
Mapping collectives over sub-communicators on torus networks
ABHINAV BHATELE :: TODD GAMBLIN :: STEVEN H. LANGER :: PEER-TIMO BREMER :: MARTIN SCHULZ

Photo credit for the NIF image: Damien Jemison, 
Lawrence Livermore National Laboratory

This work was performed under the auspices of  
the U.S. Department of  Energy by Lawrence Liv-
ermore National Laboratory under Contract 
DE-AC52-07NA27344 (LLNL-POST-563791).

The placement of  tasks in a parallel application on specific nodes of  a supercomputer can significantly impact performance. Traditionally, this task mapping has focused on reducing the distance between communicating processes on the physical network. This minimizes the number of  hops that point-to-point messag-
es travel and thus reduces link sharing between messages and contention. However, for applications that use collectives over sub-communicators, this strategy may not be optimal. Many collectives can benefit from an increase in bandwidth even at the cost of  an increase in hop count, especially when sending large mes-
sages. For example, placing communicating processes in a cube configuration rather than a plane or a line within the network topology increases the number of  possible paths messages might take. This increases the available bandwidth which can lead to significant performance gains. We have developed a tool, Rubik, 
that provides a simple and intuitive API to create a wide variety of  mappings for structured communication patterns. Using Rubik, we demonstrate the use of  bandwidth maximization techniques for improving the performance of  one of  the NIF codes, pF3D, which uses collectives over sub-communicators.

Center for Applied 
Scientific Computing, 
Lawrence Livermore 
National Laboratory

scalability.llnl.gov Bandwidth optimizations

1D

2D

3D 4D

pF3D: laser-plasma interaction code

pF3D is a multi-physics code used to study 
laser-plasma interactions in experiments 
conducted at NIF. One-dimensional 
all-to-alls are performed over X and Y 
communicators within each plane in a 
three-dimensional virtual process topology.

Plots showing the change in performance of  an MPI all-to-all depending on the shape of  the 
communicator (Blue Gene/P, left and Blue Gene/Q, right).

The location of  communicating pairs on an n-dimensional mesh topology determines the number 
of  paths available for message routing. Placing communicating pairs at the diagonally opposite 
corners of  a hypercube provides the highest available bandwidth.

The preamplifiers of  NIF are the first step in in-
creasing the energy of  laser beams as they make 
their way toward the target chamber. NIF recent-
ly achieved a 500 terawatt shot - 1,000 times 
more power than the United States uses at any in-
stant in time.

 0

 50000

 100000

 150000

 200000

 250000

8K 16K 32K 64K 128K 256K 512K 1M

T
im

e 
(µ

s)

Message size (bytes)

All-to-all on Blue Gene/P (16 nodes)

line 16 (M)
line 16 (T)

plane 8 (M) x 2 (M)
plane 8 (T) x 2 (M)
plane 4 (M) x 4 (M)

box 4 (M) x 2 (M) x 2 (M)

 0

 1000

 2000

 3000

 4000

 5000

 6000

8K 16K 32K 64K 128K 256K 512K 1M

T
im

e 
(µ

s)

Message size (bytes)

All-to-all on Blue Gene/Q (8 nodes)

line 8 (T)
plane 4 (M) x 2 (T)
plane 4 (M) x 2 (M)

box 2 (M) x 2 (M) x 2 (T)
box 2 (M) x 2 (M) x 2 (M)

plane 4 (T) x 2 (T)

Structured mapping using Rubik

Rubik is a tool for generating mappings of  Cartesian virtual topologies on n-dimensional mesh 
networks. The figures above show the partitioning operations supported by Rubik to divide the 
application tasks or processors into groups: div or tile (left), mod (center), and cut (right).

Tilting can be used to increase the bandwidth utilization by moving communicating tasks to diago-
nally opposite corners. The figures above show an untilted XY plane (left), an XY plane tilted 
along X (center), and an XY plane tilted along Y (right).

Mapping of  a pF3D domain of  dimensions 16 x 8 x 16 
to a Blue Gene/P torus of  dimensions 8 x 8 x 32. The 
mapping specification for these transformations, the 
input to Rubik, is in the center. 

pf3d = box([16, 8, 16])
pf3d.tile([1, 8, 16])

torus = box([8, 8, 32])
torus.tile([8, 8, 2])
torus.map(pf3d)

torus.tilt(2, 0, 1)
torus.tilt(2, 1, 1)

Performance improvements

Plots showing performance improvements for pF3D on 2,048 and 8,192 cores of  Blue Gene/P 
using different mappings generated by Rubik.

Plots showing the improvement in messaging rates (left) and time per iteration (right) for pF3D 
for the three best mappings compared to the default mapping.

Visualizations generated using Boxfish showing the network traffic for different mappings on 
2,048 cores of  Blue Gene/P. These minimap views show 2D projections of  the 8 x 8 x 8 3D 
torus. Each column shows the X, Y and Z direction traffic for a different mapping.

      TXYZ                 XYZT                   tile                      tiltX                    tiltXY

X

Y

Y

Z

Z

X

76M

2M

 0

 5

 10

 15

 20

TXYZ XYZT tile tiltX tiltXY

T
im

e 
(s

)

Mapping

Comparison of different mappings on 2,048 cores

Barrier
All-to-all

Send
Receive

 0

 50

 100

 150

 200

 0  5  10  15  20  25

A
ve

ra
ge

 m
es

sa
gi

ng
 r

at
e 

(M
B

/s
)

Mappings

Twenty-five mappings for a pF3D problem running on 8,192 cores

Tile
One tilt (X or Y)

Default (TXYZ, XYZT)
Two tilts (XY or YZ)

Mod
Hierarchical

 0

 20

 40

 60

 80

 100

 120

 140

 160

2048 4096 8192 16384 32768 65536

A
ve

ra
ge

 m
es

sa
gi

ng
 r

at
e 

(M
B

/s
)

Number of cores

Bandwidth utilization for different mappings of pF3D

TXYZ
XYZT

3rd Best
2nd Best

Best

 0

 200

 400

 600

 800

 1000

2048 4096 8192 16384 32768 65536

T
im

e 
pe

r 
ite

ra
tio

n 
(s

)

Number of cores

Execution time for different mappings of pF3D

TXYZ
XYZT

3rd Best
2nd Best

Best


