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The placement of  tasks in a parallel application on specific nodes of  a supercomputer can significantly impact performance. Traditionally, this task mapping has focused on reducing the distance between communicating processes on the physical network. This minimizes the number of  hops that point-to-point messag-
es travel and thus reduces link sharing between messages and contention. However, for applications that use collectives over sub-communicators, this strategy may not be optimal. Many collectives can benefit from an increase in bandwidth even at the cost of  an increase in hop count, especially when sending large mes-
sages. For example, placing communicating processes in a cube configuration rather than a plane or a line within the network topology increases the number of  possible paths messages might take. This increases the available bandwidth which can lead to significant performance gains. We have developed a tool, Rubik, 
that provides a simple and intuitive API to create a wide variety of  mappings for structured communication patterns. Using Rubik, we demonstrate the use of  bandwidth maximization techniques for improving the performance of  one of  the NIF codes, pF3D, which uses collectives over sub-communicators.
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pF3D: laser-plasma interaction code

pF3D is a multi-physics code used to study 
laser-plasma interactions in experiments 
conducted at NIF. One-dimensional 
all-to-alls are performed over X and Y 
communicators within each plane in a 
three-dimensional virtual process topology.

Plots showing the change in performance of  an MPI all-to-all depending on the shape of  the 
communicator (Blue Gene/P, left and Blue Gene/Q, right).

The location of  communicating pairs on an n-dimensional mesh topology determines the number 
of  paths available for message routing. Placing communicating pairs at the diagonally opposite 
corners of  a hypercube provides the highest available bandwidth.

The preamplifiers of  NIF are the first step in in-
creasing the energy of  laser beams as they make 
their way toward the target chamber. NIF recent-
ly achieved a 500 terawatt shot - 1,000 times 
more power than the United States uses at any in-
stant in time.
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All-to-all on Blue Gene/Q (8 nodes)

line 8 (T)
plane 4 (M) x 2 (T)
plane 4 (M) x 2 (M)

box 2 (M) x 2 (M) x 2 (T)
box 2 (M) x 2 (M) x 2 (M)

plane 4 (T) x 2 (T)

Structured mapping using Rubik

Rubik is a tool for generating mappings of  Cartesian virtual topologies on n-dimensional mesh 
networks. The figures above show the partitioning operations supported by Rubik to divide the 
application tasks or processors into groups: div or tile (left), mod (center), and cut (right).

Tilting can be used to increase the bandwidth utilization by moving communicating tasks to diago-
nally opposite corners. The figures above show an untilted XY plane (left), an XY plane tilted 
along X (center), and an XY plane tilted along Y (right).

Mapping of  a pF3D domain of  dimensions 16 x 8 x 16 
to a Blue Gene/P torus of  dimensions 8 x 8 x 32. The 
mapping specification for these transformations, the 
input to Rubik, is in the center. 

pf3d = box([16, 8, 16])
pf3d.tile([1, 8, 16])

torus = box([8, 8, 32])
torus.tile([8, 8, 2])
torus.map(pf3d)

torus.tilt(2, 0, 1)
torus.tilt(2, 1, 1)

Performance improvements

Plots showing performance improvements for pF3D on 2,048 and 8,192 cores of  Blue Gene/P 
using different mappings generated by Rubik.

Plots showing the improvement in messaging rates (left) and time per iteration (right) for pF3D 
for the three best mappings compared to the default mapping.

Visualizations generated using Boxfish showing the network traffic for different mappings on 
2,048 cores of  Blue Gene/P. These minimap views show 2D projections of  the 8 x 8 x 8 3D 
torus. Each column shows the X, Y and Z direction traffic for a different mapping.
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Comparison of different mappings on 2,048 cores

Barrier
All-to-all

Send
Receive

 0

 50

 100

 150

 200

 0  5  10  15  20  25

A
ve

ra
ge

 m
es

sa
gi

ng
 r

at
e 

(M
B

/s
)

Mappings

Twenty-five mappings for a pF3D problem running on 8,192 cores
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