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Abstract—Memory performance is often a major bottleneck for high-performance computing (HPC) applications. Deepening memory
hierarchies, complex memory management, and non-uniform access times have made memory performance behavior difficult to
characterize, and users require novel, sophisticated tools to analyze and optimize this aspect of their codes. Existing tools target only
specific factors of memory performance, such as hardware layout, allocations, or access instructions. However, today’s tools do not
suffice to characterize the complex relationships between these factors. Further, they require advanced expertise to be used effectively.
We present MemAxes, a tool based on a novel approach for analytic-driven visualization of memory performance data. MemAxes
uniquely allows users to analyze the different aspects related to memory performance by providing multiple visual contexts for a
centralized dataset. We define mappings of sampled memory access data to new and existing visual metaphors, each of which
enabling a user to perform different analysis tasks. We present methods to guide user interaction by scoring subsets of the data based
on known performance problems. This scoring is used to provide visual cues and automatically extract clusters of interest. We
designed MemAxes in collaboration with experts in HPC and demonstrate its effectiveness in case studies.
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1 INTRODUCTION

H IGH performance computing (HPC) systems consist of large-
scale parallel computers that solve computationally intensive

problems and often feature complex and long-running applica-
tions. Such systems enable many forms of scientific inquiry, but
their computational capabilities vastly outpace the abilities of
applications to take advantage of them, leaving much of their
potential computational power largely unused. It is becoming
increasingly important to understand and analyze the behavior
and performance of HPC applications in an effort to optimize
them. However, this is an extremely difficult task: depending on
the hardware and software properties of a particular system, the
behavior of an application can be impacted by several different
factors. In many cases, memory access performance plays a dom-
inating role, due to the fact that raw computational performance
has advanced (and continues to advance) at a much higher rate
than that of data access performance. This trend is also referred to
as the “Memory Wall” [30].

To counteract this trend, hardware designers have introduced
deeper, more complex memory hierarchies. While software re-
searchers have developed a wide variety of strategies to take
advantage of them [22], [17], no general solution is currently
capable of achieving performance anywhere near peak memory
performance. Different application and hardware combinations
have vastly different memory usage requirements and capabilities,
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explaining the need for analysis and optimization of individual
application executions.

Hardware simulators present one option, as they can simulate
the execution of each instruction on a particular piece of hardware,
with the goal being to expose detailed memory behaviors at a
low level. However, these simulators incur large overheads and
often fail to correctly predict total system behavior by neglecting
outside variables, such as operating system interference, frequency
scaling due to heat, and non-deterministic effects resulting from
concurrent execution. For these reasons, optimizing memory per-
formance typically requires one to collect memory-related perfor-
mance data from actual, non-simulated runs and perform analyses
on the collected data.

Accurate collection of memory-related performance data is a
field of research on its own. The overhead involved in collecting
data makes necessary the use of hardware resources, including
memory. Thus, high-overhead solutions corrupt the observed in-
formation. Not collecting sufficiently enough information makes
it impossible to perform a useful analysis. To understand the
execution of a single memory instruction, we need to know
which line of source code generated the instruction, which data
structure was accessed, which CPU was used for execution, and
which memory resource was accessed. Moreover, with modern
multi-level caching, the performance of one memory instruction
can depend on those that happened before. In prior work, we
developed a method for collecting the needed fine-grained memory
access information with low overhead [10]. In this paper, we intro-
duce visualization and analysis methods that use this information
to characterize memory performance with respect to the many
different factors that contribute to it.
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Contributions
We present the memory performance visualization and analysis
tool MemAxes. MemAxes enables novel analysis of the complex
relationships between source code, data structures, and hardware
by mapping the input data to multiple different visual representa-
tions, each exposing different characteristics of memory behavior.
This unique combination of characteristics more completely de-
scribes complex memory behavior than is possible with existing
methods, and as a result, our method makes it possible to more
accurately diagnose memory performance problems than existing
methods. In addition, MemAxes introduces a new way to visually
characterize utilization of the hardware involved in memory ac-
cesses. Finally, MemAxes is based on a new method that guides
the process of data exploration by “scoring” various subsets of the
performance data and presenting the results as possible interactive
data exploration choices to the user.

2 RELATED WORK

Many open-source and commercial tools exist for analyzing ap-
plication performance, such as GNU gprof [11], Intel VTune [23],
and Apple Instruments [2], that incorporate varied degrees of
visual analysis methods. Depending on the particular analysis task,
different forms of visual analysis are more or less appropriate.
We briefly review a subset of the related research that involves
memory and memory-related data and refer the reader to [15] for
an in-depth survey of the performance visualization field at large.
Visualization of Memory Allocation. One of the motivations
driving memory performance visualization techniques is the desire
to understand how data is laid out in address space. Considering
the design of modern memory hierarchies, the location of a
particular data item in address space has a significant effect on how
quickly it can be accessed. It is critically important to understand
how memory allocation and utilization affects the performance of
a complex computer code and how to optimize it. In the context of
visualization, the problem is to depict a set of ranges (allocated
memory buffers) along a single dimension (the total available
address space) as they change over time (allocation, de-allocation,
re-allocation). Further, one must visualize when accesses are made
and by what parts of the code.

Griswold et al. devised a method that plots allocated memory
buffers as blocks along an axis representing address space, encod-
ing the buffer type via color and wrapping the axis across rows
to more efficiently utilize screen space [12]. While providing a
detailed visualization of memory fragmentation for small memory
spaces, this method was designed to show the entirety of the
memory address space and allocations of a complete program,
which is simply too much information to show in its entirety, even
for moderately complex applications. Furthermore, this visualiza-
tion method represents the state of memory utilization for only a
single point in time. Moreta et al. presented an improved approach
based on plotting time as an axis orthogonal to address space [21].
However, this approach further limits the available real estate for
visualizing for address space, as all allocations for a single time
point are plotted along a single row. Cheadle et al. introduced
a similar method for showing the address space of the heap by
plotting allocations via a heat map. Their method also shows
histograms of different allocations separated by size and type [7].
The resulting visualizations effectively show the distribution of
different allocations for a program, but the screen space required
scales linearly with respect to the number of allocations.

The methods described above are more or less effective re-
garding the goal of understanding memory allocation character-
istics. All are severely limited concerning scalability. A modern
application typically involves several thousand memory alloca-
tion operations performed per millisecond, and modern platforms
can use several million memory addresses for a single process.
Furthermore, address space is a virtual construct; the data and
addresses also have physical counterparts, i.e., cache hardware,
memory banks, etc., and their properties greatly affect memory
access efficiency. The location of memory and cache resources,
their efficiency with respect to the different processors that access
them and their eviction policies play crucial roles in achieved
performance. Therefore, virtual address space alone is insufficient
for characterizing memory performance behavior.

Visualization of Hardware Topologies. The physical analog to
the virtual address space is the physical addresses covering all
memory hardware resources in a particular system. However, the
available hardware performance data often lacks the information
to connect it to the virtual address space used by the applica-
tion. Hardware-centric visualizations should expose performance
characteristics that effectively depict utilization across hardware
resources, disjoint from the address space visible to the application
developer.

Memory hardware resources include main memory, caches,
and their connectivity to each other and to processors. The
layout and connectivity of memory hardware resources define the
hardware topology of the system. This topology has a hierarchical
structure, with processors defining the leaves, with parent nodes
representing the next-smallest available memory resource (L1
cache), until the largest memory resource (main memory) is
reached at the root.

Early research done by Alpern et al. focused on connections
between the processor and lower levels in the cache hierarchy [4]
to illustrate the intended behavior of tiling algorithms. Their
research was one of the first efforts directed at understanding
the relationship between algorithms, data, and hardware used.
Unfortunately, this research effort was purely conceptual and did
not address the visualization of real data. Choudhury and Rosen
developed a technique for depicting data movement within a
simulated cache hierarchy using an abstract visualization showing
individual cache lines and their transactions [8]. Their approach ef-
fectively extended Alpern et al.’s effort by showing data elements
in their respective hardware containers, using visual abstraction
as a tool to improve comprehensibility and utilizing visualization
space more effectively. Further, their method links transactions
to the instructions in the code that caused them. However, the
approach is only effective for hardware with caches small enough
to have individual cache line accesses visually discernable. Rosen
et al. introduced an approach for visualizing memory accesses for
representative subsets of CUDA hardware performance data [24].
The idea used to detect representative subsets is highly effective
for reducing the visual exploration space into semantic regions,
which is necessary to support the viewing of several hundred GPU
cores and several thousand timesteps per execution. Unfortunately,
the approach is highly hardware-specific.

The software tools hwloc [6] and likwid [28] provide capa-
bilities to detect, output, and visualize hardware topologies, but
they do not allow one to directly visualize performance data
mapped to the topologies. Recently, Denoyelle et al. [9] built
upon hwloc by color-coding performance counters mapped on the
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visual components representing different hardware resources. The
result is a highly advanced hardware resource monitor. However,
the tool does not facilitate analysis of specified time intervals; only
an aggregated summary of performance for a single time point is
supported.

Visualizations that incorporate hardware topology expose a
myriad of hardware-dependent performance problems that would
otherwise remain unseen. However, currently one either relies on
simulated data to represent attributions between the hardware and
software or this attribution information is not represented at all.
As a result, current tools can shed light on hardware behavior, but
not on their root causes within a simulation code.

Visualization of Memory-related Counters. Memory perfor-
mance counters are available on most modern processors. They
record the number of occurrences of specific events, e.g., cache
misses or accesses to main memory over time. Each counter may
be associated with a particular resource, e.g., a processor core or
memory resource. MView [5] displays memory access counters on
a Gantt chart, with different processors on the horizontal axis and
different counters encoded via color and height. This approach
effectively shows the distribution of memory-related events on
a per-processor basis and scales relatively well using common
interaction methods for Gantt charts. Schulz et al. [25] described
a technique for aggregating memory counters by their associated
locations in a physical mesh used for simulation. The result is
highly scalable, but also highly application-specific.

The major drawback regarding visualizing counter data is
attribution. Counters provide the number of events over time
periods, but do not provide details about those particular events.
Thus, events cannot be directly attributed to the instructions that
caused them or the data addresses involved.

Visualization of Sampled Memory Accesses. Our research pre-
sented here concerns sampled memory instruction data, which
has only become available with recent microprocessor genera-
tions. Sampling has the advantage of providing highly detailed
information about individual events that occur during program
execution compared to the summary information provided by
counters. This enhanced information leads to a significant over-
head cost compared to counters, and sampling must be care-
fully configured to mitigate this trade-off. Liu et al. extended
HPCToolkit to include memory access sampling data in order to
attribute memory accesses to recorded call paths and associated
memory allocations [19], [3]. This attribution provides valuable
information. However, this toolkit does not provide more advanced
visualizations beyond scatterplots and is limited in interaction
techniques. It relies heavily on a user’s ability to explore the data
in meaningful ways.

3 REQUIREMENTS

Based on the benefits and drawbacks of the current state-of-the-art
methods in memory performance visualization, we identified a set
of requirements for our tool:

Scalability. The growing requirements of high-performance com-
puting applications make scalability critical. This includes both
visual scalability (how the visualization quality scales with respect
to the input data size) and computational scalability (how quickly
the tool runs with respect to the input data size). Many of the
aforementioned tools were capable of handling input sizes typical
of the era in which they were presented, but the quantity of data

produced from hardware has since grown exponentially. Currently,
it would not be unreasonable to expect hundreds of thousands of
data points with 10-20 dimensions each, and we can only expect
this number to increase. Ideally, the visual quality of our tool
would be unaffected by the input dataset and the tool would
perform at interactive rates regardless of data size.
Attribution. In order to perform meaningful analysis, the tool
should be able to not only show aspects of memory performance
behavior but their causes as well. Repeatedly, we have seen that
a single visualization may be effective in showing one or two
different characteristics of memory behavior, but unless we are
able to correlate those characteristics with others, we can not
hypothesize any causal relationships between them. For example,
hardware-centric visualizations may show whether accesses were
made to slow memory resources, but without attributing those
accesses to their respective lines of source code, it is difficult
to determine what aspects of the code and data structures may
be responsible for them. Attributing data across visualizations
allows us to determine what characteristics may be related and
thus provides us a set of potential correlations to draw conclusions
from.
Usability. Many of the aforementioned methods provide a large
visual exploration space and the necessary interaction tools to
navigate it. However, doing so often requires the analyst to have
a substantial amount of prior knowledge of their application and
computing environment in order to perform useful interactions for
analysis. This requirement imposes a significant impediment on
the usability of these tools. To mitigate this, we require simple
and intuitive methods for guiding the interactive analysis process
without substantial prior knowledge, in addition to providing basic
interaction techniques for exploratory analysis. We expand upon
this point in Section 7.

4 MEMORY PERFORMANCE

Modern memory architectures typically contain three levels of
cache and either a single main random-access memory (RAM)
resource or multiple non-uniform memory access (NUMA) re-
sources. The time and energy required to access a memory
resource increases exponentially with the size of the resource [13],
so most often it is better to utilize small cache resources. Caches
may be either shared or unshared among different processors.
Typically, architectures include one or two unshared caches per
processor and possibly a shared cache for a set of processors.
Main memory resources are shared among all processors but are
the largest and slowest to access, and NUMA resources are local to
a subset of processors on a shared socket and incur a high penalty
for accesses from processors on a remote socket.

Problems arise when application data cannot fit into small
caches and when multiple processors contest for shared resources,
both of which are almost always the case, especially in high-
performance computing (HPC) applications. The former issue
requires processors to evict data from smaller caches to replace
it with incoming data, forcing subsequent accesses to acquire data
from larger, slower resources. The latter also requires processors
to communicate across caches in order to ensure that processors
do not operate on stale copies of cached data.

A wide variety of factors affect the outcome of different
memory access patterns, as discussed in Section 1. By analyzing
the memory accesses in the contexts of these different factors,
we are able to gain an understanding of the interplay between
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AMRBox.cpp : line 786
...
double v = matrix_1[x][y];
...

0,0 1,0 2,0 3,0
matrix_1

0,1 1,1 2,1 3,1
0,2 1,2 2,2 3,2
0,2 1,3 2,3 3,3

Source	Code Line Timestamp Address CPU Latency Memory Data	Object Access	Index
AMRBox.cpp 564 123442531 10927424 0 11 L1 matrix_1 0,1
AMRBox.cpp 786 123442761 10926544 0 11 L1 matrix_1 2,1
AMRBox.cpp 787 123442995 10926936 1 8 L1 matrix_1 3,1
AMRBox.cpp 789 123443246 10927592 2 36 L2 matrix_2 2,2

Fig. 1: The table above shows some hypothetical memory access
data. Each row represents a single memory access, and different
columns describe different attributes associated with the access.
These attributes make it possible to associate the access in differ-
ent contexts, for example the source code (left), hardware topology
(middle, see Fig. 4), and data layout (right).

them and in turn formulate a high-level explanation for certain
memory behaviors. Finally, high-performance computing experts
can use this information to form hypotheses for potential causes
of problems and determine possible optimization methods.

4.1 Memory Access Samples
As described in Section 1, there exist many different types of
memory performance data, each of which may provide different
insights. In this work we focus on the data acquired from memory
access sampling. We configure an available performance moni-
toring unit in hardware to record a memory access after every
N accesses have completed, effectively giving us a subset of all
accesses made during a program’s execution [14].

Sampling can be configured for different values of N, and in
addition, a latency threshold T may be specified. In the latter case,
memory accesses are only recorded if their duration exceeds a
threshold of T CPU clock cycles. Different N configurations allow
the user to trade off sampling granularity and overhead. Because a
low granularity may possibly miss important memory behaviors, it
is helpful to also specify a T to bias the sampling towards slower
accesses, which may represent bottlenecks and are potentially of
more interest.

Every sample is essentially a tuple of attributes associated with
a single memory access event. Different attributes describe the
memory access in different contexts, for example in the context of
the source code, the hardware, or the data layout. Figure 1 shows
how the different attributes map to these various contexts. Some
attributes are quantitative, representing strictly ordered quantities,
and others qualitative, describing different aspects of the access.
Although some values like processor ID are numerical, their
numeric value bears no meaning—processor ID values may be
arbitrarily ordered (and often are), therefore they must be treated
as qualitative. Specifically, the hardware-provided attributes con-
tained in an individual sample are:

Timestamp (quantitative). A timestamp taken at the time
the access retires, a numerical value.

Latency (quantitative). The number of elapsed processor
cycles from access request to access retirement.

Processor (qualitative). The ID of the processor that issued
the access.

Instruction Pointer (qualitative). The address of the in-
struction that issued the access request.

Data Source (qualitative). An encoding specifying the type
of resource where the access was resolved, e.g. L1 cache,
remote RAM .

Data Address (qualitative). The pointer address of the data
being accessed.

We extend this list of attributes using developed methods in the
high-performance computing community [19], [10] to additionally
obtain:

Data Symbol (qualitative). The name (as a string) of the
symbol from which data was accessed, e.g. “myArray”.

Access Index (quantitative). The index used to access
the data element from its container, e.g. the value i in
“myArray[i]”.

State Variables (varies). Any additionally recorded pieces
of information, as specified by the programmer.

As a result, each memory access sample can be interpreted as a
multidimensional point with a minimum of 8 dimensions and a
virtually limitless number of additional program state variables.

In addition to the memory access samples, we store the hard-
ware topology on the executing system using the well- established
hwloc [6] tool. The topology has a hierarchical format, with larger
memory resources parenting smaller ones, and processors at the
leaves below the smallest (L1 cache) memory resource.

5 DESIGN OVERVIEW

Due to the multidimensional nature of the input data, it is tempting
to apply existing multidimensional visualization techniques and
create a single, all-encompassing view. However, such techniques
typically rely on the assumption that all dimensions may be treated
in the same way and compared to one another on a common
metric. Because the dimensions of our input data are highly
heterogeneous, this is not possible to do directly, and mapping
these dimensions to a homogeneous analog strips the data of its
informational value. The result is a visualization that attempts to
do everything but accomplishes very little in terms of specific
analysis tasks within the domain.

The most effective performance visualizations were those that
tied a particular data exploration or analysis task to a representa-
tive visual metaphor. For example, Griswold et al. [12] and Moreta
et al. [21] showed that when analyzing memory fragmentation, it is
helpful to use a visual metaphor for a program’s memory address
space. However, as previously noted, such designs also limit the
types of exploration or analysis that may be done. For this reason,
we decided to design MemAxes with multiple context-aware
views, each of which is suited to a particular set of characteristics
relevant for memory performance analysis. In addition, by linking
context-aware views, MemAxes makes it possible to identify
correlative relationships between these different characteristics.
Thus, this design satisfies our original requirement to make it
possible to attribute performance characteristics to one another.

This design also requires effective navigation by the user,
however, and the interactive search space of this data is vast. In
order to make this space navigable, we developed methods for
guided interaction and cluster extraction, which communicate to
the user what selections are of potential interest. The result is a tool
that users with limited knowledge can still glean useful insights
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Fig. 2: Exploration and analysis workflow for characterizing memory performance using MemAxes. Initially, MemAxes shows the
overview of all memory access samples, then through guided interaction and cluster extraction the user may select regions of interest.
On any selection of data, the analyst may draw conclusions by identifying patterns in different views and seeing how patterns between
multiple attributed contexts correlate with one another.

from while not limiting the available interactions from more
knowledgeable users, thus satisfying the usability requirement.

In order to fulfill the requirement that MemAxes be visually
scalable, all visualization methods used rely on some form of
aggregation. The aggregations used produce visual elements that
are invariant to the data size, so visual clutter remains constant for
all inputs. MemAxes is computationally scalable up to a limit—
nearly all interactions incur basic set operations that make use of
well-known optimizations.

The exploration and analysis workflow is illustrated in Fig-
ure 2.

6 VIEWS

MemAxes is comprised of five linked interactive views: two
context-aware views (Fig. 3, Fig. 5, one multidimensional view
(Fig. 6), and two single-dimensional views. The context-aware
views aggregate and present a subset of the dimensions relevant
for performance analysis and will be discussed in detail. To avoid
limiting the user to exploring subsets of the dimensions, we
included a multidimensional view showing all dimensions as well
as two single-dimensional views in which the user may focus on
certain dimensions in detail. The first shows a standard histogram
over a single numerical dimension (such as time), and the second
shows a histogram of qualitative values (such as instruction) sorted
in order of appearance.

We identified two contexts most relevant to the problems in
memory performance based on related work and our experience
in HPC and developed context-aware views for each: (1) the
program instructions and data, and (2) the hardware topology. For
the multidimensional view, we developed (3) histograms along
each dimension plotted in parallel, deemed parallel histograms.
We omit a discussion of the single-dimensional views, as they are
straightforward.

6.1 Instructions and Data
Many previous performance visualization methods have overlaid
performance data onto the source code, and for good reason—
optimization efforts most often require modification of the code

Fig. 3: Visualization of memory access data in the context of
the top offending lines of source code (top left) and data objects
(top right). The topmost offending line of source code is shown
highlighted within its containing file in the source pane (bottom).

or at least an understanding of how it affects performance. Many
tools (e.g. HPCToolkit [3], Vtune [23]) show performance data
embedded in callpaths, which are the recorded sequences of
function calls in a program execution. These tools often provide
the capability for the user to select a function in the callpath and
see it highlighted in the source code file. Typically, the goal in this
context is to identify which parts of the code contribute most to
execution time for the purpose of determining which parts of the
code require optimization.

With this in mind, we designed a simple visualization to enable
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the user to quickly identify the top offenders in terms of the
instructions and data symbols in the source code. Top offenders
are the components of the code that have the greatest contribution
to the number of memory access cycles in execution. The relevant
attributes of a memory access sample in this context are the lines
of source code for particular instructions and the data symbols
accessed. We calculate the total access cycles associated with
these attributes by aggregating latency along them, and we sort
the resulting aggregations in decreasing order. These results are
the top offending lines of code and data symbols for memory
performance in ranked order.

We visualize the top offenders using a horizontal bar chart,
which effectively shows the ranking of top offenders as well as
the differences between them in contribution. The user interface
of MemAxes includes a pane showing the top offending lines
of source code and data objects side-by-side above a text editor
showing the topmost offending line of source code highlighted
within its source code file, as shown in Figure 3.

The user is able to select top offenders by clicking on the
appropriate bar in the chart. In doing so, all samples associated
with that offender, either line of code or data object, are selected.
If a selection has been made, the top offenders and the highlighted
line in the text editor show only selected sample information,
otherwise they show all samples. Thus, by selecting a line of code,
the user may immediately see which data objects were accessed by
that line, and conversely, by selecting a data object, the user may
see which lines of code accessed it. Doing so may reveal whether
the source of a memory performance bottleneck lies in the way in
which a data object was accessed or the layout of the data object
itself. The user may also determine the overall contribution of
a line of code or data object with respect to the total execution
time of the application by selecting either one, upon which basic
statistics of the current selection are displayed in a separate pane
(not shown).

6.2 Hardware Topology

Fig. 4: The hardware topology visualization produced by hwloc,
which uses a horizontal layout. The pink rectangle denotes a single
RAM resource [6]. The caches are drawn underneath in white,
processor cores dark gray, and processing units (CPUs) embedded
inside the cores.

Existing tools for visualizing hardware topology are aimed at
showing resource locality and basic hardware layout. For example,
hwloc (Figure 4) and likwid (not shown) both depict the hierarchy
of the hardware topology using a form of icicle plot. We identified
two main drawbacks in the current approaches: they poorly use
visual real estate and thus do not scale well to complex topologies,
and no existing methods are able to visualize acquired memory
access samples in the context of the hardware topology. We
designed a new visualization for the hardware topology with
improved scalability for complex architectures and capability to
visually embed memory access samples via a function that maps
them to the visual components of the hardware.

Visual Layout. The hardware topology may be interpreted as a
hierarchy where a single computation node represents the root,
memory resources (RAM, NUMA, caches) represent internal
nodes, and processors (CPUs) represent the leaves. As such,
hierarchical visualizations readily apply to visualizing hardware
topology. However, the majority of visualizations show the topol-
ogy using horizontal layouts, commonly called icicle plots [18],
such as the one in Figure 4. This layout allocates the same amount
of visual space for each level in the hierarchy; however, by design,
hardware topologies have few resources in the top levels of the
hierarchy (larger, slower memory resources) and many in the lower
levels (smaller, faster caches and many processors). As a result,
an space is wasted showing the few large memory resources, and
the number of processors that may be viewed at once is limited
by the horizontal viewing space. As a solution, we use a radial,
space-filling visual layout for the hardware topology, essentially a
sunburst chart [26], as shown in Figure 5 (a). By instead allocating
less space to higher levels in the hierarchy and more space to lower
levels in the hierarchy, this solution is much more well-suited for
hardware topology.

We color map the nodes to show resource utilization, either
by total number of cycles or samples. We also scale the color
maps relative to the minimum and maximum of all resources
of the same depth in the hardware hierarchy. While the same
colors represent different values on different levels of the hardware
hierarchy, this is preferable to using a single scale for all values;
latencies in L1 cache are on the order of tens of cycles, whereas
those in NUMA exceed thousands. This visual encoding therefore
accomplishes the goal of displaying relative utilization patterns
across equivalent resources. The user may observe exact values
by hovering the cursor over a particular resource, upon which a
tooltip with detailed information appears.

Additionally, we add lines between nodes to depict resource
connectivity and scale the thicknesses of these lines to show data
traffic between resources. Again, the thickness scale is relative to
the minimum and maximum among all values of a certain depth
in the hierarchy, making relative differences apparent between
values of the same magnitude. While this gives a good general
idea of comparisons between links, the visual range is limited to
the available thickness of the lines, so we also allow the user to
hover over them and view exact values via tooltips.

As a result, we are able to display relative utilization of
processors, memory resources, and data traffic between resources
onto our visual representation of hardware topology, as shown in
Figure 5 (b).

Mapping Samples to Hardware Topology. In order to visualize
accesses in this layout, we defined a function mapping each
sampled memory access to a set of associated resources and links.
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(a) (b)

Fig. 5: (a) The radial layout of the hardware topology in MemAxes
for a simple architecture. Main memory resources are dark purple,
L3 caches are light purple, L1 and L2 caches are light orange, and
processing units are dark orange. (b) A more complex architecture
with performance data annotated onto the hardware resources, via
a color map, and transactions between them, via line width.

We then aggregate all accesses over the resources and links and
embed the resulting aggregations into the visualization.

Each access has an associated depth in the memory hierarchy
and an an associated processing unit (CPU). These represent the
level in cache or memory where a piece of memory was accessed
from and the CPU that requested the access, respectively. For each
access, we perform a tree traversal starting from the CPU that
issued the access and ending at the depth where the access was
resolved. The traversed path represents the actual motion of the
data that was accessed for a particular memory access sample; the
CPU searches for data first in the nearest cache, and if it fails,
it searches the next nearest cache, and so on until the request is
satisfied. The data is then copied to all smaller caches between the
level in which it was found and the CPU, thus incurring traffic on
the links between the resources on this path.

If we can define an aggregation function for an attribute,
such as sum/average/deviation (if quantitative) or count/cardinality
(if qualitative), we can then use this function to aggregate the
attribute along the traversed path. For most types of performance
analysis, it is useful to aggregate the number of accesses that
traversed each link and the sum of latencies for all accesses
to each resource, so this is presented by default. The resulting
visualization depicts the distribution of data transactions across
links as well as the distribution of access cycles across resources,
as seen in Figure 5 (b). Thus, if a resource has high outgoing traffic
but low cycles, we can conclude that it is being used often and
efficiently, and if the opposite is true there may be a performance
problem.

Because aggregation schemes provide a summary of the input
data, it is critical for the user to define or discover interesting
subsets for analysis, rather than attempt to analyze an aggregation
of the entire dataset. A particular phenomenon of performance
behavior may only be visible under a highly specific selection
of the dataset. Interactive selection and filtering enable the user
to navigate these subsets, but determining an effective path of
interaction to find interesting subsets is not trivial. We address this
problem in the following Section 7.

Fig. 6: Parallel histograms of memory access samples. Each
attribute is plotted along a vertical histogram and all attribute
histograms are placed side-by-side in parallel.

6.3 Parallel Histograms

Though context is highly valuable from an analysis standpoint, it
also limits the number of visualizable attributes. In order to include
the missing details, we included a context-unaware visualization
we call parallel histograms. Parallel histograms are histograms of
each attribute plotted in parallel (similar to parallel coordinates),
as shown in Figure 6. The use of parallel axes makes it possible
to plot any number of attributes.

Histograms are straightforward to produce for continuous
attributes, such as time. For qualitative attributes, such as data
objects, we assign unique identifiers to unique values, ordered
by appearance. By using histograms, the data is aggregated into
histogram bins, allowing for this view to scale to large numbers of
samples.

Parallel histograms allow the user to easily view distributions
of samples within every dimension of the access data. As
selections are made in context-specific views, the user can
identify whether any of those selections are correlated with
an individual dimension not shown in the other views. Most
importantly, through parallel histograms the user may make
ranged selections along each axis by clicking and dragging along
it and may combine ranged selections as well. Thus, parallel
histograms complement context-specific views by providing
comprehensive selection and visualization capabilities.

This combination of linked visualizations under a central
dataset allows users to explore the relationships between the
various actors in memory performance. For example, by selecting
a top offending line of source code, we are able to determine not
only which data objects contributed most to access time, but which
individual elements inside the data object did. Individual elements
may be slow to access if the data structures are not optimized for
locality, in which case the hardware is unable to effectively use
caches. It may also be the case that the decomposition of data
to hardware threads limits the hardware from utilizing shared
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caches. This decomposition is dependent upon the topology as
well as the data layout and access patterns, and as such it is
imperative that the user analyze how all three contexts relate to
one another to understand the memory performance behavior.

7 GUIDED INTERACTION

MemAxes provides a comprehensive set of interaction and ex-
ploration tools through linking and selection; however, unless
the user knows what specific characteristics to look for, the
exploration parameter space is often too extensive to effectively
search through. Questions in performance analysis often require
the user to identify anomalous subsets of data within the entire
dataset, such as periods of poor load balance. Such subsets may
be as small as 100 samples within sets of several thousand. It is
obviously unfeasible for the user to select every window of 100
samples within the dataset.

Various efforts have made use of data mining and analytics
to reduce this search space, for example Voinea and Telea use
clustering to highlight similar data elements [29]. We propose
using problem-driven analytics to focus the interactive search
space towards possible memory-related performance problems.
We automatically score subsets of data based on their similarity
to known performance characteristics and present these scores
visually to the user. The user can make selections based on these
scores and analyze the resulting visualizations.

We first describe the metrics as functions of sample subsets,
and then we describe how we choose those inputs.

7.1 Proposed Scoring Metrics
From collaboration with domain experts and from previous sur-
veys in the field of performance visualization [15], we determined
a set of behaviors that performance analysts typically search for.
We defined expressions to calculate the relationship between a
subset of samples and each behavior. We target two performance
behaviors: average access latency and load imbalance.

Our proposed metrics take as input the accumulated memory
access cycles on the hardware topology for a subset of samples,
as described in Section 6, and produce a single value as output. In
order for differently sized subsets to be compared to one another,
the metric must have the property that it is invariant to the number
of samples in the subset.

In the following equations 1 and 2, we define depth in the
hardware topology as d, hardware resources at a specified depth
as a vector r̂d , and specific resources as rd,i. The value c(rd,i)
represents the number of memory access cycles associated with a
particular resource, and s(rd,i) represents the number of memory
accesses.
Average Access Latency. In practice, the number of cycles taken
to access a cache or main memory resources is highly variable due
to hardware effects. For example, to maintain cache coherence,
the hardware has to keep track of which copies of cached data are
stale and update them when a core attempts to read them. This
action is done opaquely in hardware but significantly contributes
to the wait time for accessing data. To provide an indicator of
the average access latency achieved in a particular execution, we
calculate the average number of cycles per access at depth d, as
shown in equation 1:

Ld =
1
|r̂d |

|r̂d |

∑
i=1

c(rd,i)

s(rd,i)
(1)

Load Imbalance Across Resources. In general, performance
degrades when memory access is less uniform across the available
resources. Often, a few resources are highly over- or under-utilized
relative to the average utilization. This behavior is indicative of
bottlenecks that may prevent an application from achieving peak
performance. In terms of the data, we can identify subsets that
exhibit this behavior by searching for regions with significant
outliers in hardware utilization.

We calculate the imbalance metric for a specified depth in
the hardware topology Id as the maximal difference, in terms of
memory accesses, between each resource and the average number
of samples for all resources in the depth µd(s). In order for
this metric to be size-invariant, we normalize the distance by the
standard deviation of the number of samples across resources in
the depth σd(s), as shown in equation 2:

Id =

|r̂d |max
i=1
|s(rd,i)−µd(s)|

σd(s)
(2)

7.2 Metric Visualization
Given these two scoring metrics, we need to provide input subsets
of potential interest. Because we aim to determine how scores
vary with respect to each attribute, we provide as input a subset of
samples with a bounded range of values along a single attribute.
In other words, we select samples within a window of values
along the attribute and use that as input. We divide the attribute
into N windows, calculate the metric, and visualize their outputs
via color-mapped blocks along the attribute’s axis, as shown in
Figure 7. The user may specify the metric to use as well as
the number N of windows to adjust the scope and granularity
of the visualization. The resulting visual cue effectively highlights
variation of the metric along an attribute, from which the user may
decide to select outliers for further analysis.

Fig. 7: Histogram and guided interaction along a single attribute.
The colored rectangles on the bottom encode derived metrics for
bins of samples along the attribute. Darker colors indicate areas of
higher imbalance across NUMA memory resources.

7.3 Metric-based Clustering
It is often the case that a range of neighboring bins have similar
metric scores. As a result, viewing each of these bins may show
redundant results, and, alternately, an individual bin may not
contain enough samples to show meaningful correlations. A more
effective binning scheme would group together all samples that
have similar properties and only present subsets with unique
behaviors.

For our purposes, we require one that is scalable, both compu-
tationally and visually, and one that makes it possible to analyze
how metrics vary with respect to each attribute. We therefore
use the constraint that a cluster of samples must be a range of
consecutive samples along an attribute. By using this approach,
each subset only needs to be compared to its neighbors along
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a single attribute, and the resulting clusters represent different
positions and ranges along the attribute. Furthermore, we want to
provide a clustering solution that is dynamic relative to different
datasets and adjustable in granularity. For these reasons, we use
agglomerative clustering, using as input a set of sliding windows
along the attribute.

We generate the initial subsets by moving a sliding window
along a specified attribute. We create a window for the smallest
w samples along the attribute, store the subset of w samples as
a leaf, and slide the window by ∆ < w samples forward until
we reach the end of the attribute. For N samples, this method
creates approximately N/∆ leaves, each containing w samples.
The process is illustrated in Figure 8.

Fig. 8: The process for clustering memory access samples. We
create a window with w samples starting with the minimum value
along the attribute and move it by an amount ∆ < w samples
until we reach the end, creating a subset for each set of w
samples within each window position. We agglomeratively cluster
the subsets using our proposed metrics in Section 7 as distance
metrics.

This approach has a number of advantages. Individual samples
are insufficient to characterize performance behavior, so clustering
based on individual samples is unpredictable and leads to undesir-
able results. This method ensures that all leaves have w samples,
which is a controllable parameter. By creating windows along
an attribute, we create subsets that define how the performance
behavior changes with respect to that attribute, which was a
primary goal for our automated analysis method. Further, because
the windows overlap, we capture subsets that start and end at any
point along the attribute, given that they are within the resolution
of ∆, and we can capture variable length behavior patterns.

This method is agnostic to the attribute and therefore can be
used to cluster along any attribute. However, the results for non-
continuous attributes depends highly upon how they are ordered,
thus we enable clustering only for continuous attributes currently.

We control the accuracy, shape and computational complexity
for generating the tree by modifying w and ∆. Higher values of
w capture longer, more stable behaviors at the loss of identifying
outliers, and higher values of ∆ reduce the number of leaves and
time to create the tree at the loss of resolution for possible begin
and end points for performance behaviors.

After creating a set of initial subsets along an attribute, we
agglomeratively cluster these subsets. We define the similarity
(i.e., distance) between subsets using the derived performance
metrics described in Section 7. Specifically, we use the absolute
difference between their metric values. When we have M metrics
and D attributes, we have M×D possible cluster trees. We note
that the windows often contain different numbers of samples.
Because the derived performance metrics are invariant to the
number of samples contained in the subset, this is not a problem.

Fig. 9: Cluster viewing and selection. Clusters of a specified depth
and metric are shown along the attribute’s axis as markers (circles)
colored by their derived metrics. When the user hovers the mouse
pointer over a marker, a glyph expands showing the hardware
topology visualization for the subset of samples contained in the
cluster. Upon clicking the marker, the subset is selected for further
analysis.

Our agglomerative clustering algorithm iteratively groups to-
gether the closest pairs of subsets, with the constraint that subsets
may only be grouped together if they are neighbors along the at-
tribute. All resulting clusters represent a range along the attribute,
and separation of clusters along an attribute indicates a shift in
performance behavior. This clustering method accurately extracts
ranges of samples that exhibit a particular performance behavior
along an attribute, and by exploring these behaviors, the user can
effectively understand how a type of performance behavior varies
with respect to a particular variable.

7.4 Viewing and Selecting Clusters
Once the cluster trees are generated, the user may view individual
clusters at a glance and select their associated samples for further
analysis if desired. The user navigates clusters along the attribute
by selecting different metrics and tree depths. After making a
selection, the user is presented with markers indicating the location
of clusters along the attribute’s axis line. The markers are small
circles along the axis colored by their metric values. When the
user hovers the mouse pointer over a marker, it expands to show
a glyph of the hardware topology visualization for its respective
sample subsets. Thus, the user can quickly gain an overview of
the resulting selection and decide whether to make the selection.
By clicking on the marker, the user selects the subset contained in
the cluster and all views are updated to show the current selection.
The cluster viewing and selection interface is shown in Figure 9.

8 SCALABILITY

Our system requires both visual and computational scalability.
Visually, we must ensure that the view is not cluttered, i.e., that
we do not display too much information at once. We address this
by aggregating data, but in doing so we sacrifice details for clarity.
Because the user may select and filter subsets of the samples, s/he
may also refine the shown aggregates to recover these details. In
this context, guided interaction makes it possible to automatically
recover details lost in the aggregates.

Computationally, the algorithms used in MemAxes must scale
to large data sets. We minimize the complexity of filtering and
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Fig. 10: MemAxes upon opening the memory performance data collected from LULESH, before performing any interaction. In the
topology view (marked 1) we can see one processor was extremely under-utilized relative to the rest. We also see that several accesses
were made to the top NUMA node (the dark orange arc directly above the center) but few if any were made to the bottom one. In the
code/data view (marked 2) we see a parallel loop in the code accessing elements fy and nodalMass from the domain. In the top
offenders view directly above, we see more time was spent waiting for fy than nodalMass.

selection interactions by implementing them as set operations with
linear complexity (unions and intersections). The most computa-
tionally expensive operation in MemAxes is clustering. We use ag-
glomerative clustering, which is traditionally unsuited to large data
sets, as the fastest known algorithms have quadratic, O(n2 logn),
complexity [20]. However, the quadratic part of this algorithm
is distance matrix calculation, and our algorithm only requires
distances between neighboring windows along each attribute. We
only ever compare a window to its two neighbors along a single
dimension, reducing the complexity to O(kw logw), where w is the
number of windows and k is the window size. We can control this
complexity by adjusting the size and number of windows.

9 CASE STUDIES

In the following, we present some case studies that demonstrate
the workflow when using MemAxes, including initial exploration,
data-driven hypothesis forming, and experimental validation. We,
the authors, are part of a tightly integrated research organization
including visualization researchers, HPC performance analysts,
and other domain experts that use performance analysis tools.
MemAxes has been actively used within this organization, both
in collaboration with us, the authors, and independently. The case
studies presented are the products of these various efforts.

All experiments were performed on the Cab cluster [1] at
Lawrence Livermore National Laboratory, which features two
eight-core Intel Xeon E5-2670 sockets on each node, for a total
of 16 cores with L1 and L2 caches, two shared L3 caches, and

two NUMA memory banks. We collected memory performance
data from two commonly used HPC proxy applications. A proxy
application isolates computationally complex code sections from
a larger application for the purpose of analyzing their performance
in detail. The proxy applications we analyzed are LULESH
(Livermore Unstructured Lagrangian Explicit Shock Hydrody-
namics) [16] and XSBench [27].

9.1 LULESH
LULESH emulates the behavior of an iterative shock-
hydrodynamics simulation involving a mesh that deforms over
time. The mesh deformation requires the simulation to retrieve the
changing locations of cells and corners in the mesh in order to
access their values. Each value retrieval requires multiple memory
accesses, and it has been hypothesized that this step is a significant
contributor to total computation time.

We configured the memory access sampler to record a set
of additional attributes from the application – the x-, y-, and z-
coordinates in the mesh for each access. These additional attributes
make it possible to further discern the relationships between the
layout of the data and other characteristics, such as locality in
different memory resources.

We sampled the complete execution of LULESH under a set
of input parameters provided by its developers and aimed to keep
overhead costs at or under 10%. The resulting output contains
235,447 samples with 18 attributes each.

A screenshot of the initial state of MemAxes after loading the
collected data, and before any user interaction, is shown in Fig. 10.
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(a) Cluster glyphs generated by clustering along the zidx
axis using processor load imbalance metric. Consecutive z-
indices were accessed by distant processors on either side of
the hardware topology, causing contention across both processor
sockets.

(b) Cluster glyphs generated by clustering along the zidx axis
using processor load imbalance metric, after mapping consecu-
tive z-indices to neighboring processor cores. We can see that
consecutive z-indices were accessed by neighboring processors,
meaning cross-socket data contention was effectively reduced.
We observe a 60% decrease in memory access cycles and 10%
decrease in total execution time.

The views depict all collected sample points, and we can gain
some initial insights into overall execution. In the topology view,
marked with a red number 1, we see that one of the processors
appears to be extremely under-utilized with respect to the other
processors. In addition, the first NUMA node (the top innermost
arc) is associated with many accesses and transactions, based on
its color and link thickness, while the other appears to have been
used sparingly, if at all. We presented these initial observations
to the developers of LULESH and they confirmed that (1) inter-
node communication was handled by the message-passing library,
with this particular library implementation reserving a single core
for communication operations, and (2) intra-node parallelism in
this version of LULESH was achieved by distributing work to all
processors on a node, with allocation done only on the first NUMA
node, leaving few accesses to be made to the second. This valuable
developer feedback validated our data collection and aggregation
methods.

The code and data views (marked with a red number 2)
revealed the most memory-intensive section of code in LULESH.
Concerning the source code, we saw a loop preceded by a parallel
directive, indicating a parallel region. Within this region, one
access had been made to each of the variables fx, fy, fz,
and three accesses had been made to nodalMass. However,
in the sorted histogram of variable contributions (emphasizing
top-offending variables) for this particular region of code we
saw that the accesses to each of the other variables had actually
been more expensive overall, although more accesses had been
made to nodalMass. In order to further study this anomaly, we
selected each of these data objects and examined the selections
in the different views. This analysis revealed that nodalMass

was rarely accessed by the L3 cache (only 16 times), and those
accesses cost an average of 405 cycles. The other data objects,
fx, fy, and fz, were only slightly more frequently accessed
by L3, with average costs of between 1100 and 2700 cycles.
However, these same data objects incurred few accesses by the
L2 cache. These observations led us to hypothesize that the data
objects were sufficiently small enough to fit into the L1 cache, and
that accesses to the shared L3 cache occurred due to contention
between multiple processors.

In order to further investigate the hypothesis that the fx,
fy, and fz data objects were involved in shared L3 cache
contention, we considered the load imbalance metric across pro-
cessor resources. By clustering based on processor imbalance
across different attributes of the data and examining the resulting
cluster glyphs, we were able to identify an undesirable data
decomposition pattern, shown in Fig. 11a. Along the zidx
attribute, consecutive elements had apparently been accessed by
processor cores residing at opposite ends of the hardware topology,
i.e., by distant cores across both available sockets. This behavior is
highly inefficient—neighboring data elements in z-direction were
consequently contended across the entire topology and required
constant data migration to maintain cache coherence.

We designed an experiment to resolve this observed ineffi-
ciency and collected memory access samples again. By changing
the mapping of indices such that consecutive indices would be
processed by neighboring processor cores, we hypothesized that
remote accesses would be reduced and performance should be
improved. We performed the experiment and, again, performed
clustering based on processor imbalance across z-indices to verify
that we had successfully reduced cross-socket data contention, see
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Fig. 12: Hardware topology view of sampled memory accesses
of the XSBench application execution. Resource utilization was
mostly uniformly distributed, with the exception of NUMA re-
sources, where all accesses occurred in the first (top) NUMA
resource.

Fig. 11b. Most importantly, we observed a decrease in total latency
by 60% and a decrease in total execution time by 10%. This
result represents a significant performance improvement in terms
of both time and energy consumption. (HPC applications typically
consume on the order of several hundred joules per second per
compute node, and applications can run for several hours using
several thousand compute nodes.)

9.2 XSBench

XSBench is a proxy application for OpenMC, a Monte-Carlo sim-
ulation for calculating particle interactions. Due to its underlying
non-deterministic algorithm, its memory accesses follow a less
predictable pattern and thus pose a difficult performance analysis
problem.

Again, we sampled the complete execution of XSBench for a
set of provided input parameters, configuring sampling to maintain
an overhead of 10% or lower. The resulting output contains
175,430 samples with 13 attributes each.

The initial topology view for the XSBench data shows fairly
uniform utilization across all resources, except across NUMA
domains, see Fig. 12 Since the first NUMA domain incurred 282
sampled accesses, while the second incurred none, we hypothe-
sized that this application had allocated data only in one of the
two available NUMA domains. This hypothesis was confirmed by
the developers.

We investigated these NUMA accesses further by selecting
them and observing the other attributes in the parallel histograms
view. A clear correlation emerged with the time attribute, with
three sections of time showing different distributions of sampled
accesses and nearly all NUMA accesses occurring during the
third one. We also examined different metrics of imbalance across
this axis and observed that the second section of time incurred

Fig. 13: Top: single histogram of time attribute, where three
time sections can be seen, indicating different execution phases
(marked). Middle: same attribute after selecting accesses to
NUMA resources; nearly all NUMA accesses occurred during
the third phase. Bottom: same attribute with L2 imbalance metric
shown along the axis. It can be seen and concluded that the second
phase caused the most L2 cache imbalance, relatively.

high amounts of L2 imbalance. These observations led us to hy-
pothesize that the XSBench application underwent three separate
phases over time, the first of which having relatively few memory
accesses, the second accessing data objects too large to fit into
the L1 cache, and the third causing several NUMA accesses, see
Fig. 13.

We verified these hypotheses once again with the developers of
XSBench. The developers confirmed that the application involved
three main phases, the first being relatively inexpensive in terms
of memory access, the second involving a sorting step of a large
data set, and the third undergoing the non-deterministic memory
accesses across the same data object by multiple processor cores.
The last phase caused slow accesses by large resources as the hard-
ware failed to predict and prefetch data elements for computation.

10 CONCLUSIONS AND FUTURE WORK

MemAxes is a novel tool for the analysis of memory performance
behaviors in high-performance computing environments. By creat-
ing multiple aggregation-based visualizations of a central dataset,
MemAxes provides the capability to understand the complex
relationships between the hardware, the data, and the code. It
introduces a new visualization for data transactions in a multi-
level cache hierarchy that is capable of exposing aspects of load
balance, data decomposition, and parallel access patterns that
were previously difficult to discover. MemAxes also explores the
concept of guided interaction via visual cues and automatic cluster
extraction based on scoring subsets of the data. We were able to
successfully utilize MemAxes to analyze the complex memory
behaviors of two memory-intensive proxy applications, and we
were able to significantly improve the performance of one of them
using insights from this analysis, saving time and energy.

While we proposed two metrics for scoring sample sets, we
believe that much can be done to create more advanced metrics.
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Furthermore, although the method of scoring is highly application-
dependent, the idea to use scores to create visual cues and describe
similarity between subsets could be extended to other applications.
In particular, scoring would enable many visualization and data
processing techniques for high-dimensional or non-quantitative
data that has otherwise ill-defined distance metrics or similarities.

We found that the clustering algorithm we used was both
justified for this application and practically effective. However,
for different data or scoring functions, many generalizations and
specializations are possible. The combination space of possible
initial clusters for agglomerative clustering, beyond using sliding
windows along an attribute, is unfeasibly large, and effectively
exploring this space remains a challenge.

MemAxes successfully addresses the problem of analyzing
on-node memory performance, but does not trivially extend to
analyzing multiple nodes. We believe many of the ideas we present
may provide the foundations for multi-node performance analysis,
in particular computing metrics and clustering to find specific
nodes with outlying performance patterns.

Analysis of memory performance behavior continues to be a
challenging topic, as memory hierarchies continue to increase in
complexity. New processors have complex on-node interconnec-
tion networks, and future hardware poses an interesting challenge
in terms of scale and extensibility. Further, processors continue to
evolve, and our techniques will need to be extended to provide
insight into richer data from future performance monitoring units.
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