these difficulties, we apply machine
learning techniques beyond simple linear regression to our
data. In particular, we construct a set of simple statistical
features from the flits and stalls counters and build a non-linear
regression model with run time as the response variable. Our
feature set is comprised of the sum, average and maximum
of the counter values for flits and stalls, in each of the eight
virtual channels across all allocated routers. We consider each
time step in a run as a data sample and construct the feature
matrix X ∈ Rd×(Nt×Nr), where d denotes the number of
features, and Nr and Nt correspond to the number of runs
and number of time steps in each run, respectively. Denoting
yi as the run time for the sample i, our goal is to build a
predictive model, yi ≈ F(xi). Though a variety of regression
techniques exist in the machine learning literature, we choose
Gradient Boosted Machines (GBM) in our analysis as it has
been shown to work well for predicting performance based on
network counters [18]. For our GBM, we use the Huber loss
function and simple decision trees as the base learner.

Prior to regression fitting, it is common to exploit the
low-dimensional structure of the features by applying tools
such as Principal Component Analysis (PCA). In addition to
regularizing the regression problem, this pre-processing step
provides a robust set of features for analysis. However, as
a few outlying data points can corrupt the results of PCA,
we first perform a matrix decomposition wherein the feature
matrix is decomposed as X = L + S. Here L is a low-
rank matrix denoting the low-dimensional structure and S is

a sparse matrix describing the outlying data.
To evaluate the fit of our prediction model, we perform 10-

fold cross validation. The total set of runs is split into ten
partitions, and in each fold, nine randomly chosen partitions
are used for training and the remaining one is used for testing.
We create three models using the base features X, the low-
rank features L, and the sparse features S; interestingly, the
sparse features perform best because the outlying components
in the counter values are the most useful in predicting the large
discrepancies in the execution time. Figure 8 shows the actual
run times and the model-predicted run times for two executions
from the testing set using the sparse feature model. We can
see that GBM makes accurate predictions for most time steps
in these executions. The average mean-squared error across
folds is 0.35 with a standard deviation of 0.21. This shows that
even with partial network counters data, a strong correlation
between network counters and application performance exists,
indicating that network contention is related to slowdowns.

Despite a sophisticated adaptive routing algorithm, inter-
job network interference continues to cause significant per-
formance problems on dragonfly machines. This is despite
the fact that Edison uses the vendor-recommended adaptive
routing parameters, which have been carefully engineered for
the architecture. While different variations of adaptive routing
parameters are not explored here, changes to the parameters
would almost surely improve performance in some cases but
degrade performance in others.

V. ADAPTIVE FLOW-AWARE ROUTING

Given our findings in Section IV, we propose an alternative
approach to routing, namely using flow information for each
communicating source and destination node pair to route
adaptively in software. In this section, we demonstrate the
feasibility of such an approach by designing and implementing
an algorithm that uses centralized, global flow information to
re-route data so that network hotspots are avoided. We call this
new routing scheme adaptive flow-aware routing (AFAR).

A. AFAR Algorithm

We develop AFAR for fat-tree systems because we are able
to implement and test it on an existing production system,
whereas we cannot control routing on a Cray XC30. We ob-
served in Section IV that significant performance degradation
on fat-trees is due to only a handful of hotspots, and we lever-
age that information to develop a straightforward but effective
adaptive routing algorithm for fat-tree networks. A similar
algorithm on dragonfly machines is possible in principle, but
would be different because the dragonfly topology requires
multi-path routing as opposed to single-path routing for best
performance [19].

Pseudocode for AFAR is presented in Algorithm 1. The
input to the AFAR algorithm is a traffic matrix for the entire
workload as well as the routing table. We improve routing
by repeatedly finding the hottest link in the system, choosing
a destination node that receives data over this link, and
re-routing all data sent to this destination node (from any



Algorithm 1: AFAR algorithm for fabric re-routing.
Input: trafficMatrix, rtable, maxLoad, maxIters
Result: New routing table

1 loads ← getAllLinkLoads(trafficMatrix, rtable)
2 maxLink ← getMaxLink(allLinks, loads)
3 numIters ← 0
4 newRtable ← copy(rtable)
5 while load of maxLink > maxLoad and numIters < maxIters do

/* Choose arbitrary destination routed across
maxLink. */

6 dests ← {destinations of data crossing maxLink}
7 D ← first destination in dests

/* Choose a link to shift load to. */
/* altLinks will never be empty, as it

contains at least maxLink. */
8 altLinks ← {links leading to destination D}
9 minLink ← getMinLink(altLinks, loads)

10 update newRtable entry to reroute data for D to minLink
11 loads ← getAllLinkLoads(trafficMatrix, newRtable)
12 maxLink ← getMaxLink(allLinks, loads)
13 numIters++
14 return newRtable

source). The algorithm re-routes the data to the destination
so that it crosses an alternative link with the least load.
In our implementation, we choose an arbitrary destination
node at each step. However, one could easily implement and
evaluate different policies for selecting the destination node.
The algorithm terminates when a desired maximum link load
has been achieved across the entire system.

In the worst case, the algorithm may not improve the
maximum link load at every iteration—for example if the
maximum load is due to traffic to a single destination, or
there is no alternative link leading to the selected destination.
In such a case, the algorithm may not achieve the desired
link load but will still terminate after maxIters iterations.
For our prototype implementation, we have intentionally kept
the algorithm simple rather than handling possible corner
cases. In our tests with realistic benchmarks and production
applications, we were always able to significantly reduce
maximum link load with this straightforward algorithm.

Currently, we generate the traffic matrix via knowledge
of the patterns and volume of communication in our bench-
marks, and we apply our algorithm offline. However, a priori
knowledge of application behavior is not fundamental to our
approach. Hence, we have the option to implement AFAR
by using runtime information that could be obtained from
within a modified MPI runtime system, a system-provided MPI
profiling library, or even the InfiniBand software. The AFAR
algorithm could then be invoked periodically in real time,
whenever congestion occurs, at the granularity of seconds or
minutes.

B. Implementation in OpenSM

We implemented and tested AFAR for a subset of our
experiments on Cab. Every InfiniBand network has a Subnet
Manager (SM) process which is responsible, among other
things, for collecting global data about network state and cal-
culating routing tables for all the switches. The SM on Cab is
OpenSM 3.3.19, a standard open-source SM implementation.

TABLE II: Estimated AFAR overhead for production applica-
tions if AFAR is applied once a minute (on Cab).

Application Run time (s) MPI Calls Overhead (s) Percentage

Qbox 340 32K 0.26 0.08%

MILC 341 913K 0.35 0.10%

pF3D 320 144K 0.31 0.10%

OpenSM provides several “routing engines”, each of which
uses a different algorithm for routing the fabric. On Cab,
OpenSM is usually run with the ftree routing engine, which
implements a type of D-mod-k routing [20].

To achieve the desired routing changes through OpenSM,
we performed our routing experiments as follows. First, we ob-
tained current routing tables from the machine shortly before
beginning our experiments. For each workload, we input those
routing tables into the AFAR algorithm (Algorithm 1), gen-
erating improved routing tables. Then, we restarted OpenSM
with the file routing engine, which loads routing tables from a
file rather than computing them by an algorithm. Additionally,
we added a new signal handler to OpenSM, which allowed us
to trigger OpenSM to reread the routing tables file and update
the switches when we wished to modify the routing. In the
future, our routing can be implemented directly in OpenSM,
rather than via the file routing engine.

For each workload, we first measured performance with
the original routing tables. When testing the modified routing
tables for the workload, we sent a signal to OpenSM to update
the switches with the new tables, and waited a short time
to allow it to finish. We then observed performance for the
workload again.

C. Overheads of Deploying AFAR

To fully deploy AFAR on a system, profiling information
must be captured at runtime to determine the current traffic
matrix. This will introduce small overheads from intercepting
and recording traffic at each node, for example via the PMPI
interface, and periodically aggregating this data to send to
the OpenSM controller for re-routing. In a complete imple-
mentation of AFAR, we estimate the overhead that would
be introduced for our production applications based on their
number of MPI calls, summarized in Table II.

We address each source of overhead in turn. On Cab,
we have found that the average overhead for intercepting
and recording the size and destination of traffic is 100-380
nanoseconds per MPI call. The average overhead for reducing
the traffic matrix data over a 144-node job is 50 milliseconds.
Once the data goes to the OpenSM controller, AFAR itself is
run “offline” while normal work proceeds. We have currently
implemented AFAR in Python, with no optimization, and have
found that it takes a few seconds to run for Cab. Once new
routing tables are determined, they must be disseminated to the
switches, adding one more source of overhead. In OpenSM,
the routing tables are updated at the granularity of blocks,
with each block containing routing entries for 64 destinations.
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Fig. 9: Run times for each of the 16 jobs in the second random
placement, normalized to the run time in isolation (on Cab).
Contended run times for the default routing and our modified
routing are shown in red and green, respectively.

During an update, a block is sent out to the switch only if it has
changed. OpenSM updates the necessary blocks sequentially.
Previous work [7] has measured that the average update time
for a single block to a single switch is 4.6 microseconds,
though some additional, unexplained overhead is added by
OpenSM when updating the system.

With AFAR, OpenSM does not have to update every block
of every routing table. It only has to update up to k blocks,
where k is the number of routing table entries the algorithm
has changed. This property allows our algorithm to scale well
to larger systems with several thousand nodes, provided that it
can improve performance without updating a large percentage
of the routing table entries in the system. In the experiments
presented here, AFAR always terminated after only 10 to 20
changes, which has a theoretical cost of less than a millisecond
of update time. We found that in reality the total time for
OpenSM to update the switches was 3-6 milliseconds.

D. Benchmark Results Using AFAR

In testing AFAR, we focused on eight-job and 16-job work-
loads. For each of the first and second 16-job workload place-
ments, we tested 15 new routing tables generated by changing
one entry up to 15 entries, controlled by the maxIters
parameter in Algorithm 1. The third placement did not have
any hotspots, which the AFAR algorithm detects, leading it to
not modify the routing table for that placement. Based on the
results with all 15 tables for the second placement, we have
selected a good link load threshold for this workload on Cab
(about 61.5 GB of total load, or 82% of the maximum link
bandwidth). We examine the effects of modified routing on
all 16 jobs in the workload for the second placement and the
routing table corresponding to this link load threshold. Results
for the first placement are similar, so they are not detailed here.

Figure 9 shows the run times for each of the 16 jobs
with both the default ftree (D-mod-k) routing and with our
modified routing. Many of the bis and NN jobs experienced
significantly degraded performance under contention with ftree
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Fig. 10: Distribution of run times for each benchmark across
eight placements (on Cab).

routing, and AFAR significantly improves their performance,
returning it to within 17% of isolated run time in most cases.
Of the 16 jobs in the workload, 12 perform the same or
better with the new routing tables—the median and maximum
reductions in run time are 18.6% and 45.7%, respectively.
Only four jobs perform slightly worse than with the ftree
routing, with median and maximum increases in run time of
2.3% and 6.8%, respectively. This shows that the performance
degradation due to congestion is not simply shifted from some
bis and NN jobs to the others; rather, we achieve a global
improvement for the entire workload through re-routing.

Additionally, we notice that the fourth copy of bis actually
speeds up from its isolated run time with our modified routing
tables. The placement of this bis instance caused significant
self-contention, elevating the isolated run time from the typical
14 seconds to 20 seconds. The routing modifications eliminate
this self-contention, returning the run time to about 16 seconds,
despite remaining inter-job interference.

Finally, we also ran eight random placements of eight-job
workloads. Rather than trying many routing tables for each
placement, we ran the AFAR algorithm until we achieved a
maximum link load of 65 GB. Across all eight placements,
the maximum number of entries we needed to change to
achieve this link load was 10. Figure 10 shows a summary
of the results. With this link load threshold for the routing
table, we reduce the worst-case slowdown for each placement
from between 50% and 70% to between 18% and 27%. In
a few instances, one or more of the benchmarks ran slightly
slower with AFAR than with ftree routing. Across all eight-
job experiments, however, the maximum increase in run time
under AFAR was 3.2%, compared to a maximum decrease
in run time of 29.1%. The median improvement was 4.7%
when considering all four benchmarks together. The median
improvements for bis and NN, which are the benchmarks
most sensitive to contention, were 25% and 13%, respectively.
It is also likely that we could achieve slightly better results by
tuning the link load threshold to a slightly lower value.



TABLE III: Run times for each of the eight jobs in the
production application workload, normalized to the isolated
run time (on Cab).

Application Time with ftree routing Time with AFAR

Job 1 Job 2 Job 3 Job 1 Job 2 Job 3

Qbox 1.10 1.08 1.15 1.02 1.01 1.05

MILC 1.03 1.04 1.04 1.03 1.03 1.03

pF3D 1.03 1.03 (N/A) 1.03 1.03 (N/A)

E. Production Application Results Using AFAR

In addition to running benchmarks on Cab, we ran work-
loads of four, eight, and 16 production application jobs in
random placements. We found that the production applica-
tions experienced some unexplained performance variability
in addition to that caused by network congestion. However,
we saw slowdowns of up to 20% for Qbox and pF3D, and up
to 15% for MILC. (The Artifact Evaluation appendix contains
details on the repeatability of performance for both production
applications and benchmarks in our experiments). Production
applications take much longer to run than benchmarks, so we
chose one random placement on which to test AFAR. We
chose a placement with a high maximum link load and ran
AFAR until that load was reduced by roughly 40%.

Table III shows the performance results. We find that the
production applications do not interfere with each other as
much as the benchmarks do on Cab. This appears to be because
the set of applications communicates at a lower intensity than
the set of benchmarks, leading to smaller slowdowns in the
presence of network contention. However, we find that AFAR
still significantly reduces the performance degradation to Qbox
without degrading the performance of MILC or pF3d (neither
of which degraded much with ftree routing).

VI. RELATED WORK

The existing work most closely related to this paper is
on scheduling-aware routing and Software-Defined Network-
ing (SDN) in HPC networks. Domke et al. [7] proposed
scheduling-aware routing (SAR) for supercomputers, in which
routing is periodically updated based on the placements of
jobs running in the system. However, SAR is oblivious to the
actual communication demands of applications, and hotspots
can still occur in the network. In contrast, we use a flow-
based approach and leverage information about communicat-
ing source-destination pairs in the system.

In SDN, there is work on fat trees [21] that details how
InfiniBand can be extended to support OpenFlow-style SDN.
Unlike our work, that work requires enhancements to the
InfiniBand standard to handle per-flow routes (as opposed to
per-destination routes). At present, the scheme is not feasible
in a real system, whereas our work is evaluated on a real
system. A successor paper [19] presents simulated results of
SDN on a dragonfly and compares to adaptive routing.

Routing and congestion control in HPC networks is a broad
area of research. Traditional adaptive routing as proposed by

Dally et al. [5] is typically used on dragonfly networks. Similar
adaptive routing could be used on fat-tree networks, but has not
been deployed on such systems historically. Previous work in
simulation has found static D-mod-k routing to perform just
as well as adaptive routing in fat-trees [4]; but recent tests
on Summit, a new fat-tree-based system at Oakridge National
Laboratory, showed that the system achieves an additional 26%
of the maximum bisection bandwidth when using Mellanox
EDR adaptive routing [22]. We have not yet compared AFAR
to traditional adaptive routing, but AFAR will have the advan-
tage of global information over a period of several seconds (in
a similar spirit to buffered co-scheduling [23]).

Neither traditional adaptive routing nor AFAR handles
endpoint congestion, which is caused by many-to-one traffic.
Complementary solutions for handling endpoint congestion
already exist, such as Speculative Reservation Protocol and
its extensions [24], [25].

There have been several previous studies of network conges-
tion on various topologies. Bhatele et al. studied performance
variation on a 3D torus and determined it was due to network
congestion from neighboring jobs [1]. Bhatele et al. and Jain
et al. have also studied network performance on two 5D
torus (Blue Gene Q) systems, where they could obtain a
controlled environment by running experiments in isolation on
a midplane of the system [26], [18]. Previous studies on fat-
tree have also been performed; for example, Jokanovic et al.
used simulation to study inter-job interference of production
applications on slimmed fat-trees [27].

There have been publications closely related to our study
on dragonfly. The first found variability on a Cray XC30
dragonfly installation Theta [2] due to several different sources
in the system, including network contention. The paper notes
slowdowns for MILC similar to those we found on Edison.
Another paper by Groves et al. correlates network counters to
Allreduce performance [28]. Finally, Brandt et al. monitored
network counters and showed how congestion forms and
abates over time [29]. In simulation, the “bully” paper [30]
showed that large jobs can negatively impact smaller jobs.

VII. CONCLUSION

This paper began by providing evidence that static and
traditional adaptive routing on current production supercom-
puters may be insufficient to mitigate congestion under certain
workloads. Our evidence consists of an analysis of network
counters, using different regression methods, that shows that
network hotspots are possible under both forms of routing
and that hotspots correlate well to degraded job performance.
Then, we provided details on an adaptive, flow-aware routing
algorithm (AFAR) that re-routes traffic to avoid these hotspots.
AFAR is implemented via OpenSM on a production fat-tree
cluster. When applying the AFAR algorithm, the performance
degradation of some jobs reduces from 114% to as little as
17%, when both are compared to isolated run times. While
AFAR requires more runtime information than static routing
or traditional adaptive routing, we believe this paper makes
clear that it is likely well worth the data collection effort.
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APPENDIX

A. Artifact Description
1) Abstract: This paper includes extensive performance

results for applications and benchmarks run under competition
for network resources on two different production systems.
Details of the systems and production applications are listed
here, along with information about where to obtain source
code, the complete outputs of the experiments, and the scripts
we used for the experiments and analysis.

Our experiments were conducted on production HPC sys-
tems and the results of interest are performance results, not
computational answers. Therefore, our exact results are not
reproducible by a third party, though we make every effort in
this appendix to enable a user to repeat the steps we took and
observe similar performance results on the systems to which
they have access.

2) Check-list (artifact meta information):
• Program: MILC, Qbox, pF3D, custom benchmarks
• Compilation: instructions given in this appendix
• Data set: can be found at https://bitbucket.org/stacismith/

sc18-adaptive-flow-aware-routing
• Run-time environment: Cab (LLNL), Edison (NERSC)
• Hardware: Sandy Bridge, Ivy Bridge, QLogic QDR InfiniBand

fat-tree, Cray XC30 dragonfly
• Run-time state: Dedicated Application Time, production mode
• Publicly available?: code and results are publicly available

wherever we have the rights to make them so

3) How software can be obtained (if available):
Our paper uses the production applications MILC,
Qbox, and pF3D. MILC and Qbox are each available
publicly, but the pF3D source code is confidential.
MILC can be obtained as part of the NERSC-8
Trinity benchmark suite found at http://www.nersc.gov/
users/computational-systems/cori/nersc-8-procurement/
trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/milc/. Qbox
can be obtained from Lawrence Livermore National
Laboratory (LLNL) at https://github.com/LLNL/qball.

Our paper also uses a suite of benchmarks of our own
creation. The benchmarks are available at https://bitbucket.org/
stacismith/sc18-adaptive-flow-aware-routing.

4) Hardware dependencies: Our experiments were run on
two production systems at LLNL and NERSC (the National
Energy Research Scientific Computing Center at Lawrence
Berkeley National Laboratory). Access to these systems or
systems like them is required to reproduce similar results to
ours. However, we provide hardware details of the systems for
completeness.

a) Cab: Cab is a commodity fat-tree cluster at LLNL. It
has 1296 16-core nodes, with 1190 nodes available for batch
jobs. Each node contains two sockets, each with one Sandy
Bridge processor (Intel Xeon 8-core E5-2670), for a total of
16 cores per node. The processor speed is 2.6 GHz, and each
node has 32 GB of memory. The fabric is QLogic’s QDR
InfiniBand network, connected in a three-level fat-tree with
radix-36 switches. There are 18 nodes per leaf-level switch,
and 72 leaf-level switches. The link bandwidth on Cab is 40
Gbit/sec.

b) Edison: Edison is a Cray XC30 dragonfly instal-
lation at NERSC. Edison has 15 groups with 384 nodes
each. Specifically, it is constructed of 30 cabinets, where
two cabinets make up a group; each cabinet has 3 chas-
sis; each chassis has 16 compute blades; and each compute
blade has 4 dual socket nodes (many more details can be
found at http://www.nersc.gov/users/computational-systems/
edison/configuration/interconnect). A total of 5576 nodes are
available for computing, each containing 24 hyperthreaded
cores (two 12-core Ivy Bridge processors). Each node has 64
GB of RAM and three levels of cache, divided into a private
L1 and L2 of 64 KB and 256 KB respectively, and a shared
30 MB L3. The total global bandwidth of Edison’s dragonfly
is 23 TB/s, with an advertised MPI bandwidth of 64 Gbit/sec.

5) Software dependencies: Cab runs the TOSS 2 operating
system; Edison compute nodes run a lightweight kernel and
run-time environment based on the SuSE Linux Enterprise
Server (SLES) Linux distribution. Each system has its own
suite of pre-installed compilers and libraries, which were used
for this work. Both systems use Slurm for job scheduling,
which is required to run our experiment scripts.

TABLE IV: Input problems used for each job size.

Application Problem dimension

NN X × 64

fft-proxy 8 × 16 × Z

MILC 64 × 64 × 64 × T

pF3D X × 16 × 8

Qbox 160, 208, 256 atoms

6) Datasets: All details of the input problems used for both
production applications and benchmarks are available at https:
//bitbucket.org/stacismith/sc18-adaptive-flow-aware-routing.
The complete outputs of our experiments are provided there
as well. The basic information is provided in Table IV; bis
and pairs, which have no problem size, were both run with
1152, 2304, and 4608 processes. We used weak scaling for
all production applications, so the amount of computational
work per process was fixed across sizes. For pF3D, we fixed
the y-dimension across problem sizes so that the all-to-all
communications are always over subcommunicators of size
16. We ran MILC for four warmup trajectories with five
steps per trajectory, plus two work trajectories with 10 steps
per trajectory. We ran pF3D for 10 steps, and we ran Qbox
for five steps. The Qbox workload was the “gold” input
dataset found in the Lawrence Livermore National Laboratory
version of the code.

7) Installation: Our custom benchmarks can be built with
a simple make command and the mvapich2 mpicc compiler.
Instructions for downloading and building MILC and Qbox
are provided in detail here. All experiments with production
applications on Cab used the mpip-mvapich2-1.7 module for
mpiP. Experiments on Edison used an mpiP library built from
source following the directions at http://mpip.sourceforge.net.



# First, download and unzip TrN8MILC7May30.tar. If necessary, rename folder to milc7.
cd milc7
patch -p1 < 0001-Per-timestep-timing-for-2018-re-routing-work.patch
use mvapich2-intel-2.2
cd ks_imp_dyn
make su3_rmd

Fig. 11: Commands used to compile MILC on Cab

git clone https://github.com/LLNL/qball.git
cd qball
patch -p1 < 0001-Per-timestep-timing-for-2018-re-routing-work.patch
use mvapich2-intel-2.2
autoreconf -i
./configure \

--with-xerces-prefix=<path-to-spack>/spack/opt/spack/<path-to-xerces-directory> \
--with-fftw3-prefix=/usr/local/tools/mkl-11.3.2 \
--with-lapack=<path-to-scalapack>/install/lib/libscalapack.a \
--with-blacs=<path-to-scalapack>/install/lib/libscalapack.a

make

Fig. 12: Commands used to compile Qbox on Cab

a) MILC:
• Code found at: http://www.nersc.gov/users/

computational-systems/cori/nersc-8-procurement/
trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/milc

• Required patch for per-step timing: 0001-Per-
timestep-timing-for-2018-re-routing-work.patch,
available at https://bitbucket.org/stacismith/
sc18-adaptive-flow-aware-routing

• Compiled with mvapich2-intel-2.2 module on Cab,
and with our own Makefile on Edison, which
is available at https://bitbucket.org/stacismith/
sc18-adaptive-flow-aware-routing

The commands that we used to compile MILC on Cab are
shown in Figure 11.

b) Qbox:
• LLNL version of code found at: https://github.com/

LLNL/qball
• Commit number: a33d0438dd83372d645d670bef7e0060-

c8933011
• Requires patch for per-step timing: 0001-Per-

timestep-timing-for-2018-re-routing-work.patch,
available at https://bitbucket.org/stacismith/
sc18-adaptive-flow-aware-routing

• Compiled with mvapich2-intel-2.2 module
• Build dependencies: Install Xerces through Spack pack-

age manager (https://github.com/spack/spack); install
Scalapack from scratch (http://www.netlib.org/scalapack)

The commands that we used to compile Qbox on Cab are
shown in Figure 12.

c) pF3D: Source code confidential.
8) Experiment workflow: As mentioned, the scripts for

running our experiments in production mode (on Edison) and

in dedicated mode (on Cab) are available at https://bitbucket.
org/stacismith/sc18-adaptive-flow-aware-routing.

9) Evaluation and expected result: The scripts we used
to analyze our experiment outputs are available at https:
//bitbucket.org/stacismith/sc18-adaptive-flow-aware-routing.
The scripts can be run over our outputs to obtain the expected
results. Of course, if a third party attempts to re-run our
experiments on a different platform or on a different day, the
performance results will not be exactly the same as ours.

10) Experiment customization: Our benchmark suite can
be adapted to be run on any HPC system that supports MPI,
provided a dedicated machine time reservation is obtained.
Our analysis scripts can be applied to the outputs to obtain
new performance results for the target system.

11) Notes: Our experiments cannot be reproduced exactly
due to their nature. However, we have made every attempt to
make our results and experiments transparent and to enable
other users to run similar experiments with our applications
and benchmarks. We also provide an artifact evaluation index
with additional details on our data analysis in order to add
confidence.

B. Artifact Evaluation

1) Abstract: Our paper includes extensive performance
results for applications and benchmarks run under competition
for network resources. We take multiple steps to assure the cor-
rectness of our benchmarks and limit performance variability
due to sources other than the network, including validating
the traffic sent by the benchmarks against network counters,
using system sleep instead of computation to minimize mem-
ory contention and OS noise, and validating the sleep and
communication time for each benchmark with timers. We



also increase the reproducibility of our interference results by
tightly synchronizing the start times of competing benchmarks.

We also take steps to limit performance variability due to
sources other than the network in our production applications,
including leaving idle cores to handle OS interrupts and reduce
memory contention on node. We evaluate mpiP profiles of the
applications after the fact to look for signs of computational
performance anomalies and include results only for non-
anomalous runs. We have checked the applications for correct
execution on our system before reporting any performance
results.

2) Dragonfly Results: To avoid computational noise and
reduce memory contention in our dragonfly experiments, we
used only 16 cores out of the 24 available on each Edison
node, and we excluded the first and last cores on each socket
(following the advice of Petrini et al. to mitigate OS noise
[14]). We have carefully examined mpiP profiles of our appli-
cation for signs of computational variation between processes
and between runs. We have found that our runs all show
consistent computation performance, where the computation
times of processes range from 197 seconds to 217 seconds,
with median 208 seconds. The variance that exists is probably
due to factors such as memory contention and turbo. In any
case, the computational variance is consistent from run-to-run
and much smaller than the communication variance, so we
believe that OS noise is not responsible for the observed time
variability.

We did not make any changes to the source code of the
application, and we validated our compiled MILC executable
against a sample problem and its expected output that is
provided with the source code.

3) Fat-Tree Results: In our fat-tree experiments, we used
four benchmarks, each with a different communication pattern.
As described in the paper, each benchmark is divided into
equal-length time steps with a barrier at the end of each step.
Within a time step, the benchmark performs alternating com-
putation and communication, where the computation is simu-
lated by sleep. Each application is configurable in (1) number
of time steps, (2) number of computation-communication
phases per time step, (3) length of the computation phases,
and (4) size of the messages sent during communication.

In our experiments, we controlled the computation-to-
communication ratio of the benchmarks as follows. We fixed
the number of time steps to 10. We selected a message size
of 64 KB as detailed in the paper, and we tuned the number
of communication exchanges in each time step so that a step
takes about 0.5 seconds without computation. Finally, for each
experiment we set a target computation-to-communication
ratio (e.g., 20% of application time in communication, or 4:1)
and tuned the computation time to roughly achieve that target.
Of course, variability of communication performance from
run-to-run causes our ratio to be imperfect, but when run in
isolation, our experiments with a target of 25% communication
(3:1) always had communication between 20% and 30%
for all benchmarks (the percentage inflates when run under

competition, as expected).
To avoid actual computation in our benchmarks, which

would be susceptible to variability from OS noise and memory
contention, our benchmarks mimic computation via calls to
nanosleep. While it is true that system sleep time is itself
slightly variable, we measured total time spent in sleep for our
benchmarks across runs and find that it varies by only 0.18%
(we used MPI_Wtime() as our timer). Because we were
able to limit computational noise by using sleep, we do not
bother to exclude cores on the node as we did in production
experiments on Edison.

The benchmarks were compiled into a single binary, and
each workload was run as one MPI program with different
subcommunicators performing different communication pat-
terns, which emulates separate jobs. This was done so that
the start time of all competing jobs could be synchronized for
repeatability of results (see discussion of repeatability below).

As our benchmarks do not perform computation, correctness
is defined by each benchmark sending the appropriate-sized
messages to the correct partners in between sleep calls. We
analytically computed the expected traffic volume for each
benchmark and used the routing tables from the machine
to discover the expected link loads for each placement and
workload. We found that the network counters we collected
closely matched the expected link loads; they were slightly
higher, which was probably due to traffic during the setup
phase of the benchmarks as well as control packets.

Our experiments were run during several DATs on Cab,
meaning that we had use of the entire machine, and no other
users jobs were running during the experiments. In normal
production mode, Cab has access to Lustre, LLNLs high-
performance parallel filesystem. However, the Lustre daemon
that runs on the nodes can cause significant OS noise in
production, so we had the daemon turned off during the
reservation.

For each benchmark and placement, we performed three
repetitions of the experiment to verify the repeatability of the
performance results. With the exception of three anomalous
runs out of a total of 504 runs, we did not observe much
variation between repetitions of the same experiment. For each
job in each experiment, we calculated the standard deviation of
its run time across the three repetitions. The median standard
deviation for all jobs was 0.05 seconds (where runs took 15-
30 seconds). The three anomalous run times were inflated
from the minimum by 21%, 77%, and 134%, respectively;
but as they represent a small fraction (less than 1%) of our
total results, we regard them as isolated incidents. Throughout
the description of our results, we report the median run
time or median slowdown of the three repetitions, effectively
discarding the anomalous outliers.

We also performed three repetitions of each experiment with
production applications. In contrast to our benchmark results,
we observed larger variance between repetitions of the exact
same workload and placement. Across the three repetitions
of a given experiment, the maximum slowdown for a given
job could be up to 50% higher than the minimum slowdown;



for example, the maximum slowdown was 18% while the
minimum slowdown was 12% for one Qbox job. A possi-
ble reason for the variance is other sources of performance
variability such as OS noise and memory contention between
processes of the same job on a given node; these sources are
not present in our benchmarks, and our benchmarks showed
very small run-to-run variability. Therefore, we focus mainly
on our benchmark results in this work, as we have higher
confidence in their validity.

For all experiments with AFAR on the machine, we per-
formed three repetitions, and again we found only a small
variation in performance between repetitions. The median
standard deviation for benchmark run time across the three
repetitions was 0.06 seconds (where the run times are all at
least 15 seconds), and the maximum standard deviation was
0.31 seconds. For the production application AFAR experi-
ments, the median standard deviation for run time across the
three repetitions was only 1.09 seconds (where the run times
were all at least 289 seconds), but the maximum standard
deviation was 29.7 seconds. We use the median run time for
the three repetitions throughout the sections on performance
results.

4) Summary: We have described here our efforts to validate
the correctness of our applications and benchmarks and to
assure the trustworthiness of our performance results (focusing
especially on eliminating sources of performance variability
from our experiments). In addition, the outputs of all our
experiments are publicly available at https://bitbucket.org/
stacismith/sc18-adaptive-flow-aware-routing so that they can
be independently analyzed by a third party.


