
A Parallel-Object Programming Model for PetaFLOPSMachines and Blue
Gene/Cyclops

Gengbin Zheng
Arun Kumar Singla

Joshua Mostkoff Unger
Laxmikant V. Kaĺe

Dept. of Computer Science
University of Illinois at Urbana-Champaign

1304 W. Springfield Ave.
Urbana, IL 61801

{gzheng, asingla, unger1, kale}@cs.uiuc.edu

Abstract

One approach for building the next generation of paral-
lel computers is based on large aggregates of multiproces-
sor chips with support for hardware multithreading. An ini-
tial design for IBM’s Blue Gene/C project exemplifies this
approach. Such a machine might consist of a million pro-
cessors, and is characterized by a low memory-to-processor
ratio. To study alternate programming models for such a
machine before it is built, we have developed an emulator
that allows million-processor programs to be run on con-
ventional parallel machines with hundreds of processors.
Here we present the implementation of a parallel object
model based on Charm++ as a candidate programming
model. Although the “ideal” programming model for such
machines is a matter of continuing research, we believe that
parallel objects represent a good starting point. This paper
reviews the target architecture, presents the programming
model, and describes the emulator implementation. Case
studies of simple applications written using the emulator
are also discussed.

1. Introduction

Emerging applications such as protein folding, biolog-
ical molecular dynamics, and computational quantum me-
chanics demand unprecedented amounts of compute power.
Computer hardware designers have made incredible perfor-
mance gains over the past half century; and the trend toward
more powerful and cost-effective systems shows no sign of

slowing.
The particular class of machines we focus on here are

those composed of a large number of identical chips, each
of which contains multiple processors and memory mod-
ules. For brevity, we call such machines “Massively Parallel
Processors-In-Memory”, or MPPIMs in the rest of the pa-
per. Designs are currently being drafted for machines with
in excess of one million processors, with petaFLOPS-class
performance. The motivating machine architecture for our
research is an initial design for the Blue Gene/C machine,
a more advanced possible successor to the Blue Gene/L
machine being developed now. Section 2 describes the
Blue Gene/C architecture. Architectures like FlexRam [1],
HTMT [2], Shamrock [3], RAW [4] and IRAM [5] are also
relevant to this category of machines.

Although it now seems clear that such a machine can be
built, and that their theoretical performance will be enor-
mous, an important unanswered question is whether it will
be cost-effective to develop software to exploit that perfor-
mance efficiently. What programming model is appropriate
for such a large scale machine? This paper reports on our
effort to develop a model that can be used to effectively pro-
gram MPPIMs. The model is based on our parallel objects
system, Charm++ [6].

In order to experiment with alternate programming mod-
els, and algorithms, and to study performance issues, we
are building a framework to emulate million-processor pro-
grams [7]. The initial implementation of the framework
allows one to develop, debug and test programs for MP-
PIM machines using conventional parallel machines (such
as clusters) with only hundreds of processors. Such pro-
grams will run, almost unchanged, on a real machine when

one becomes available. Later stages of the framework will
enable accurate time-stamping of events in order to make
performance predictions for specific application-machine
combinations. We describe this emulation framework in
Section 3.

Section 4 explains why the parallel object model is well-
suited for programming a MPPIM. The implementation of
this model on the emulator presented several technical chal-
lenges, which are discussed in Section 5, along with prelim-
inary performance data in Section 6. This paper presents a
preliminary snapshot of an ongoing project. Some of the
planned research is described in Section 7.

2. MPPIM Architectures

The architecture of a MPPIM is likely to differ substan-
tially from that of today’s PCs and clusters. The most
likely and obvious difference is that to attain petaFLOPS

performance using conventional processors will require
an extremely large number—hundreds of thousands or
millions—of individual processors.

Assuming the goal of a million processor system, the
major challenges for building it involve power, space, and
monetary budgets. It would be impractical to attempt to
achieve this level of parallelism using commodity personal
computers, which dissipate hundreds of watts of power,
take a substantial amount of space, and cost about $1,000
per processor. Even if the peripherals unnecessary for par-
allel computing are removed, these numbers still remain
formidable when multiplied by a million. It seems clear that
a million processor cluster is not likely; and that to build a
million processor machine, the total component count must
be dramatically reduced.

Given chip densities of the near future, one way to reduce
the chip count will be to integrate multiple processors and
their memory onto a single chip.1 Chip area, however, still
limits the amount of memory per chip that can be econom-
ically used. Thus one likely feature of MPPIM machines,
and an especially striking feature of IBM’s Blue Gene/C, is
an extremely small amount of memory per processor.

Since the million processors of a MPPIM have to be
packed into 3D space, physical cabling limitations mean the
machine’s topology is likely to be 3D mesh or torus. This
means the cross-section bandwidth is likely to be relatively
small, and the number of hops to cross the machine rela-
tively large. This, in turn, implies that machine topology
may again become an important factor in the design of par-
allel algorithms and implementations.

We consider IBM’s Blue Gene/C an example of the class
of MPPIMs. It aims to reduce costs and the component
count by fabricating several processors (25 in one design),

1Recent advances in semiconductor manufacture now make it possible
to integrate logic and DRAM on a single chip.

along with their memory, onto a single chip, ornode. It also
attempts to improve processor utilization by including eight
hardware threads on each processor. Each node, then, has
200 hardware threads, which share only about 16 megabytes
of memory. The threads in a node all access the same mem-
ory, as in a conventional SMP, but a memory-side caching
architecture eliminates the need for a cache coherence pro-
tocol. Communication between nodes is via explicit mes-
sage passing, connected in a 34 x 34 x 36 grid of nodes.
The machine works out to a petaflop of raw performance,
a terabyte per second of cross-section bandwidth, and only
half a terabyte of total memory.

These specifics are particular to IBM’s Blue Gene/C ma-
chine, but the overall architecture—many SMP single chip
nodes connected via message passing on a packet-switched
3D mesh—is likely to be the most cost-effective way to
build any very large-scale machine.

3. Blue Gene Emulator

One important factor which makes emulation of a MP-
PIM with a smaller machine feasible is the low memory-to-
processor ratio on the emulated machine. Still, Blue Gene,
the MPPIM under consideration in this research, is likely to
have about half a terabyte of total memory, which makes it
impractical to emulate using a single processor. However,
emulating a MPPIM running an application which uses the
full machine will require “just” 1000 processors of a tradi-
tional parallel machine with 512MB per processor.

A parallel emulation poses another potential problem:
messages in the emulator may be delivered in a different
order than messages sent in the real machine. Therefore,
the application must be written so as to handle out of order
message delivery. Fortunately, this is not a significant ob-
stacle, as many parallel programming paradigms and their
runtime systems already handle this behavior.

We chose to support a low-level, but fairly general,
API in the emulator [7], as described below. The em-
ulator is implemented using Converse [8], and runs on
a variety of parallel machines including clusters and su-
percomputers. The emulator is available via the web at
http://charm.cs.uiuc.edu.

A low-level API allows one to build higher-level pro-
gramming environments on top of the emulator. We
chose an API that mimics the Blue Gene low-level API,
but is quite general to cover other architecture variations.
Specifically, the API supports multiple instruction streams
(threads) that share memory within a single node. Each
thread has its own stack and a work queue. Access to a
reliable communication layer is provided via calls to send
short (limited-length) messages to other nodes, along with
an index of the handler to be invoked on the destination. For
Blue Gene, message length is limited to around 100 bytes.

Figure 1 describes the functional view of a Blue Gene/C
node in the Emulator.

NODE PRIVATE MEMORY

C
O

M
M

. T
H

R
E

A
D

S

INBUFFER OUTBUFFER

W
O

R
K

 T
H

R
E

A
D

S

NODE GLOBAL QUEUE

A
FF

IN
IT

Y
 Q

U
E

U
E

S

Figure 1. Functional view of a Blue Gene node
in the Emulator

Within a node, we divide threads into worker threads and
communication threads. Communication threads check for
incoming messages from the network and put the messages
in either a worker’s queue or a node global queue. Worker
threads repeatedly retrieve messages from the queues and
execute the handler functions associated with the messages.
In order to make use of locality of data for performance
improvement,affinity queuesare created for each worker
thread. When a message for a specific thread ID arrives, the
communication thread will schedule it to the affinity queue
of that particular worker thread. This is done to ensure that
messages are executed in the same place where the object
data needed by the handler function is located. A worker
thread will process work from its own queue before check-
ing the global queue.

The 3-D grid of Blue Gene nodes are mapped to the
physical machines in a round-robin fashion in the prelim-
inary implementation.BgSendPacket()is the main interface
for internode communication. Messages can be sent with a
WorkTypeparameter specifying whether a communication
thread or a worker thread should do the work. It can be
more efficient to execute a small piece of work directly in
the communication thread to avoid the overheads involved
in scheduling.

Code in a worker thread may create work for another
thread on the same node by firing amicro-task. The mes-
sage describing a micro-task may contain pointers to data
on the same node.

Below is a summary of the current emulator API.

• void BgNodeStart()- is called by the runtime system

to initialize each node. Here, application handlers are
registered, and the computation is started by creating
tasks for the specified nodes.

• int BgRegisterHandler(BgHandlerFn h)- is invoked to
register a handler function with each node and return a
globally unique identifier associated with it.

• void BgAddMessage(int threadID, int handlerID, int
nBytes, char *msg)- is called to create a task on the
local Blue Gene node.

• void BgSendPacket(int x, int y, int z, int threadID, int
handlerID, WorkType type, int nBytes, char *data)- is
used to send a message to a node at location [x,y,z] in
the node grid. ThreadID can be used to direct a task to
a thread, otherwise any thread in the node can handle
the message.

• Utility functions - In addition, the emulator supports
several utility functions that allow access to timers, the
identity of the node and the processor on which the in-
voking thread is running, and other housekeeping data.

The above API has the advantage of being small yet com-
plete. Other functions, such as “send”, and “receive”, as
well as high-level models can be built on top of this simple
layer.

4. Why parallel objects for MPPIM

Conventional models such as message passing, shared
memory and data parallel programming need a lot of pro-
grammer effort to efficiently utilize a MPPIM due to prob-
lems with load balance, locality, and parallelism. Charm++,
as a parallel object programming model, has several advan-
tages compared to these conventional models.

Charm++’s parallel objects provide a degree of freedom
to the run-time system that is very helpful for program-
ming MPPIMs. In this model, the programmer specifies
the decomposition of the problem only in terms of interact-
ing objects, and the run-time system handles mapping (and
remapping) these objects to processors. Thus, in the pro-
grammer’s view, object A invokes a method in object B, but
the programmer doesn’t know or care which processor ob-
ject B resides on. Several different objects are often mapped
to a single processor, and scheduling within a processor is
accomplished via a message-driven non-preemptive sched-
uler. The scheduler selects a method invocation (also called
a message) from the queue, identifies the object it is in-
tended for, and invokes the method. When the method in-
vocation returns, the scheduler picks the next message.

Objects may even migrate from processor to processor
at runtime, usually under the control of a system-supplied
load balancer. Message forwarding may be required after a

migration, but the system uses a routing scheme that asymp-
totically requires only 1 hop (i.e. no indirection) for any
kind of repeated communication [9].

The flexibility provided by this object model is a key
to the high performance attained by Charm++ based ap-
plications which had been hard to parallelize otherwise, as
shown with NAMD [10]. Charm++’s automatic load bal-
ancing, based on measurement of computation loads and
communication patterns among objects, can lead to signif-
icant improvements in performance with very little addi-
tional effort by the programmer. This is especially true
for adaptive applications, which change their computational
characteristics with time.

For a MPPIM machine, locality is extremely important
because of the potentially high cost of accessing remote data
(on a large diameter topology). Thus, object-based decom-
position is particularly attractive because it models locality
well. Objects encapsulate state, and Charm++-style objects
are allowed to directly access only their own local memory.
They may make direct calls to other objects guaranteed to
be on the same processor, and access readonly data that is
accessible to all objects. However, access to any other data
(e.g. data in other objects) is only possible via asynchronous
method invocation. This enforces locality in a clear manner,
and the programmer is aware of the cost of accessing remote
data.

Load balancing on MPPIMs is more difficult than load
balancing conventional machines. For example, while map-
ping objects to processors on machines with hundreds of
processors, it is often possible to ignore the number of hops
traveled by messages. This is because the latency is al-
most independent of the number of hops with modern tech-
niques such as wormhole routing, and the impact on band-
width utilization is limited. For a machine with 40,000
nodes, where cross-processor messages require many hops,
the bandwidth used in the intermediate links becomes a sig-
nificant concern. In Charm++, load balancing can be han-
dled by the run-time system, without changing the program-
mer’s view of their applications. Thus only the load balanc-
ing run-time needs to be changed for a MPPIM machine,
which can simultaneously improve performance and reduce
programmer effort.

One of the questions that arises while programming MP-
PIMs is how to generate the large amount of parallelism
needed to occupy the millions of processors. The object
model allows a solution: since the users decompose the
problem into objects, and since they decide the granular-
ity of objects, it is easy to generate parallelism. The object
model imposes no arbitrary restrictions on the decomposi-
tion, such as the requirement that the problem be decom-
posed into as many pieces as processors often encountered
in other models. For an example of how to generate paral-
lelism using objects, see the LeanMD program discussed in

Section 6.

5. Blue Gene Charm++

We implemented Charm++ on the Blue Gene emulator
to allow us to more easily study the performance and scal-
ability of a MPPIM machine. In this section, we describe
some design issues involved in the implementation of Blue
Gene Charm++, along with some optimizations to improve
the efficiency of Charm++ and the Blue Gene emulator.

5.1. Design Issues

In Charm++, the programmer doesn’t concern them-
selves with which processor an object resides on. In the im-
plementation, however, objects have to be mapped to pro-
cessors by the Charm++ run-time system (RTS). Further-
more, Charm++ semantics requires that two methods of an
object never execute concurrently (method atomicity). In
conventional implementations, Charm++ groups together
the objects and threads that reside on the same processor.
On each processor, there is one non-preemptive scheduler
responsible for scheduling messages and doing method in-
vocations associated with messages, which ensures atomic-
ity. Even on machines with SMP nodes, the Charm++ RTS
divides the objects by processor and schedules each proces-
sor separately, rather than using one shared scheduler. This
guarantees method atomicity. On Blue Gene, we considered
two alternative strategies to guarantee atomicity.

1. Treat an entire Blue Gene node (with many processors
and threads) as a single Charm++ processor. (So, on
the Blue Gene design mentioned earlier, there will be
about 40,000 Charm++ “processors”). When a mes-
sage is sent to a Charm++ processor, the emulator
communication threads can schedule the message to
any worker thread. This requires using locks on ob-
jects to ensure that two method invocations do not exe-
cute concurrently. However, no such locking is neces-
sary during emulation, since all the threads on a MP-
PIM node are mapped to a single emulator processor,
where is no preemption.

2. Treat each worker thread of MPPIM as a Charm++
processor (so there are several million Charm++ pro-
cessors in the above example). Chare objects are an-
chored to individual threads. When a message ar-
rives, it will be scheduled into the affinity queue of
the worker thread specified by the message. This ap-
proach requires explicit load balancing among threads
of a node.

In this paper, the work we present is based on the first
scheme. In addition to the advantages mentioned above, it

also needs a smaller amount of memory for per-processor
data structures maintained by the RTS.

Charm++ is implemented using Converse as shown in
Figure 2. The Converse run-time framework provides
portable, efficient implementations of all the functions typ-
ically needed by parallel applications. For example, it pro-
vides a common interface to the machine dependent imple-
mentations of thread creation and message passing.

Charm++

Converse

UDP/TCP, MPI, Myrinet, Shmem, etc ...

Figure 2. Original Charm++ System hierarchy

For Blue Gene Charm++, we needed a Converse layer
that uses the Blue Gene emulator API, which should pro-
vide the same functionality of the original Converse. How-
ever, the emulator that this Blue Gene Converse is built on,
itself is implemented upon the original Converse. That is,
the same Converse calls are used in two contexts: some-
times to represent the real machine– Converse; and some-
times to represent the virtual emulated machine–Blue Gene
Converse.

While the two uses of the Converse share the same in-
terface, the implementations are completely different. For
example, Processor Private Variables in the Converse layer
are private to each real physical processor; while in Blue
Gene Converse, Processor Private Variables are private to
each Blue Gene node. This causes significant name conflict
problems.

To solve this problem, we separated a component layer
from Converse that consists of all Converse calls used by
Charm++ runtime. Fortunately, Charm++ only needs a
small subset of the entire Converse API. We then impl-
mented this layer on the Blue Gene emulator. A similar
implementation, consisting of simple wrappers, was created
for normal Converse as well. Each of these were encapsu-
lated in differentname spaces. This layered implementa-
tion is showed in Figure 3. Using C++ namespaces, the
Charm++ runtime can now easily switch between the Blue
Gene Converse and the normal Converse. This greatly sim-
plifies the implementation while allowing two versions of
Charm++ to coexist in one system. Here is an example of
what a routine in the Blue Gene Converse version looks like:

Namespace
Selector

Converse

Normal Charm++
implementation

Charm++

BG Emulator

BG Converse

UDP/TCP, MPI, Myrinet, Shmem, etc ...

implementation
Blue Gene Charm++

Figure 3. Layered Implementation of Blue
Gene Charm++

namespace BGConverse {
...
void
CmiSyncSendAndFree(int pe, int numBytes,

char *msg)
{

int x,y,z;
// find out the coordinates of
// blue gene node.
BgGetXYZ(pe, &x, &y, &z);
BgSendPacket(x, y, z, ANYTHREAD,

CmiHandler(msg),
LARGE_WORK, numBytes, msg);

}
}

With these design decisions, an implementation of Blue
Gene Charm++ was created that shares the code base with
the rest of the Charm++ RTS, which is now available on the
web (http://charm.cs.uiuc.edu) along with our
normal Charm++ distribution.

5.2. Charm++ and Emulator optimizations

Blue Gene Charm++ and emulator are designed for sim-
ulation of millions of processors on limited traditional ma-
chines. The huge number of Blue Gene processors, re-
flected in emulator as user-level threads, has a great impact
on the emulator and Charm++ implementation. As a result,
the thread scheduling, message passing and memory effi-
ciency in emulator and Charm++ implementation needed to

be optimized for efficient simulation.

Emulator efficiency: In [7], we demonstrated that the
emulator is able to model 34 x 34 x 36 grid with 200 threads
per node on 96 physical processors of ASCI-Red after sev-
eral optimizations. (Note that this entailed creating approx-
imately 80,000 user-level threads per ASCI-red processor)
However, with Charm++ – another layer on top of the emu-
lator, the efficiency of the emulator becomes more critical.
The original implementation of the Blue Gene emulator,
which was developed on top of Charm++, was less efficient
and made it difficult to emulate Charm++ programs.2 In
an emulator built on a higher level system, the overhead of
thread scheduling and communication are relatively higher.
To reduce these overheads, we completely rewrote the Blue
Gene emulator at the Converse level, while preserving the
emulator API. The new Converse-based Blue Gene emula-
tor is closer to the machine level and consequently substan-
tial overhead was eliminated. Specifically, the emulator’s
one-way pingpong per message over ethernet on Linux clus-
ters has improved from 134us to 92us, which is close to the
83us pingpong time of bare Converse.

Charm++ run-time overhead: In Blue Gene Charm++,
the memory allocated by Charm++ can greatly affect the
capacity of our emulation. However, the original Charm++
implementation incurred high memory cost with millions
of processors. It stored various internal data structures
(tables) for Chares, Group and Arrays on each Charm++
node. In many cases, to ensure table lookup speed, these
tables are allocated that take space proportional to num-
ber of processors, which caused significant space ineffi-
ciency when simulating millions of processors. Unlike in
original Charm++,in Blue Gene Charm++ optimizations for
space efficiency are of higher priority than optimizations for
speed. Therefore, those data structures that take space pro-
portional to the number of processors were altered to be al-
located dynamically only if needed.

Another optimization to reduce the memory usage is ta-
ble sharing: tables that store global object information, such
as read-only data and object location caches, don’t have to
be duplicated on every Blue Gene node. Only one copy per
emulatorprocessor is needed.

6. Case Studies

With an implementation of the Charm++ programming
model on the Blue Gene emulator, nearly all existing
Charm++ applications are able to run on the emulator. This
software reuse allows quick studies of Blue Gene perfor-
mance issues on conventional supercomputers or clusters
before the machine is available.

2A system built on Charm++ will have more serious name conflicts
when trying to emulate Charm++.

In this section, a simple but typical Charm++ program
is studied for the emulator efficiency issues; then, we will
describe a realistic application - LeanMD, which is a proto-
type application for a general purpose molecular dynamics
simulations. The results presented here are preliminary.

Blue Gene Charm++ efficiency: How efficient is Em-
ulator based Charm++ considering the fact that it is imple-
mented via multiple layers(Fig. 3)? To demonstrate the effi-
ciency of the Blue Gene Charm++, we compared the perfor-
mance of Blue Gene Charm++ with the original Charm++.

We chose to run a small Charm++ program that calcu-
lates the value ofπ. In this program, node 0 creates 1000
Chares distributed to all Blue Gene nodes, each Chare does
its own work of sampling and returns its result to node 0.
The performance data on a Linux cluster is shown in the
table 1. We can see that the overhead of emulator is actu-
ally pretty small and Blue Gene Charm++ is efficient and
comparable to the original Charm++.

processors 1 2 4 8 16
BG Charm 137.11 70.33 34.43 17.22 8.69

Charm 137.74 69.53 34.58 17.30 8.71

Table 1. Comparison of BG Charm++ and orig-
inal Charm++ of PI. All timings are in seconds.

LeanMD: With these encouraging test results, we were
ready to run full-fledged Charm++ applications on Blue
Gene emulator. As an example, we chose LeanMD to study
its performance.

The need for a parallel programming paradigm like
Charm++ for the Blue Gene/C architecture becomes ap-
parent when considering its primary application: protein
dynamics studies via molecular dynamics. Current state-
of-the-art parallel molecular dynamics applications do not
scale well to thousands of processors, with a few excep-
tions such as NAMD [10]. However, scaling to millions of
processors will clearly require new parallelization strategy
beyond even that of NAMD (a molecular dynamics applica-
tion developed in Charm++). The problem must be broken
up in a more fine-grained manner to effectively distribute
work across the millions of processors. An object-oriented
paradigm for parallelism like Charm++ can directly address
the problem of how to break-up the problem into finer ob-
jects. In addition Charm++ provides proven load balancing
capability.

In NAMD, the atoms in the simulation are divided spa-
tially into cells roughly the size of the cutoff distance. Local
interactions are calculated each timestep between only the
nearest neighbor cells (“one-away” interactions), as illus-
trated in Figure 4. This ensures that all atoms within the cut-

Cutoff

Cutoff

Neighbor Cell

Center Cell
1−away

3−away

Figure 4. 1-away vs. 3-away cell cutoff dis-
tance.

off radius are calculated. However, this strategy produces a
division that is coarsely grained for Blue Gene/C. For ex-
ample, with a cutoff radius of 15̊A, a 150 x 150 x 150Å
simulation space would give only 1,000 cells and 13,0003

cell-to-cell interactions to calculate. Considering that the
Blue Gene/C machine is approximately 40,000 nodes, the
division would leave nodes idle even if interactions were
delegated to a single node.

To address the issue of creating finer-grained parallelism
for cutoff interactions, an experimental program called
LeanMD is being developed. In LeanMD, the “one-away”
strategy is replaced with a “k-away” strategy. Instead of
one cell representing the cutoff distance, in LeanMD three
cells would span the cutoff distance as shown in Figure 4.
Therefore, in order to do the cutoff calculation, a cell must
compute its interactions with every cell that is “three-away”
in this scenario. Given the simulation example above, a
three-away strategy would produce 27,000 cells and more
than 4 million cell-to-cell interactions, a number of objects
that is easily distributed across the 40,000 nodes of the Blue
Gene/C.

Charm++ facilitates the object tracking and distribution
via its array formulation. The physical cell grid is mod-
eled using Charm++’s built-in three-dimensional array in-
dexing, and the cell-to-cell interactions are addressed by a
six-dimensional array. The array formulation allows the six-
dimensional array to be sparse, and elements are distributed
across the machine via the Charm++ array manager. The
load balancer will further distribute elements in both arrays
during run-time.

The LeanMD project is currently under development.
Here we present the preliminary performance data on the
Blue Gene Charm++ and emulator. This test used brH sim-
ulation benchmark, which consists of 3762 atoms. The
simulation is 3-away with cutoff of 12̊A, the cell size
thus is 4x4x4 and the simulation space is 11x14x11 cells.
In the simulation, the number of cell-to-cell interactions

31,000*27/2, considering that cell-to-cell forces are symmetric.

is 144914, and we emulated Blue Gene/C nodes of size
10x10x10 with 200 threads each node(200,000 threads to-
tal). Table 2 shows the emulation time per step of LeanMD
on various number of processors, and figure 5 shows the
efficiency curve run on a Linux cluster. It shows that in-
creasing the processors used by the emulator, we achieved
superlinear speedup for the emulation. (The superlinearity
is due to a smaller memory footprint per emulator processor
as the number of processors is increased. The total amount
of memory needed for emulation can be estimated to in-
clude at least 400MB for stack space for the 200K threads,
in addition to relatively smaller amounts for RTS data struc-
tures and application data)

num of pes 4 8 16 32 64
time/step(sec) 13.0 6.51 3.06 1.53 0.776

Table 2. Time per step in seconds of LeanMD

30

35

40

45

50

55

60

65

70

1 2 4 8 16 32 64 128

tim
e

x
nu

m
be

r
of

 p
ro

ce
ss

or
s

number of processors

Turing Linux cluster

Figure 5. Cost curve for LeanMD on Blue Gene
Charm++. Linear speedup would result in a
horizontal line.

7. Summary

We have demonstrated a programming model and an
initial emulator for MPPIMs, a class of extremely high-
performance computers that includes IBM’s Blue Gene ma-
chine. In the future, we are planning to modify the emula-
tor to achieve at least first-order accurate timing data, thus
transforming it into a simulator. Modeling of the network,
including contention, will also be carried out. Further, in
collaboration with Prof. S. Adve, we plan to incorporate ac-
curate architectural models into the simulation. A simulta-
neous multithreaded (SMT) processor model for the RSIM
simulator [11] has already been developed.

To study the application behavior on such large scale ma-
chines, we are creating an experimental high-performance
computational molecular dynamics program, LeanMD. We
are also working on developing large adaptive Finite-
Element based structural simulation application using the
emulator [12] in collaboration with Prof. P. Geubelle.

Implementation strategies for Charm++ itself will be
further optimized. The issue of whether objects should
be anchored to individual threads or whole nodes (See
Section5.1) will be further explored. Load balancing strate-
gies probably represent the most significant challenge, as
well as opportunity, for our model. A new class of strategies
are being developed that work in a distributed manner (with-
out serial bottlenecks during load balancing), and can take
into account interconnection topology as well as multi-level
locality (i.e. objects co-located within a thread, processor,
or node). Higher level languages and compilation issues are
being studied in collaboration with Prof. D. Padua.

8. Acknowledgements

This research was funded in part by an NSF grant un-
der the Next Generation Software (NGS) program, via NSF
EIA 0103645, and by NIH via PHS 5 P41 RR05969-04. We
also thank our group members of the Parallel Programming
Laboratory at University of Illinois Urbana-Champaign, es-
pecially Orion Lawlor. We are grateful to the Blue Gene
team at IBM, including Dr. Manish Gupta and Dr. José
Moreira , as well as Dr. Marc Snir (now at Univ. of Illinois)
for useful discussions earlier during the implementation of
the emulator.

References

[1] Yi Kang, Wei Huang, Seung-Moon Yoo, Diana Keen,
Zhenzhou Ge, Vinh Lam, Pratap Pattnaik, and Josep
Torrellas. Flexram: Toward an advanced intelligent
memory system. InInternational Conference on Com-
puter Design (ICCD), 1999.

[2] G. Gao, K. Likharev, P. Messina, and T. Sterling. Hy-
brid technology multithreaded architecture. In6th
Symposium on the Frontiers of Massively Parallel
Computing, pages 98–105, 1996.

[3] P. Kogge, S. Bass, J. Brockman, D. Chen, and E. Sha.
Point Designs for 100 TF Computers Using PIM Tech-
nologies. InProceedings of the 1996 Frontiers of Mas-
sively Parallel Computation Symposium, 1996.

[4] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar,
W. Lee, V. Lee, J. Kim, M. Frank, P. Finch, R. Barua,
J. Babb, S. Amarasinghe, and A. Agarwal. Baring it

All to Software: Raw Machines.1997 IEEE Com-
puter, pages 86–93, September 1997.

[5] D. Patterson, T. Anderson, N Cardwell, R Fromm,
K Keeton, C. Kozyrakis, R. Thomas, and K. Yelick.
Intelligent RAM(IRAM): chips that remember and
compute. 1997 IEEE International Solids-State Cir-
cuits Conference. Digest of Technical Papers, pages
224–225, February 1997.

[6] L. V. Kale and Sanjeev Krishnan. Charm++: Paral-
lel Programming with Message-Driven Objects. In
Gregory V. Wilson and Paul Lu, editors,Parallel Pro-
gramming using C++, pages 175–213. MIT Press,
1996.

[7] Neelam Saboo, Arun Kumar Singla, Joshua Mostkoff
Unger, and L. V. Kaĺe. Emulating petaflops machines
and blue gene. InWorkshop on Massively Paral-
lel Processing (IPDPS’01), San Francisco, CA, April
2001.

[8] Robert Brunner L. V. Kale, Milind Bhandarkar and
Joshua Yelon. Multiparadigm, Multilingual Interop-
erability: Experience with Converse. InProceedings
of 2nd Workshop on Runtime Systems for Parallel Pro-
gramming (RTSPP) Orlando, Florida - USA, Lecture
Notes in Computer Science, March 1998.

[9] O. Lawlor and L. V. Kaĺe. Supporting dynamic paral-
lel object arrays. InProceedings of ACM 2001 Java
Grande/ISCOPE Conference, pages 21–29, Stanford,
CA, Jun 2001.

[10] R. Brunner, J. Phillips, and L.V.Kalé. Scalable molec-
ular dynamics for large biomolecular systems. InPro-
ceedings of SuperComputing 2000, 2000.

[11] Christopher J. Hughes, Vijay S. Pai, Parthasarathy
Ranaganathan, and Sarita V. Adve. Rsim: Simulat-
ing shared memory multiprocessors with ilp proces-
sors. IEEE Computer, special issue on simulation,
pages 40–49, February 2002.

[12] P. H. Geubelle and W. G. Knauss. Crack propaga-
tion at and near bimaterial interfaces : linear analysis.
ASME J. Appl. Mech., 61:560–566, 1994.

[13] W. Dally et al. The j-machine : A fine grained con-
current computer. InInformation Processing 89, Pro-
ceedings of the IFIP Congress, pages 1147–1153, Au-
gust 1989.

[14] H.P. Zima and T.L. Sterling. A Programming and Ex-
ecution Model for DRAM Processor-In-Memory Ar-
rays. InProc. First International AURORA Confer-
ence (IAC2000), January 2000.

