
IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

A Parallel-Object Programming
Model for PetaFLOPS Machines and

BlueGene/Cyclops

Gengbin Zheng, Arun Singla,

Joshua Unger, Laxmikant Kalé
Parallel Programming Laboratory

Department of Computer Science

University of Illinois at Urbana-Champaign

http://charm.cs.uiuc.edu

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Massive Parallel Processors-In-Memory

• MPPIM
– Large number of identical chips

– Each contains multiple processors and memory

• Blue Gene/C
– 34 x 34 x 36 cube

– Multi-million hardware threads

• Challenges
– How to program?

– Software challenges: cost-effective

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Need for Emulator

• Emulate BG/C machine API on conventional
supercomputers and clusters.
– Emulator enables programmer to develop, compile, and

run software using programming interface that will be
used in actual machine

• Performance estimation (with proper time
stamping)

• Allow further research on high level parallel
languages like Charm++

• Low memory-to-processor ratio make it possible
– Half terabyte memory require 1000 processors 512MB

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Emulation on a Parallel Machine

Simulating (Host) Processor

BG/C Nodes

Hardware thread

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Bluegene Emulator
one BG/C Node

Communication threads

Non-affinity message queues
Affinity message queues

Worker thread

inBuffer

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Blue Gene Programming API

• Low-level

– Machine initialization

• Get node ID: (x, y, z)

• Get Blue Gene size

– Register handler functions on node

– Send packets to other nodes (x,y,z)

• With handler ID

in out

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Blue Gene application example - Ring

typedef struct {

char core[CmiBlueGeneMsgHeaderSizeBytes];

int data;

} RingMsg;

void BgNodeStart(int argc, char **argv) {

int x,y,z, nx, ny, nz;

RingMsg msg; msg.data = 888;

BgGetXYZ(&x, &y, &z); nextxyz(x, y, z, &nx, &ny, &nz);

if (x == 0 && y==0 && z==0)

BgSendPacket(nx, ny, nz, passRingID, LARGE_WORK, sizeof(int), (char *)&msg);

}

void passRing(char *msg) {

int x, y, z, nx, ny, nz;

BgGetXYZ(&x, &y, &z); nextxyz(x, y, z, &nx, &ny, &nz);

if (x==0 && y==0 && z==0) if (++iter == MAXITER) BgShutdown();

BgSendPacket(nx, ny, nz, passRingID, LARGE_WORK, sizeof(int), msg);

}

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Emulator Status

• Implemented on Charm++/Converse
– 8 Million processors being emulated on 100

ASCI-Red processors

• How much time does it take to run an
emulation v.s. how much time does it take to
run on real BG/C?
– Timestamp module

• Emulation efficiency
– On a Linux cluster:

• Emulation shows good speedup(later slides)

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Programming issues for MPPIM

• Need higher level of programming language

• Data locality

• Parallelism

• Load balancing

• Charm++ is a good programming model
candidate for MPPIMs

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Charm++

• Parallel C++ with Data Driven Objects
• Object Arrays/ Object Collections
• Object Groups:

– Global object with a “representative” on each PE

• Asynchronous method invocation
• Built-in load balancing(runtime)
• Mature, robust, portable
• http://charm.cs.uiuc.edu

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Multi-partition Decomposition

• Idea: divide the computation into a large
number of pieces(parallel objects)
– Independent of number of processors

– Typically larger than number of processors

– Let the system map entities to processors

• Optimal division of labor between “system”
and programmer:

• Decomposition done by programmer,

• Everything else automated

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Object-based Parallelization

User View

System implementation

User is only concerned with interaction between objects

Charm++ PE

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Data driven execution

Scheduler Scheduler

Message Q Message Q

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Load Balancing Framework

• Based on object migration
– Partitions implemented as objects (or threads) are

mapped to available processors by LB framework

• Measurement based load balancers:
– Principle of persistence

• Computational loads and communication patterns

– Runtime system measures actual computation times of
every partition, as well as communication patterns

• Variety of “plug-in” LB strategies available
– Scalable to a few thousand processors
– Including those for situations when principle of

persistence does not apply

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Charm++ is a Good Match for MPPIM
• Message driven/Data driven
• Encapsulation : objects
• Explicit cost model:

– Object data, read-only data, remote data
– Aware of the cost of accessing remote data

• Migration and resource management:
automatic

• One sided communication
• Asynchronous global operations

(reductions, ..)

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Charm++ Applications

• Charm++ developed in the context of real
applications

• Current applications we are involved with:
– Molecular dynamics(NAMD)

– Crack propagation

– Rocket simulation: fluid dynamics + structures +

– QM/MM: Material properties via quantum mech

– Cosmology simulations: parallel analysis+viz

– Cosmology: gravitational with multiple timestepping

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Molecular Dynamics

• Collection of [charged] atoms, with bonds

• Newtonian mechanics

• At each time-step
– Calculate forces on each atom

• Bonds:

• Non-bonded: electrostatic and van der Waal’s

– Calculate velocities and advance positions

• 1 femtosecond time-step, millions needed!

• Thousands of atoms (1,000 - 100,000)

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Performance Data: SC2000

Speedup on ASCI Red: BC1 (200k atoms)

0

200

400

600

800

1000

1200

1400

0 500 1000 1500 2000 2500

Processors

S
pe

ed
up

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Further Match With MPPIM

• Ability to predict:
– Which data is going to be needed and which

code will execute

– Based on the ready queue of object method
invocations

– So, we can:
• Prefetch data accurately

• Prefetch code if needed

S S
Q Q

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Blue Gene/C Charm++

• Implemented Charm++ on Blue Gene/C
Emulator
– Almost all existing Charm++ applications can

run w/o change on emulator

• Case study on some real applications
– leanMD: Fully functional MD with only cutoff

(PME later)
– AMR

• Time stamping(ongoing work)
– Log generation and correction

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Parallel Object Programming Model

Charm++

Converse

UDP/TCP, MPI, Myrinet, etc Converse

Charm++

UDP/TCP, MPI, Myrinet, etc

NS Selector

BGConverse
Emulator

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

BG/C Charm++

• Object affinity
– Object mapped to a BG node

• A message can be executed by any thread

• Load balancing at node level

• Locking needed

– Object mapped to a BG thread
• An object is created on a particular thread

• All messages to the object will go to that thread

• No locking needed.

• Load balancing at thread level

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Applications on the current system

• LeanMD:
– Research quality Molecular Dynamics

– Version 0: only electrostatics + van der Vaal

• Simple AMR kernel
– Adaptive tree to generate millions of objects

• Each holding a 3D array

– Communication with “neighbors”
• Tree makes it harder to find nbrs, but Charm makes it easy

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

LeanMD

• K-array molecular dynamics simulation

• Using Charm++ Chare arrays

Ø 10x10x10 200 threads each
Ø 11x11x11 cells
Ø 144914 cell-to-cell computes

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Correction of Time stamps at runtime back

• Timestamp
– Per thread timer
– Message arrive time

• Calculate at time of sending
– Based on hop and corner

• Update thread timer when arrive

• Correction needed for out-of-order
messages
– Correction messages send out

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Performance Analysis Tool: Projections

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

LittleMD Blue Gene Time

0

5

10

15

20

25

number of threads

ti
m

e
pe

r
st

ep

LittleMD

LittleMD 23.3 12.3 6.7 3.7 2.4

16 32 64 128 256

Ø 200,000 atoms
Ø Use 4 simulating processors

IPDPS Workshop: Apr 2002 PPL-Dept of Computer Science, UIUC

Summary

• Emulation of BG/C with millions of threads
– On conventional supercomputers and clusters

• Charm++ on BG Emulator
– Legacy Charm++ applications
– Load balancing(need more research)

• We have Implemented multi-million object
applications using Charm++
– And tested on emulated Blue Gene/C

• Getting accurate simulating timing data
• More info: http://charm.cs.uiuc.edu

– Both Emulator and BG Charm++ are available for
download

