
NAMD: Biomolecular Simulation on Thousands of Processors∗

James Phillips† Gengbin Zheng‡ Laxmikant Kalé§

Abstract

NAMD is a parallel, object-oriented molecular dynamics program designed for high perfor-
mance simulation of large biomolecular systems. NAMD employs the prioritized message-driven
execution capabilities of the Charm++/Converse parallel runtime system, allowing excellent
parallel scaling on both massively parallel supercomputers and commodity workstation clusters.
This paper discusses the techniques which have allowed NAMD to effectively employ over one
thousand processors in production simulations of biomedical relevance.

1 Introduction

NAMD is a parallel, object-oriented molecular dynamics program designed for high performance
simulation of large biomolecular systems [7]. NAMD employs the prioritized message-driven exe-
cution capabilities of the Charm++/Converse parallel runtime system,1 allowing excellent parallel
scaling on both massively parallel supercomputers and commodity workstation clusters. NAMD is
distributed free of charge via the web2 to over 3000 registered users as both source code and conve-
nient precompiled binaries. NAMD development and support is a service of the National Institutes
of Health Resource for Macromolecular Modeling and Bioinformatics, located at the University of
Illinois at Urbana-Champaign.3

Molecular dynamics simulation. In a molecular dynamics (MD) simulation, full atomic coor-
dinates of the proteins, nucleic acids, and/or lipids of interest, as well as explicit water and ions,
are obtained from known crystallographic or other structures. An empirical energy function, which
consists of approximations of covalent interactions in addition to long-range Lennard-Jones and
electrostatic terms, is applied. The resulting Newtonian equations of motion are typically inte-
grated by symplectic and reversible methods using a timestep of 1 fs. Modifications are made to
the equations of motion to control temperature and pressure during the simulation.

The basic protocol for MD simulations consists of minimization (to eliminate initial contacts
which would destabilize the integrator), equilibration to a temperature of 300 K and a pressure
of 1 atm, and simulation in an isobaric (NPT) ensemble for 1-10 ns. This is sufficient to test the
stability of a biomolecular aggregate or to observe the relaxation of the system into a more favorable

∗This work was supported by the National Institutes of Health (NIH PHS 5 P41 RR05969-04) and the National
Science Foundation (NSF/GCAG BIR 93-18159 and NSF BIR 94-23827 EQ).

†Beckman Institute, University of Illinois, Urbana, IL.
‡Department of Computer Science and Beckman Institute, University of Illinois, Urbana, IL.
§Department of Computer Science and Beckman Institute, University of Illinois, Urbana, IL.
1http://charm.cs.uiuc.edu/
2http://www.ks.uiuc.edu/Research/namd/
3http://www.ks.uiuc.edu/

1

Figure 1: Simulations have increased exponentially in size, from BPTI (upper left, about 3K
atoms), through the estrogen receptor (lower left, 36K atoms, 1996), to F1-ATPase (right, 327K
atoms, 2001). (Atom counts include solvent.)

conformation. However, if the goal is to study events which would not spontaneously occur during
the timespan of the simulation, the system may be forced to undergo a transition via the application
of forces in a steered molecular dynamics protocol. Important observations may be made during
such a simulation of non-equilibrium events, even though the simulated time scale is much shorter
than the natural one.

Importance of molecular dynamics simulation software. The application of molecular dy-
namics simulation methods in biomedicine is directly dependent upon the capability, performance,
usability and availability of the required simulation and analysis software. Simulations often re-
quire substantial computing resources, sometimes available only at supercomputing centers. By
developing the program NAMD, the Resource provides the biomedical research community with
a freely available tool for performing high quality MD simulations of large biomolecular systems
using a variety of available and cost-effective hardware [7, 10].

Increases in system size and simulation length. With continuing increases in high perfor-
mance computing technology, the domain of biomolecular simulation has rapidly expanded from
isolated proteins in solvent to include complex aggregates, often in a lipid environment. Such sim-
ulations can easily exceed 100,000 atoms (see Fig. 1). Similarly, studying the function of even the
simplest of biomolecular machines requires simulations of 10 ns or longer, even when techniques
for accelerating processes of interest are employed. The goal of interactive simulation of smaller
molecules places even greater demands on the performance of MD software, as the sensitivity of

2

the haptic interface increases quadratically with simulation speed [14].

Importance of parallel computing to simulations. Despite the seemingly unending progress
in microprocessor performance indicated by Moore’s law, the urgent nature and computational
needs of biomedical research demand that we pursue the additional factors of tens, hundreds, or
thousands in total performance which may be had by harnessing a multitude of processors for a
single calculation. While the MD algorithm is blessed with a large ratio of calculation to data, its
parallelization to large numbers of processors is not straightforward [4]. The Resource has been
particularly prescient in recognizing and pursuing the benefits of parallel computing for biomedical
research.

Increasing availability of large parallel resources. The Accelerated Strategic Computing
Initiative,4 a U.S. Department of Energy program, has provided an unprecedented impetus for the
application of massively parallel teraflop computing to the problems of the physical sciences and
engineering. The National Science Foundation has followed this lead, funding terascale facilities at
the national centers with the intent of enabling research that can employ many or all of the proces-
sors on these new machines.5 The concept of grid computing promises to make this computational
power readily available from any desktop. Huge computing resources will soon be available to the
biomedical researcher who is able to harness it using software such as NAMD.

Other available simulation programs. The biomolecular modeling community sustains a vari-
ety of software packages with overlapping core functionality but varying strengths and motivations.
For comparison, we select AMBER, CHARMM, GROMACS, NWChem, and TINKER.

AMBER [15] and CHARMM [3] are often considered the standard “community codes” of struc-
tural biology, having been developed over many years by a wide variety of researchers. Both
AMBER and CHARMM support their own force field development efforts, although the form of
the energy functions themselves is quite similar. Both codes are implemented in FORTRAN 77,
although AMBER takes the form of a large package of specialized programs while CHARMM is a
single binary. The parallelization of these codes is limited and not uniform across features, e.g.,
the GIBBS module of AMBER is limited to costly shared memory machines. Neither program is
freely available, although the academic versions are highly discounted in comparison to commercial
licenses.

GROMACS 3.0 [9], the version recently released, claims the title of “fastest MD.” This can be
attributed largely to the GROMOS force field, which neglects most hydrogen atoms and eliminates
van der Waals interactions for those that remain. In contrast, the AMBER and CHARMM force
fields represent all atoms and new development has centered on increasing accuracy via additional
terms. Additional performance on Intel x86 processors comes from the implementation of inner
loops in assembly code. GROMACS is implemented in C as a large package of programs and is
newly released under the GNU General Public License (GPL). Distribution takes the form of source
code and Linux binaries. Plans for future support and development are unclear for this program.

NWChem [6] is a comprehensive molecular simulation system developed by a large group of
researchers at the PNNL EMSL, primarily to meet internal requirements. The code centers on
quantum mechanical methods but includes an MD component. Implemented in C and FORTRAN,

4http://www.llnl.gov/asci/
5http://www.interact.nsf.gov/cise/descriptions.nsf/pd/tcs/

3

NWChem is parallelized using MPI and a Global Arrays library6 which automatically redistributes
data on distributed memory machines. Parallel scaling is respectable given sufficient workload,
although published benchmarks tend to use abnormally large cutoffs rather than the 12 Å (or
PME) typically used in biomolecular simulations. Access to NWChem source code is available with
the submission of a signed license agreement, although support is explicitly unavailable outside of
PNNL.

TINKER [12] is a small FORTRAN code developed primarily for the testing of new methods.
It incorporates a variety of force fields, in addition to its own, and includes many experimental
methods. The code is freely available, but is not parallelized, and is therefore inappropriate for
traditional large-scale biomolecular simulations. It does, however, provide the community with a
simple code for experiments in method development.

Motivation for NAMD development. NAMD builds upon other available programs in the
field by incorporating popular force fields and reading file formats from other codes. NAMD
complements existing capabilities by providing a higher performance alternative for simulations
on the full range of available parallel platforms. Through NAMD, the Resource expands the MD
user community by providing free, ready-to-run, easy-to-use software for most available platforms,
complete with web-based educational materials and a safety net of support via email. NAMD also
provides easily modified object-oriented C++ source code to support method development both
within and beyond the Resource.

2 NAMD Parallelization Strategy

We have approached the scalability challenge by adopting message-driven approaches and reducing
the complexity associated with these methods by combining multithreading and an object-oriented
implementation in C++.

Charm++ parallel object-based programming model. The dynamic components of NAMD
are implemented in the Charm++[8] parallel language. Charm++ implements an object-based
message-driven execution model. In Charm++ applications, there are collections of C++ objects,
which communicate by remotely invoking methods on other objects by messages.

Compared with conventional programming models such as message passing, shared memory or
data parallel programming, Charm++ has several advantages in improving locality, parallelism and
load balance. The flexibility provided by Charm++ is a key to the high performance achieved by
NAMD on thousands of processors.

In Charm++ applications, users decompose the problem into objects, and since they decide
the granularity of the objects, it is easier for them to generate parallelism. As described in the
paragraph below, NAMD uses a novel way of decomposition that easily generates the large amount
of parallelism needed to occupy thousands of processors.

Charm++’s object-based decomposition also help users to improve data locality. Objects en-
capsulate states, Charm++ objects are only allowed to directly access their own local memory.
Access to other data is only possible via asynchronous method invocation to other objects.

Charm++’s parallel objects and data-driven execution adaptively overlaps communication and
computation and hide communication latency: when an object is waiting for some incoming data,
entry functions of other objects with all data ready are free to execute.

6http://www.emsl.pnl.gov:2080/docs/global/ga.html

4

 Objects

Proxy
 C

Patch
 A

Patch
 B

 Bonded Force Objects

Proxy
 D

PROCESSOR 1

Non-bonded Non-bonded Non-bonded Non-bonded

Pair Compute
 Objects

Pair Compute
 Objects

 Self Compute Self Compute
 Objects

Figure 2: NAMD 2 hybrid force/spatial decomposition.

In Charm++, objects may even migrate from processor to processor at runtime. Object mi-
gration is controlled by Charm++ load balancer. Charm++ implements a measurement based
load balancing framework which automatically instruments all Charm++ objects, collectes com-
putation load and communication pattern during execution and stores them into a ”load balancing
database”. Charm++ then provides a collection of load balancing strategies whose job is to decide
on a new mapping of objects to processors based on information from the database. Load balanc-
ing strategies are implemented in Charm++ as libraries. Programmers can easily experiment with
different existing strategies by linking different strategy modules and specify which strategy to use
at runtime via command line options. This involves very little efforts from programmers while
achieving significant improvements in performance in adaptive applications. Application specific
load balancing stategies can also be developed by users and plugged in easily. In the following
paragraphs, we will describe the load balancing strategies optimized for NAMD2 in details.

Hybrid force/spatial decomposition. NAMD 1 is parallelized via a form of spatial decom-
position using cubes whose dimensions are slightly larger than the cutoff radius. Thus, atoms in
one cube need to interact only with their 26 neighboring cubes. However, one problem with this
spatial decomposition is that the number of cubes is limited by the simulation space. Even on a
relatively large molecular system, such as the 92,442 atom ApoA-I benchmark, we only have 245
(7× 7× 5) cubes. Further, as density of the system varies across space, one may encounter strong
load imbalances.

NAMD 2 addresses this problem with a novel combination of force [11] and spatial decomposi-
tion. For each pair of neighboring cubes, we assign a non-bonded force computation object, which
can be independently mapped to any processor. The number of such objects is therefore 14 times
(26/2 + 1 self-interaction) the number of cubes.

The cubes described above are represented in NAMD 2 by objects called home patches. Each
home patch is responsible for distributing coordinate data, retrieving forces, and integrating the

5

equations of motion for all of the atoms in the cube of space owned by the patch. The forces used
by the patches are computed by a variety of compute objects. There are several varieties of compute
objects, responsible for computing the different types of forces (bond, electrostatic, constraint, etc.).
Some compute objects require data from one patch, and only calculate interactions between atoms
within that single patch. Other compute objects are responsible for interactions between atoms
distributed among neighboring patches. Relationships among objects are illustrated in Fig. 2.

Dynamic communication and execution. When running in parallel, some compute objects
require data from patches not on the compute object’s processor. In this case, a proxy patch takes
the place of the home patch on the compute object’s processor. During each time step, the home
patch requests new forces from local compute objects, and sends its atom positions to all its proxy
patches. Each proxy patch informs the compute objects on the proxy patch’s processor that new
forces must be calculated. When the compute objects provide the forces to the proxy, the proxy
returns the data to the home patch, which combines all incoming forces before integrating. Thus,
all computation and communication is scheduled based on priority and the availability of required
data.

Measurement-based load balancing. Some compute objects are permanently placed on pro-
cessors at the start of the simulation, but others are moved during periodic load balancing phases.
Ideally, all compute objects would be able to be moved around at any time. However, where cal-
culations must be performed for atoms in several patches, it is more efficient to assume that some
compute objects will not move during the course of the simulation. In general, the bulk of the
computational load is represented by the non-bonded (electrostatic and van der Waals) interac-
tions, and certain types of bonds. These objects are designed to be able to migrate during the
simulation to optimize parallel efficiency. The non-migratable objects, including computations for
bonds spanning multiple patches, represent only a small fraction of the work, so good load balance
can be achieved without making them migratable.

NAMD uses a measurement-based load balancer, employing the Charm++ load balancing
framework. When a simulation begins, patches are distributed according to a recursive coordi-
nate bisection scheme [2], so that each processor receives a number of neighboring patches. All
compute objects are then distributed to a processor owning at least one home patch, insuring that
each patch has at most seven proxies. The dynamic load balancer uses the load measurement
capabilities of Converse to refine the initial distribution. The framework measures the execution
time of each compute object (the object loads), and records other (non-migratable) patch work as
“background load.” After the simulation runs for several timesteps (typically several seconds to
several minutes), the program suspends the simulation to trigger the initial load balancing. NAMD
retrieves the object times and background load from the framework, computes an improved load
distribution, and redistributes the migratable compute objects.

Success on large supercomputers. NAMD’s combination of force and spatial decomposition
allows large simulations to be efficiently decomposed onto hundreds of processors. Our success
in employing this technique is demonstrated by a parallel speedup of 1252 on 2048 CPUs of the
Sandia ASCI Red for a 206,617 atom cutoff (non-PME) simulation [4] and by our selection as a
finalist for the 2000 Gordon Bell prize. When combined with ongoing work on improving the par-
allelization of PME simulations, NAMD is uniquely positioned as the tool of choice for simulations
employing up to a thousand processors on the new generation of terascale platforms, i.e., the 3,000

6

32

64

128

8 16 32 64 128 256 512

P
ro

ce
ss

or
s

x
T

im
e

pe
r

S
te

p
(s

ec
on

ds
)

R
un

tim
e

fo
r

1
ns

 S
im

ul
at

io
n

Number of Processors

NAMD ApoA1 (PME) Benchmark on PSC Cray T3E

1 month 2 weeks 1 week 4 days 2 days

NAMD 2.1
NAMD 2.2
NAMD 2.3
NAMD 2.4

Figure 3: Total resources consumed per step for 92K atom benchmark with and without particle–
mesh Ewald by NAMD versions 2.1–2.3 on varying numbers of processors of the PSC T3E. Perfect
linear scaling is a horizontal line. Diagonal scale shows runtime per ns. Note that performance
increases for both PME and cutoff simulations with each release.

processor AlphaServer SC and the 1,000 processor Itanium cluster at the Pittsburgh and Illinois
supercomputing centers.

3 Particle Mesh Ewald in NAMD

Incorporating, tuning, and parallelizing particle–mesh Ewald (PME) [5] full electrostatics calcu-
lations has been a recurring theme in NAMD 2 development and this one feature has primarily
determined the performance and scalability observed by users. As seen in Fig. 3, significant progress
has been made. Development started with the incorporation of the external DPME7 package into
NAMD 2.0, providing a stable base functionality. The PME reciprocal sum was serialized in this
version because the target workstation clusters for which DPME was developed obtained suffi-
cient scaling by only distributing the direct interactions. In NAMD, the direct interactions were
incorporated into the existing parallel cutoff non-bonded calculation. The reciprocal sum was
reimplemented more efficiently in NAMD 2.1, providing a base for later parallelization.

An effective parallel implementation of the PME reciprocal sum was finally achieved in NAMD 2.2.
The final design was elegant but far from obvious, as numerous false starts were attempted along
the way. In particular, the parallel implementation of FFTW8 was found to be inappropriate for our
purposes so a new one was written for NAMD. The reciprocal sum is currently parallelized only to
the size of the PME grid, which is typically between 50 and 128. However, this is sufficient to allow

7Distributed Particle–Mesh Ewald, http://www.ee.duke.edu/Research/SciComp/SciComp.html
8Fastest Fourier Transform in the West, http://www.fftw.org/

7

NAMD simulations to scale to several hundred processors as the bottleneck has been significantly
reduced. In addition, the message-driven design of NAMD interleaves the PME communication
with other work, giving good performance even on high latency networks.

Improvements to the PME direct sum in NAMD 2.3 were obtained by eliminating expensive calls
to erfc().9 This was accomplished by incorporating the entire short-range non-bonded potential
into an interpolation table. By interpolating based on the square of the interaction distance, the
calculation of 1/

√
r2 was eliminated as well. The interpolation table is carefully constructed to avoid

cancellation errors and is iteratively refined during program startup to eliminate discontinuities in
the calculated forces. Simulations performed with the new code are up to 50% faster than before
and are of equivalent accuracy.

Shared memory optimizations. Although NAMD 2 was initially designed to employ multiple
threads on multiprocessor shared-memory machines, particularly in combination with message-
passing on a cluster of SMP nodes, this was never implemented. Even on modern clusters with SMP
nodes, standard MPI-based message passing is normally the encouraged method of programming.
However, it is certainly possible to exploit superior communication speeds between processors on
the same node through algorithm design in a single-threaded implementation. Modifications to
the NAMD load balancing system and proxy communication algorithms will reduce transmission
of coordinates and forces between nodes.

Distributing PME calculations to at most one processor per node for large machines in NAMD 2.4
has reduced contention for available interconnect bandwidth and other switch or network interface
resources. This has increase the scalability of NAMD 2 simulations using PME to 1024 processors
on the existing machines at NCSA, PSC, and SDSC with 2, 4, and 8 processors per node.

4 Scalability Results

Figure 4 illustrates the portable scalability of NAMD on a variety of recent platforms employed
for production simulations by researchers at the Resource. Figure 5 shows the greatest scalability
attained by NAMD on the 3000 processor LeMieux cluster at PSC. NAMD scales particularly well
for larger simulations, which are those for which improved performance is most greatly desired by
researchers.

5 Remaining Challenges

Continuation after external failures. The increasing size and complexity of parallel comput-
ing platforms will soon reduce the mean time between failures for hardware and system software
to the point that large jobs will be more likely to fail due to an external error than to complete
normally. Application software must address this problem internally, as general methods which
may be developed are likely to be incomplete or inflexible. While NAMD 2 periodically saves
atomic coordinates and velocities, the user is required to alter input files and restart the calcula-
tion manually. NAMD 3 will provide a single comprehensive restart file which will save all relevant
information, including the state of the command interpreter. This will allow a simulation which
has ended prematurely to be continued automatically. In a second, more aggressive approach, we

9The erfc(x) function computes the complement of the error function of x.

8

8

16

32

64

1 2 4 8 16 32 64 128 256 512

P
ro

ce
ss

or
s

x
T

im
e

pe
r

S
te

p
(s

ec
on

ds
)

R
un

tim
e

fo
r

1
ns

 S
im

ul
at

io
n

Number of Processors

NAMD 2.4 ApoA1 (PME) Benchmark

1 month 2 weeks 1 week

4 days 2 days 1 day 12 hours

NCSA Platinum 2xP3/1000 Myri
SDSC IBM SP 8xPWR3/375

Resource Linux K7/1333 100bT
NCSA Titan 2xIA64/800 Myri

PSC LeMieux 4xev6/1000

Figure 4: Total resources consumed per step for 92K atom benchmark with particle–mesh Ewald
by NAMD 2.4 on varying numbers of processors for recent parallel platforms. Perfect linear scaling
is a horizontal line. Diagonal scale shows runtime per ns.

will develop methods to allow a running simulation to survive and rapidly recover from the loss of
a small number of nodes, dynamically reallocating calculations to the remaining processors.

Repeatable and deterministic parallel simulations. In NAMD 2, the order of operations,
particularly the summation of forces, is determined dynamically by the load balancer and the
order of message arrival. Combined with the non-associativity of floating-point arithmetic and the
chaotic nature of MD simulations, this causes parallel simulations starting from identical initial
conditions to diverge after a few hundred steps, even when run on the same machine and number of
processors. In order to obtain the benefits of exact repeatability for both the developer (needed to
perform long running regression tests) and for the user (repeating a simulation in order to extract
additional details), NAMD 3 will optionally employ associative simulated fixed-point addition for
force summation. This can be done at almost no additional cost [13].

Accelerating interactive simulation. Interactive simulation will become truly useful when a
researcher can obtain 1 ps of simulation time per second of wall clock time. At this rate 1 ns is
simulated in 20 minutes and 1µs in under two weeks. Obtaining this level of performance, which is
at least a factor of ten beyond current performance on any platform, will require the distribution
of a simulation of 10,000 atoms efficiently to 256 processors of a high performance, tightly coupled
machine. Latency-tolerant minimally coupled algorithms will be essential in this environment, as
any synchronization would harm performance. Force computations must be partitioned into even
smaller, fine-grained, objects than currently attained. In addition to the parallelization challenges,
careful compromises between performance and accuracy will need to be made in selecting algorithms

9

8

16

32

64

4 8 16 32 64 128 256 512 1024

P
ro

ce
ss

or
s

x
T

im
e

pe
r

S
te

p
(s

ec
on

ds
)

R
un

tim
e

fo
r

1
ns

 S
im

ul
at

io
n

Number of Processors

NAMD 2.4 (PME) on PSC LeMieux

2 weeks 1 week 4 days 2 days 1 day 12 hours 6 hours

ATPase (327K atoms)
ApoA1 (92K atoms)

Figure 5: Total resources consumed per step for 92K and 327K atom benchmarks with particle–
mesh Ewald by NAMD 2.4 on varying numbers of processors for PSC LeMieux. Perfect linear
scaling is a horizontal line. Diagonal scale shows runtime per ns.

for both force calculation and integration.

Large capability clusters. All recent terascale systems have combined standard multiprocessor
workstations with proprietary low latency interconnects. Common examples are the IBM SP (San
Diego),10 AlphaServer SC (Pittsburgh),11 and Myrinet Linux clusters (Illinois).12 In order to
scale to thousands of processors on these platforms, NAMD will have to take advantage (through
Converse) of the low level interfaces to the interconnect hardware (e.g., IBM’s LAPI [1]) which
translate to a message driven design much better than the common MPI interface. Multiprocessor
nodes are used on these machines (up to 32 CPUs per node on ASCI Q, the AlphaServer SC
being installed at Los Alamos13), so NAMD will be adapted to this multilevel communication
hierarchy. This will be in the form of multiple threads on some platforms while merely modifying
communication patterns on others. In either case, load balancing will need to consider the disparity
of communication speeds between processors.

Massively parallel platforms. Supercomputers with over 1000 processors are available at the
national centers (San Diego, Pittsburgh, and Illinois) and machines with over 10,000 processors are
in use at DOE labs. We expect computational facilities with 10,000 to 100,000 processors to be
available for simulations by the middle of the proposed funding period, e.g., IBM is expected to build

10http://www.sdsc.edu/Resources/bluehorizon.html
11http://www.psc.edu/machines/tcs/tcs.html
12http://archive.ncsa.uiuc.edu/SCD/Hardware/LinuxCluster/TechSummary/
13http://www.lanl.gov/orgs/pa/News/082300.html

10

parallel machines in this range by 2003. To scale NAMD to such large machines, we will develop and
implement new parallel algorithms. Fine-grained decomposition techniques will be used to allow
each time step to be completed in less than a millisecond for simulations involving over 100,000
atoms. We will experiment with variations of our hybrid spatial-and-force decomposition strategy
that lead to smaller computational pieces. This fine grained decomposition will be supported
by a new low-overhead runtime system, which can schedule each computational object with 1–2
microseconds overhead. Total communication on such large machines is typically limited because
of physical considerations. We will develop new load balancers that place communicating objects in
such a way as to minimize the average number of hops traveled by messages, while simultaneously
minimizing load imbalance and communication volume.

Processor-in-memory architectures. During years 3–5 of the proposed funding period, ma-
chines with processors-in-memory chips are expected to become available. Such machines will pro-
vide a much higher aggregate bandwidth between processor and memory modules, by integrating
multiple processors and memory within one chip. We will harness the high performance potential
of such machines by developing a version of NAMD which supports a low memory-to-processor
ratio (by eliminating replicated molecule data, for example). New algorithms that can deal with
on-demand movement of data among memory modules will be implemented, to support prefetching
of data. One of the potential machines in this category will be a “Teraflop Board” consisting of
multiple multiprocessor chips designed for the original IBM Blue Gene machine.14

Accommodating large biomolecular aggregates. Larger simulations generally scale better
on multi-processor machines than smaller simulations simply because there is more computation
to be distributed. However, the memory usage of the master node in NAMD 2 is proportional to
the number of atoms in the simulation, and does not decrease as additional processors are added.
Because of this, systems larger than 100,000 atoms cannot run on a Cray T3E with only 128 MB
of memory per node and 300,000 atoms can require 512 MB on the master node to perform load
balancing. To address this problem, a parallel load balancing algorithm will be implemented that
will not collect all load data on the master node. Additionally, the replicated molecular structure
will be compressed by a general method which locates and eliminates repeated patterns such as
water molecules, lipids, and amino acids.

6 Parallel Architecture Design

It is immensely ingenious, immensely complicated, and extremely effective, but somehow
at the same time crude, wasteful, and inelegant, and one feels that there must be a better
way of doing things.

—C. Strachey (1962, concerning the IBM Stretch computer)

When developing complex software, the first forays into a new application domain or approach
to software design often lead to a collection of code which, although correct, is more indicative
of the learning process of its creator than the final understanding which was gained. Successive
implementations do not avoid this fate, but merely encounter it in the pursuit of new and more
complex functionality.

14http://www.research.ibm.com/bluegene/comsci.html

11

NAMD 2 demonstrated that object oriented design and cooperative multithreading make it
possible to write and maintain a complex message-driven program. However, a cleansing of the
source code with the implementation of NAMD 3 will prevent its degeneration into the prevalent
software architecture recently described as “a big ball of mud.”15 Insights to be applied in the
design of NAMD 3 are summarized below.

Threadless control structure. NAMD 2 uses cooperative user-space threads to provide in-
dividual control loops for each fixed-size spatial domain (or patch) and for global aspects of the
algorithm such as pressure control. These threads are scheduled by Charm++/Converse in the
same queue as other tasks. In order to improve portability and allow for simplified debugging,
control loops will be implemented using a simple state machine and preprocessor. Using object
member variables in place of a stack, and providing additional control logic to handle dependencies,
will allow for the clear expression of algorithms in this restrictive environment.

Exploiting multiprocessor nodes. NAMD 3 will run on clusters with multiprocessor nodes
either with threads or as independent processes. Tasks will be permanently assigned to a given
processor based on periodic load balancing. The alternative method of using a single work queue
for all processors on a node would require a complex protocol to ensure that all processors com-
pleted at the same time and would also depend heavily on expensive synchronization and mutual
exclusion functions. The primary concern for multiprocessor nodes will be optimizing data layout
and dependencies to limit inter-node communication, a development which is not dependent on
shared memory protocols.

Patterns for parallel operations. The parallel efficiency of NAMD 2 is due to a limited number
of parallel operations, some of which are necessarily complex. The remainder of the code, however,
only affects startup but is implemented via a variety of methods which were selected based on
immediate convenience. The implementation and maintenance of NAMD 3 will be greatly aided
by selecting a small number of useful patterns and encapsulating them as templates for repeated
use.

Distributed simulation components. The general molecular dynamics algorithms and other
utility code employed in NAMD 3 will be separated from the parallel control structures in order to
provide a basis of components which can be independently tested and reused in other applications
such as VMD. The imposition of clearly defined interfaces between these components will also aid
the development of test harnesses for NAMD.

References

[1] M. Banikazemi, R. K. Govindaraju, R. Blackmore, and D. K. Panda. MPI-LAPI: An efficient
implementation of MPI for IBM RS/6000 SP systems. IEEE Trans. Parallel and Distributed
Systems, 2001. In press.

[2] M. Berger and S. Bokhari. A partitioning strategy for nonuniform problems on multiprocessors.
IEEE Trans. Computers, C-36:570–580, 1987.

15http://www.devcentre.org/mud/mudmain.htm

12

[3] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus.
CHARMM: A program for macromolecular energy, minimization, and dynamics calculations.
J. Comp. Chem., 4:187–217, 1983.

[4] R. K. Brunner, J. C. Phillips, and L. V. Kalé. Scalable molecular dynamics for large biomolec-
ular systems. In Proceedings of the 2000 ACM/IEEE SC2000 Conference. ACM, 2000.

[5] T. Darden, D. York, and L. Pedersen. Particle mesh Ewald. An N·log(N) method for Ewald
sums in large systems. J. Chem. Phys., 98:10089–10092, 1993.

[6] High Performance Computational Chemistry Group. NWChem, a computational chemistry
package for parallel computers, version 4.0.1. http://www.emsl.pnl.gov:2080/docs/nwchem.

[7] L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki,
K. Varadarajan, and K. Schulten. NAMD2: Greater scalability for parallel molecular dynamics.
J. Comp. Phys., 151:283–312, 1999.

[8] L. V. Kalé and S. Krishnan. Charm++: Parallel programming with message-driven objects.
In G. V. Wilson and P. Lu, editors, Parallel Programming using C++, pages 175–213. MIT
Press, 1996.

[9] E. Lindahl, B. Hess, and D. van der Spoel. GROMACS 3.0: a package for molecular simulation
and trajectory analysis. J. Mol. Mod., 2001.
http://link.springer.de/link/service/journals/00894/contents/01/00045.

[10] M. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L. Kalé, R. D. Skeel, and K. Schulten. NAMD
– A parallel, object-oriented molecular dynamics program. Int. J. Supercomp. Appl. High
Perform. Comp., 10:251–268, 1996.

[11] S. J. Plimpton and B. A. Hendrickson. A new parallel method for molecular dynamics simu-
lation of macromolecular systems. J. Comp. Chem., 17(3):326–337, 1996.

[12] J. W. Ponder and F. M. Richards. An efficient Newton-like method for molecular mechanics
energy minimization of large molecules. J. Comp. Chem., 8:1016–1024, 1987.

[13] R. D. Skeel. Symplectic integration with floating-point arithmetic and other approximations.
Appl. Numer. Math., 29:3–18, 1999.

[14] J. Stone, J. Gullingsrud, P. Grayson, and K. Schulten. A system for interactive molecular
dynamics simulation. In J. F. Huges and C. H. Séquin, editors, 2001 ACM Symposium on
Interactive 3D Graphics, pages 191–194, New York, 2001. ACM SIGGRAPH.

[15] P. K. Weiner and P. A. Kollman. AMBER: Assisted model building with energy refinement. A
general program for modeling molecules and their interactions. J. Comp. Chem., 2(3):287–303,
1981.

13

